Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppcendc Structured version   Visualization version   GIF version

Theorem oppcendc 48995
Description: The opposite category of a category whose morphisms are all endomorphisms has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
oppcendc.o 𝑂 = (oppCat‘𝐶)
oppcendc.b 𝐵 = (Base‘𝐶)
oppcendc.h 𝐻 = (Hom ‘𝐶)
oppcendc.1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
Assertion
Ref Expression
oppcendc (𝜑 → (Homf𝐶) = (Homf𝑂))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem oppcendc
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcendc.1 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
21ralrimivva 3181 . . . . . . . 8 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
3 eqeq12 2747 . . . . . . . . . . 11 ((𝑥 = 𝑝𝑦 = 𝑞) → (𝑥 = 𝑦𝑝 = 𝑞))
43necon3bid 2970 . . . . . . . . . 10 ((𝑥 = 𝑝𝑦 = 𝑞) → (𝑥𝑦𝑝𝑞))
5 oveq12 7398 . . . . . . . . . . 11 ((𝑥 = 𝑝𝑦 = 𝑞) → (𝑥𝐻𝑦) = (𝑝𝐻𝑞))
65eqeq1d 2732 . . . . . . . . . 10 ((𝑥 = 𝑝𝑦 = 𝑞) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑝𝐻𝑞) = ∅))
74, 6imbi12d 344 . . . . . . . . 9 ((𝑥 = 𝑝𝑦 = 𝑞) → ((𝑥𝑦 → (𝑥𝐻𝑦) = ∅) ↔ (𝑝𝑞 → (𝑝𝐻𝑞) = ∅)))
87rspc2gv 3601 . . . . . . . 8 ((𝑝𝐵𝑞𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅) → (𝑝𝑞 → (𝑝𝐻𝑞) = ∅)))
92, 8mpan9 506 . . . . . . 7 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝𝑞 → (𝑝𝐻𝑞) = ∅))
10 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → 𝑞𝐵)
11 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → 𝑝𝐵)
122adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
13 eqeq12 2747 . . . . . . . . . . . . 13 ((𝑥 = 𝑞𝑦 = 𝑝) → (𝑥 = 𝑦𝑞 = 𝑝))
14 equcom 2018 . . . . . . . . . . . . 13 (𝑝 = 𝑞𝑞 = 𝑝)
1513, 14bitr4di 289 . . . . . . . . . . . 12 ((𝑥 = 𝑞𝑦 = 𝑝) → (𝑥 = 𝑦𝑝 = 𝑞))
1615necon3bid 2970 . . . . . . . . . . 11 ((𝑥 = 𝑞𝑦 = 𝑝) → (𝑥𝑦𝑝𝑞))
17 oveq12 7398 . . . . . . . . . . . 12 ((𝑥 = 𝑞𝑦 = 𝑝) → (𝑥𝐻𝑦) = (𝑞𝐻𝑝))
1817eqeq1d 2732 . . . . . . . . . . 11 ((𝑥 = 𝑞𝑦 = 𝑝) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑞𝐻𝑝) = ∅))
1916, 18imbi12d 344 . . . . . . . . . 10 ((𝑥 = 𝑞𝑦 = 𝑝) → ((𝑥𝑦 → (𝑥𝐻𝑦) = ∅) ↔ (𝑝𝑞 → (𝑞𝐻𝑝) = ∅)))
2019rspc2gv 3601 . . . . . . . . 9 ((𝑞𝐵𝑝𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅) → (𝑝𝑞 → (𝑞𝐻𝑝) = ∅)))
2120imp 406 . . . . . . . 8 (((𝑞𝐵𝑝𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅)) → (𝑝𝑞 → (𝑞𝐻𝑝) = ∅))
2210, 11, 12, 21syl21anc 837 . . . . . . 7 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝𝑞 → (𝑞𝐻𝑝) = ∅))
239, 22jcad 512 . . . . . 6 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝𝑞 → ((𝑝𝐻𝑞) = ∅ ∧ (𝑞𝐻𝑝) = ∅)))
24 nne 2930 . . . . . . . 8 𝑝𝑞𝑝 = 𝑞)
25 id 22 . . . . . . . . 9 (𝑝 = 𝑞𝑝 = 𝑞)
26 equcomi 2017 . . . . . . . . 9 (𝑝 = 𝑞𝑞 = 𝑝)
2725, 26oveq12d 7407 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝𝐻𝑞) = (𝑞𝐻𝑝))
2824, 27sylbi 217 . . . . . . 7 𝑝𝑞 → (𝑝𝐻𝑞) = (𝑞𝐻𝑝))
29 eqtr3 2752 . . . . . . 7 (((𝑝𝐻𝑞) = ∅ ∧ (𝑞𝐻𝑝) = ∅) → (𝑝𝐻𝑞) = (𝑞𝐻𝑝))
3028, 29ja 186 . . . . . 6 ((𝑝𝑞 → ((𝑝𝐻𝑞) = ∅ ∧ (𝑞𝐻𝑝) = ∅)) → (𝑝𝐻𝑞) = (𝑞𝐻𝑝))
3123, 30syl 17 . . . . 5 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝𝐻𝑞) = (𝑞𝐻𝑝))
32 eqid 2730 . . . . . 6 (Homf𝐶) = (Homf𝐶)
33 oppcendc.b . . . . . 6 𝐵 = (Base‘𝐶)
34 oppcendc.h . . . . . 6 𝐻 = (Hom ‘𝐶)
3532, 33, 34, 11, 10homfval 17659 . . . . 5 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝(Homf𝐶)𝑞) = (𝑝𝐻𝑞))
3632, 33, 34, 10, 11homfval 17659 . . . . 5 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑞(Homf𝐶)𝑝) = (𝑞𝐻𝑝))
3731, 35, 363eqtr4d 2775 . . . 4 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝(Homf𝐶)𝑞) = (𝑞(Homf𝐶)𝑝))
3837ralrimivva 3181 . . 3 (𝜑 → ∀𝑝𝐵𝑞𝐵 (𝑝(Homf𝐶)𝑞) = (𝑞(Homf𝐶)𝑝))
3932, 33homffn 17660 . . . 4 (Homf𝐶) Fn (𝐵 × 𝐵)
40 tpossym 8239 . . . 4 ((Homf𝐶) Fn (𝐵 × 𝐵) → (tpos (Homf𝐶) = (Homf𝐶) ↔ ∀𝑝𝐵𝑞𝐵 (𝑝(Homf𝐶)𝑞) = (𝑞(Homf𝐶)𝑝)))
4139, 40ax-mp 5 . . 3 (tpos (Homf𝐶) = (Homf𝐶) ↔ ∀𝑝𝐵𝑞𝐵 (𝑝(Homf𝐶)𝑞) = (𝑞(Homf𝐶)𝑝))
4238, 41sylibr 234 . 2 (𝜑 → tpos (Homf𝐶) = (Homf𝐶))
43 oppcendc.o . . 3 𝑂 = (oppCat‘𝐶)
4443, 32oppchomf 17687 . 2 tpos (Homf𝐶) = (Homf𝑂)
4542, 44eqtr3di 2780 1 (𝜑 → (Homf𝐶) = (Homf𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  c0 4298   × cxp 5638   Fn wfn 6508  cfv 6513  (class class class)co 7389  tpos ctpos 8206  Basecbs 17185  Hom chom 17237  Homf chomf 17633  oppCatcoppc 17678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-homf 17637  df-oppc 17679
This theorem is referenced by:  oppcmndc  48996  oppcthinendc  49409  oppcthinendcALT  49410
  Copyright terms: Public domain W3C validator