![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oppcmndclem | Structured version Visualization version GIF version |
Description: Lemma for oppcmndc 48880. Everything is true for two distinct elements in a singleton or an empty set (since it is impossible). Note that if this theorem and oppcendc 48879 are in ¬ 𝑥 = 𝑦 form, then both proofs should be one step shorter. (Contributed by Zhi Wang, 16-Oct-2025.) |
Ref | Expression |
---|---|
oppcmndclem.1 | ⊢ (𝜑 → 𝐵 = {𝐴}) |
Ref | Expression |
---|---|
oppcmndclem | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≠ 𝑌 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2940 | . 2 ⊢ (𝑋 ≠ 𝑌 ↔ ¬ 𝑋 = 𝑌) | |
2 | eqeq1 2740 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) | |
3 | eqeq2 2748 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑌)) | |
4 | oppcmndclem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = {𝐴}) | |
5 | mosn 48705 | . . . . . . 7 ⊢ (𝐵 = {𝐴} → ∃*𝑥 𝑥 ∈ 𝐵) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ 𝐵) |
7 | moel 3401 | . . . . . 6 ⊢ (∃*𝑥 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) | |
8 | 6, 7 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) |
10 | simprl 771 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
11 | simprr 773 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
12 | 2, 3, 9, 10, 11 | rspc2dv 3636 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 = 𝑌) |
13 | 12 | pm2.24d 151 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (¬ 𝑋 = 𝑌 → 𝜓)) |
14 | 1, 13 | biimtrid 242 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≠ 𝑌 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃*wmo 2537 ≠ wne 2939 ∀wral 3060 {csn 4624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-v 3481 df-sbc 3788 df-dif 3953 df-nul 4333 df-sn 4625 |
This theorem is referenced by: oppcmndc 48880 |
Copyright terms: Public domain | W3C validator |