Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppcendc Structured version   Visualization version   GIF version

Theorem oppcendc 48879
Description: The opposite category of a category whose morphisms are all endomorphisms has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
oppcendc.o 𝑂 = (oppCat‘𝐶)
oppcendc.b 𝐵 = (Base‘𝐶)
oppcendc.h 𝐻 = (Hom ‘𝐶)
oppcendc.1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
Assertion
Ref Expression
oppcendc (𝜑 → (Homf𝐶) = (Homf𝑂))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem oppcendc
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcendc.1 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
21ralrimivva 3201 . . . . . . . 8 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
3 eqeq12 2753 . . . . . . . . . . 11 ((𝑥 = 𝑝𝑦 = 𝑞) → (𝑥 = 𝑦𝑝 = 𝑞))
43necon3bid 2984 . . . . . . . . . 10 ((𝑥 = 𝑝𝑦 = 𝑞) → (𝑥𝑦𝑝𝑞))
5 oveq12 7438 . . . . . . . . . . 11 ((𝑥 = 𝑝𝑦 = 𝑞) → (𝑥𝐻𝑦) = (𝑝𝐻𝑞))
65eqeq1d 2738 . . . . . . . . . 10 ((𝑥 = 𝑝𝑦 = 𝑞) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑝𝐻𝑞) = ∅))
74, 6imbi12d 344 . . . . . . . . 9 ((𝑥 = 𝑝𝑦 = 𝑞) → ((𝑥𝑦 → (𝑥𝐻𝑦) = ∅) ↔ (𝑝𝑞 → (𝑝𝐻𝑞) = ∅)))
87rspc2gv 3631 . . . . . . . 8 ((𝑝𝐵𝑞𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅) → (𝑝𝑞 → (𝑝𝐻𝑞) = ∅)))
92, 8mpan9 506 . . . . . . 7 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝𝑞 → (𝑝𝐻𝑞) = ∅))
10 simprr 773 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → 𝑞𝐵)
11 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → 𝑝𝐵)
122adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → ∀𝑥𝐵𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))
13 eqeq12 2753 . . . . . . . . . . . . 13 ((𝑥 = 𝑞𝑦 = 𝑝) → (𝑥 = 𝑦𝑞 = 𝑝))
14 equcom 2017 . . . . . . . . . . . . 13 (𝑝 = 𝑞𝑞 = 𝑝)
1513, 14bitr4di 289 . . . . . . . . . . . 12 ((𝑥 = 𝑞𝑦 = 𝑝) → (𝑥 = 𝑦𝑝 = 𝑞))
1615necon3bid 2984 . . . . . . . . . . 11 ((𝑥 = 𝑞𝑦 = 𝑝) → (𝑥𝑦𝑝𝑞))
17 oveq12 7438 . . . . . . . . . . . 12 ((𝑥 = 𝑞𝑦 = 𝑝) → (𝑥𝐻𝑦) = (𝑞𝐻𝑝))
1817eqeq1d 2738 . . . . . . . . . . 11 ((𝑥 = 𝑞𝑦 = 𝑝) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑞𝐻𝑝) = ∅))
1916, 18imbi12d 344 . . . . . . . . . 10 ((𝑥 = 𝑞𝑦 = 𝑝) → ((𝑥𝑦 → (𝑥𝐻𝑦) = ∅) ↔ (𝑝𝑞 → (𝑞𝐻𝑝) = ∅)))
2019rspc2gv 3631 . . . . . . . . 9 ((𝑞𝐵𝑝𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅) → (𝑝𝑞 → (𝑞𝐻𝑝) = ∅)))
2120imp 406 . . . . . . . 8 (((𝑞𝐵𝑝𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑦 → (𝑥𝐻𝑦) = ∅)) → (𝑝𝑞 → (𝑞𝐻𝑝) = ∅))
2210, 11, 12, 21syl21anc 838 . . . . . . 7 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝𝑞 → (𝑞𝐻𝑝) = ∅))
239, 22jcad 512 . . . . . 6 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝𝑞 → ((𝑝𝐻𝑞) = ∅ ∧ (𝑞𝐻𝑝) = ∅)))
24 nne 2943 . . . . . . . 8 𝑝𝑞𝑝 = 𝑞)
25 id 22 . . . . . . . . 9 (𝑝 = 𝑞𝑝 = 𝑞)
26 equcomi 2016 . . . . . . . . 9 (𝑝 = 𝑞𝑞 = 𝑝)
2725, 26oveq12d 7447 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝𝐻𝑞) = (𝑞𝐻𝑝))
2824, 27sylbi 217 . . . . . . 7 𝑝𝑞 → (𝑝𝐻𝑞) = (𝑞𝐻𝑝))
29 eqtr3 2762 . . . . . . 7 (((𝑝𝐻𝑞) = ∅ ∧ (𝑞𝐻𝑝) = ∅) → (𝑝𝐻𝑞) = (𝑞𝐻𝑝))
3028, 29ja 186 . . . . . 6 ((𝑝𝑞 → ((𝑝𝐻𝑞) = ∅ ∧ (𝑞𝐻𝑝) = ∅)) → (𝑝𝐻𝑞) = (𝑞𝐻𝑝))
3123, 30syl 17 . . . . 5 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝𝐻𝑞) = (𝑞𝐻𝑝))
32 eqid 2736 . . . . . 6 (Homf𝐶) = (Homf𝐶)
33 oppcendc.b . . . . . 6 𝐵 = (Base‘𝐶)
34 oppcendc.h . . . . . 6 𝐻 = (Hom ‘𝐶)
3532, 33, 34, 11, 10homfval 17731 . . . . 5 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝(Homf𝐶)𝑞) = (𝑝𝐻𝑞))
3632, 33, 34, 10, 11homfval 17731 . . . . 5 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑞(Homf𝐶)𝑝) = (𝑞𝐻𝑝))
3731, 35, 363eqtr4d 2786 . . . 4 ((𝜑 ∧ (𝑝𝐵𝑞𝐵)) → (𝑝(Homf𝐶)𝑞) = (𝑞(Homf𝐶)𝑝))
3837ralrimivva 3201 . . 3 (𝜑 → ∀𝑝𝐵𝑞𝐵 (𝑝(Homf𝐶)𝑞) = (𝑞(Homf𝐶)𝑝))
3932, 33homffn 17732 . . . 4 (Homf𝐶) Fn (𝐵 × 𝐵)
40 tpossym 8279 . . . 4 ((Homf𝐶) Fn (𝐵 × 𝐵) → (tpos (Homf𝐶) = (Homf𝐶) ↔ ∀𝑝𝐵𝑞𝐵 (𝑝(Homf𝐶)𝑞) = (𝑞(Homf𝐶)𝑝)))
4139, 40ax-mp 5 . . 3 (tpos (Homf𝐶) = (Homf𝐶) ↔ ∀𝑝𝐵𝑞𝐵 (𝑝(Homf𝐶)𝑞) = (𝑞(Homf𝐶)𝑝))
4238, 41sylibr 234 . 2 (𝜑 → tpos (Homf𝐶) = (Homf𝐶))
43 oppcendc.o . . 3 𝑂 = (oppCat‘𝐶)
4443, 32oppchomf 17759 . 2 tpos (Homf𝐶) = (Homf𝑂)
4542, 44eqtr3di 2791 1 (𝜑 → (Homf𝐶) = (Homf𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2939  wral 3060  c0 4332   × cxp 5681   Fn wfn 6554  cfv 6559  (class class class)co 7429  tpos ctpos 8246  Basecbs 17243  Hom chom 17304  Homf chomf 17705  oppCatcoppc 17750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-tpos 8247  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-z 12610  df-dec 12730  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17244  df-hom 17317  df-cco 17318  df-homf 17709  df-oppc 17751
This theorem is referenced by:  oppcmndc  48880  oppcthinendc  49062  oppcthinendcALT  49063
  Copyright terms: Public domain W3C validator