Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppcmndclem Structured version   Visualization version   GIF version

Theorem oppcmndclem 48994
Description: Lemma for oppcmndc 48996. Everything is true for two distinct elements in a singleton or an empty set (since it is impossible). Note that if this theorem and oppcendc 48995 are in ¬ 𝑥 = 𝑦 form, then both proofs should be one step shorter. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypothesis
Ref Expression
oppcmndclem.1 (𝜑𝐵 = {𝐴})
Assertion
Ref Expression
oppcmndclem ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝑌𝜓))

Proof of Theorem oppcmndclem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2927 . 2 (𝑋𝑌 ↔ ¬ 𝑋 = 𝑌)
2 eqeq1 2734 . . . 4 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
3 eqeq2 2742 . . . 4 (𝑦 = 𝑌 → (𝑋 = 𝑦𝑋 = 𝑌))
4 oppcmndclem.1 . . . . . . 7 (𝜑𝐵 = {𝐴})
5 mosn 48791 . . . . . . 7 (𝐵 = {𝐴} → ∃*𝑥 𝑥𝐵)
64, 5syl 17 . . . . . 6 (𝜑 → ∃*𝑥 𝑥𝐵)
7 moel 3378 . . . . . 6 (∃*𝑥 𝑥𝐵 ↔ ∀𝑥𝐵𝑦𝐵 𝑥 = 𝑦)
86, 7sylib 218 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 𝑥 = 𝑦)
98adantr 480 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ∀𝑥𝐵𝑦𝐵 𝑥 = 𝑦)
10 simprl 770 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
11 simprr 772 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
122, 3, 9, 10, 11rspc2dv 3606 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 = 𝑌)
1312pm2.24d 151 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (¬ 𝑋 = 𝑌𝜓))
141, 13biimtrid 242 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝑌𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2532  wne 2926  wral 3045  {csn 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-v 3452  df-sbc 3756  df-dif 3919  df-nul 4299  df-sn 4592
This theorem is referenced by:  oppcmndc  48996
  Copyright terms: Public domain W3C validator