| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppcmndclem | Structured version Visualization version GIF version | ||
| Description: Lemma for oppcmndc 48901. Everything is true for two distinct elements in a singleton or an empty set (since it is impossible). Note that if this theorem and oppcendc 48900 are in ¬ 𝑥 = 𝑦 form, then both proofs should be one step shorter. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| oppcmndclem.1 | ⊢ (𝜑 → 𝐵 = {𝐴}) |
| Ref | Expression |
|---|---|
| oppcmndclem | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≠ 𝑌 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2932 | . 2 ⊢ (𝑋 ≠ 𝑌 ↔ ¬ 𝑋 = 𝑌) | |
| 2 | eqeq1 2738 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) | |
| 3 | eqeq2 2746 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 = 𝑦 ↔ 𝑋 = 𝑌)) | |
| 4 | oppcmndclem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = {𝐴}) | |
| 5 | mosn 48705 | . . . . . . 7 ⊢ (𝐵 = {𝐴} → ∃*𝑥 𝑥 ∈ 𝐵) | |
| 6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ 𝐵) |
| 7 | moel 3385 | . . . . . 6 ⊢ (∃*𝑥 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) | |
| 8 | 6, 7 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 𝑥 = 𝑦) |
| 10 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 11 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 12 | 2, 3, 9, 10, 11 | rspc2dv 3620 | . . 3 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 = 𝑌) |
| 13 | 12 | pm2.24d 151 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (¬ 𝑋 = 𝑌 → 𝜓)) |
| 14 | 1, 13 | biimtrid 242 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≠ 𝑌 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃*wmo 2536 ≠ wne 2931 ∀wral 3050 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-v 3465 df-sbc 3771 df-dif 3934 df-nul 4314 df-sn 4607 |
| This theorem is referenced by: oppcmndc 48901 |
| Copyright terms: Public domain | W3C validator |