Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  projf1o Structured version   Visualization version   GIF version

Theorem projf1o 45233
Description: A biijection from a set to a projection in a two dimensional space. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
projf1o.1 (𝜑𝐴𝑉)
projf1o.2 𝐹 = (𝑥𝐵 ↦ ⟨𝐴, 𝑥⟩)
Assertion
Ref Expression
projf1o (𝜑𝐹:𝐵1-1-onto→({𝐴} × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem projf1o
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 projf1o.1 . . . . . . 7 (𝜑𝐴𝑉)
2 snidg 4613 . . . . . . 7 (𝐴𝑉𝐴 ∈ {𝐴})
31, 2syl 17 . . . . . 6 (𝜑𝐴 ∈ {𝐴})
43adantr 480 . . . . 5 ((𝜑𝑦𝐵) → 𝐴 ∈ {𝐴})
5 simpr 484 . . . . 5 ((𝜑𝑦𝐵) → 𝑦𝐵)
64, 5opelxpd 5655 . . . 4 ((𝜑𝑦𝐵) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
7 projf1o.2 . . . . 5 𝐹 = (𝑥𝐵 ↦ ⟨𝐴, 𝑥⟩)
8 opeq2 4826 . . . . . 6 (𝑥 = 𝑦 → ⟨𝐴, 𝑥⟩ = ⟨𝐴, 𝑦⟩)
98cbvmptv 5195 . . . . 5 (𝑥𝐵 ↦ ⟨𝐴, 𝑥⟩) = (𝑦𝐵 ↦ ⟨𝐴, 𝑦⟩)
107, 9eqtri 2754 . . . 4 𝐹 = (𝑦𝐵 ↦ ⟨𝐴, 𝑦⟩)
116, 10fmptd 7047 . . 3 (𝜑𝐹:𝐵⟶({𝐴} × 𝐵))
12 simpl1 1192 . . . . . . 7 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → 𝜑)
137, 8, 5, 6fvmptd3 6952 . . . . . . . . . . 11 ((𝜑𝑦𝐵) → (𝐹𝑦) = ⟨𝐴, 𝑦⟩)
1413eqcomd 2737 . . . . . . . . . 10 ((𝜑𝑦𝐵) → ⟨𝐴, 𝑦⟩ = (𝐹𝑦))
15143adant3 1132 . . . . . . . . 9 ((𝜑𝑦𝐵𝑧𝐵) → ⟨𝐴, 𝑦⟩ = (𝐹𝑦))
1615adantr 480 . . . . . . . 8 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → ⟨𝐴, 𝑦⟩ = (𝐹𝑦))
17 simpr 484 . . . . . . . 8 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → (𝐹𝑦) = (𝐹𝑧))
18 opeq2 4826 . . . . . . . . . . 11 (𝑦 = 𝑧 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩)
19 simpr 484 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝑧𝐵)
20 opex 5404 . . . . . . . . . . . 12 𝐴, 𝑧⟩ ∈ V
2120a1i 11 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → ⟨𝐴, 𝑧⟩ ∈ V)
2210, 18, 19, 21fvmptd3 6952 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝐹𝑧) = ⟨𝐴, 𝑧⟩)
23223adant2 1131 . . . . . . . . 9 ((𝜑𝑦𝐵𝑧𝐵) → (𝐹𝑧) = ⟨𝐴, 𝑧⟩)
2423adantr 480 . . . . . . . 8 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → (𝐹𝑧) = ⟨𝐴, 𝑧⟩)
2516, 17, 243eqtrd 2770 . . . . . . 7 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩)
26 vex 3440 . . . . . . . . . 10 𝑧 ∈ V
2726a1i 11 . . . . . . . . 9 (𝜑𝑧 ∈ V)
28 opthg2 5419 . . . . . . . . 9 ((𝐴𝑉𝑧 ∈ V) → (⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩ ↔ (𝐴 = 𝐴𝑦 = 𝑧)))
291, 27, 28syl2anc 584 . . . . . . . 8 (𝜑 → (⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩ ↔ (𝐴 = 𝐴𝑦 = 𝑧)))
3029simplbda 499 . . . . . . 7 ((𝜑 ∧ ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩) → 𝑦 = 𝑧)
3112, 25, 30syl2anc 584 . . . . . 6 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → 𝑦 = 𝑧)
3231ex 412 . . . . 5 ((𝜑𝑦𝐵𝑧𝐵) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
33323expb 1120 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
3433ralrimivva 3175 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
35 dff13 7188 . . 3 (𝐹:𝐵1-1→({𝐴} × 𝐵) ↔ (𝐹:𝐵⟶({𝐴} × 𝐵) ∧ ∀𝑦𝐵𝑧𝐵 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
3611, 34, 35sylanbrc 583 . 2 (𝜑𝐹:𝐵1-1→({𝐴} × 𝐵))
37 elsnxp 6238 . . . . . . 7 (𝐴𝑉 → (𝑧 ∈ ({𝐴} × 𝐵) ↔ ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩))
381, 37syl 17 . . . . . 6 (𝜑 → (𝑧 ∈ ({𝐴} × 𝐵) ↔ ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩))
3938biimpa 476 . . . . 5 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩)
4013adantr 480 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ 𝑧 = ⟨𝐴, 𝑦⟩) → (𝐹𝑦) = ⟨𝐴, 𝑦⟩)
41 id 22 . . . . . . . . . . 11 (𝑧 = ⟨𝐴, 𝑦⟩ → 𝑧 = ⟨𝐴, 𝑦⟩)
4241eqcomd 2737 . . . . . . . . . 10 (𝑧 = ⟨𝐴, 𝑦⟩ → ⟨𝐴, 𝑦⟩ = 𝑧)
4342adantl 481 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ 𝑧 = ⟨𝐴, 𝑦⟩) → ⟨𝐴, 𝑦⟩ = 𝑧)
4440, 43eqtr2d 2767 . . . . . . . 8 (((𝜑𝑦𝐵) ∧ 𝑧 = ⟨𝐴, 𝑦⟩) → 𝑧 = (𝐹𝑦))
4544ex 412 . . . . . . 7 ((𝜑𝑦𝐵) → (𝑧 = ⟨𝐴, 𝑦⟩ → 𝑧 = (𝐹𝑦)))
4645adantlr 715 . . . . . 6 (((𝜑𝑧 ∈ ({𝐴} × 𝐵)) ∧ 𝑦𝐵) → (𝑧 = ⟨𝐴, 𝑦⟩ → 𝑧 = (𝐹𝑦)))
4746reximdva 3145 . . . . 5 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → (∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩ → ∃𝑦𝐵 𝑧 = (𝐹𝑦)))
4839, 47mpd 15 . . . 4 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → ∃𝑦𝐵 𝑧 = (𝐹𝑦))
4948ralrimiva 3124 . . 3 (𝜑 → ∀𝑧 ∈ ({𝐴} × 𝐵)∃𝑦𝐵 𝑧 = (𝐹𝑦))
50 dffo3 7035 . . 3 (𝐹:𝐵onto→({𝐴} × 𝐵) ↔ (𝐹:𝐵⟶({𝐴} × 𝐵) ∧ ∀𝑧 ∈ ({𝐴} × 𝐵)∃𝑦𝐵 𝑧 = (𝐹𝑦)))
5111, 49, 50sylanbrc 583 . 2 (𝜑𝐹:𝐵onto→({𝐴} × 𝐵))
52 df-f1o 6488 . 2 (𝐹:𝐵1-1-onto→({𝐴} × 𝐵) ↔ (𝐹:𝐵1-1→({𝐴} × 𝐵) ∧ 𝐹:𝐵onto→({𝐴} × 𝐵)))
5336, 51, 52sylanbrc 583 1 (𝜑𝐹:𝐵1-1-onto→({𝐴} × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  {csn 4576  cop 4582  cmpt 5172   × cxp 5614  wf 6477  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by:  sge0xp  46466
  Copyright terms: Public domain W3C validator