Step | Hyp | Ref
| Expression |
1 | | oppcendc.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) |
2 | 1 | ralrimivva 3201 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) |
3 | | eqeq12 2753 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑝 ∧ 𝑦 = 𝑞) → (𝑥 = 𝑦 ↔ 𝑝 = 𝑞)) |
4 | 3 | necon3bid 2984 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑝 ∧ 𝑦 = 𝑞) → (𝑥 ≠ 𝑦 ↔ 𝑝 ≠ 𝑞)) |
5 | | oveq12 7438 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑝 ∧ 𝑦 = 𝑞) → (𝑥𝐻𝑦) = (𝑝𝐻𝑞)) |
6 | 5 | eqeq1d 2738 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑝 ∧ 𝑦 = 𝑞) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑝𝐻𝑞) = ∅)) |
7 | 4, 6 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑝 ∧ 𝑦 = 𝑞) → ((𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅) ↔ (𝑝 ≠ 𝑞 → (𝑝𝐻𝑞) = ∅))) |
8 | 7 | rspc2gv 3631 |
. . . . . . . 8
⊢ ((𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅) → (𝑝 ≠ 𝑞 → (𝑝𝐻𝑞) = ∅))) |
9 | 2, 8 | mpan9 506 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 ≠ 𝑞 → (𝑝𝐻𝑞) = ∅)) |
10 | | simprr 773 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → 𝑞 ∈ 𝐵) |
11 | | simprl 771 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → 𝑝 ∈ 𝐵) |
12 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) |
13 | | eqeq12 2753 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑞 ∧ 𝑦 = 𝑝) → (𝑥 = 𝑦 ↔ 𝑞 = 𝑝)) |
14 | | equcom 2017 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 𝑞 ↔ 𝑞 = 𝑝) |
15 | 13, 14 | bitr4di 289 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑞 ∧ 𝑦 = 𝑝) → (𝑥 = 𝑦 ↔ 𝑝 = 𝑞)) |
16 | 15 | necon3bid 2984 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑞 ∧ 𝑦 = 𝑝) → (𝑥 ≠ 𝑦 ↔ 𝑝 ≠ 𝑞)) |
17 | | oveq12 7438 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑞 ∧ 𝑦 = 𝑝) → (𝑥𝐻𝑦) = (𝑞𝐻𝑝)) |
18 | 17 | eqeq1d 2738 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑞 ∧ 𝑦 = 𝑝) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑞𝐻𝑝) = ∅)) |
19 | 16, 18 | imbi12d 344 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑞 ∧ 𝑦 = 𝑝) → ((𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅) ↔ (𝑝 ≠ 𝑞 → (𝑞𝐻𝑝) = ∅))) |
20 | 19 | rspc2gv 3631 |
. . . . . . . . 9
⊢ ((𝑞 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅) → (𝑝 ≠ 𝑞 → (𝑞𝐻𝑝) = ∅))) |
21 | 20 | imp 406 |
. . . . . . . 8
⊢ (((𝑞 ∈ 𝐵 ∧ 𝑝 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) → (𝑝 ≠ 𝑞 → (𝑞𝐻𝑝) = ∅)) |
22 | 10, 11, 12, 21 | syl21anc 838 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 ≠ 𝑞 → (𝑞𝐻𝑝) = ∅)) |
23 | 9, 22 | jcad 512 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝 ≠ 𝑞 → ((𝑝𝐻𝑞) = ∅ ∧ (𝑞𝐻𝑝) = ∅))) |
24 | | nne 2943 |
. . . . . . . 8
⊢ (¬
𝑝 ≠ 𝑞 ↔ 𝑝 = 𝑞) |
25 | | id 22 |
. . . . . . . . 9
⊢ (𝑝 = 𝑞 → 𝑝 = 𝑞) |
26 | | equcomi 2016 |
. . . . . . . . 9
⊢ (𝑝 = 𝑞 → 𝑞 = 𝑝) |
27 | 25, 26 | oveq12d 7447 |
. . . . . . . 8
⊢ (𝑝 = 𝑞 → (𝑝𝐻𝑞) = (𝑞𝐻𝑝)) |
28 | 24, 27 | sylbi 217 |
. . . . . . 7
⊢ (¬
𝑝 ≠ 𝑞 → (𝑝𝐻𝑞) = (𝑞𝐻𝑝)) |
29 | | eqtr3 2762 |
. . . . . . 7
⊢ (((𝑝𝐻𝑞) = ∅ ∧ (𝑞𝐻𝑝) = ∅) → (𝑝𝐻𝑞) = (𝑞𝐻𝑝)) |
30 | 28, 29 | ja 186 |
. . . . . 6
⊢ ((𝑝 ≠ 𝑞 → ((𝑝𝐻𝑞) = ∅ ∧ (𝑞𝐻𝑝) = ∅)) → (𝑝𝐻𝑞) = (𝑞𝐻𝑝)) |
31 | 23, 30 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝𝐻𝑞) = (𝑞𝐻𝑝)) |
32 | | eqid 2736 |
. . . . . 6
⊢
(Homf ‘𝐶) = (Homf ‘𝐶) |
33 | | oppcendc.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐶) |
34 | | oppcendc.h |
. . . . . 6
⊢ 𝐻 = (Hom ‘𝐶) |
35 | 32, 33, 34, 11, 10 | homfval 17731 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝(Homf ‘𝐶)𝑞) = (𝑝𝐻𝑞)) |
36 | 32, 33, 34, 10, 11 | homfval 17731 |
. . . . 5
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑞(Homf ‘𝐶)𝑝) = (𝑞𝐻𝑝)) |
37 | 31, 35, 36 | 3eqtr4d 2786 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (𝑝(Homf ‘𝐶)𝑞) = (𝑞(Homf ‘𝐶)𝑝)) |
38 | 37 | ralrimivva 3201 |
. . 3
⊢ (𝜑 → ∀𝑝 ∈ 𝐵 ∀𝑞 ∈ 𝐵 (𝑝(Homf ‘𝐶)𝑞) = (𝑞(Homf ‘𝐶)𝑝)) |
39 | 32, 33 | homffn 17732 |
. . . 4
⊢
(Homf ‘𝐶) Fn (𝐵 × 𝐵) |
40 | | tpossym 8279 |
. . . 4
⊢
((Homf ‘𝐶) Fn (𝐵 × 𝐵) → (tpos (Homf
‘𝐶) =
(Homf ‘𝐶) ↔ ∀𝑝 ∈ 𝐵 ∀𝑞 ∈ 𝐵 (𝑝(Homf ‘𝐶)𝑞) = (𝑞(Homf ‘𝐶)𝑝))) |
41 | 39, 40 | ax-mp 5 |
. . 3
⊢ (tpos
(Homf ‘𝐶) = (Homf ‘𝐶) ↔ ∀𝑝 ∈ 𝐵 ∀𝑞 ∈ 𝐵 (𝑝(Homf ‘𝐶)𝑞) = (𝑞(Homf ‘𝐶)𝑝)) |
42 | 38, 41 | sylibr 234 |
. 2
⊢ (𝜑 → tpos
(Homf ‘𝐶) = (Homf ‘𝐶)) |
43 | | oppcendc.o |
. . 3
⊢ 𝑂 = (oppCat‘𝐶) |
44 | 43, 32 | oppchomf 17759 |
. 2
⊢ tpos
(Homf ‘𝐶) = (Homf ‘𝑂) |
45 | 42, 44 | eqtr3di 2791 |
1
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝑂)) |