Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  projf1o Structured version   Visualization version   GIF version

Theorem projf1o 43491
Description: A biijection from a set to a projection in a two dimensional space. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
projf1o.1 (𝜑𝐴𝑉)
projf1o.2 𝐹 = (𝑥𝐵 ↦ ⟨𝐴, 𝑥⟩)
Assertion
Ref Expression
projf1o (𝜑𝐹:𝐵1-1-onto→({𝐴} × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem projf1o
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 projf1o.1 . . . . . . 7 (𝜑𝐴𝑉)
2 snidg 4625 . . . . . . 7 (𝐴𝑉𝐴 ∈ {𝐴})
31, 2syl 17 . . . . . 6 (𝜑𝐴 ∈ {𝐴})
43adantr 482 . . . . 5 ((𝜑𝑦𝐵) → 𝐴 ∈ {𝐴})
5 simpr 486 . . . . 5 ((𝜑𝑦𝐵) → 𝑦𝐵)
64, 5opelxpd 5676 . . . 4 ((𝜑𝑦𝐵) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
7 projf1o.2 . . . . 5 𝐹 = (𝑥𝐵 ↦ ⟨𝐴, 𝑥⟩)
8 opeq2 4836 . . . . . 6 (𝑥 = 𝑦 → ⟨𝐴, 𝑥⟩ = ⟨𝐴, 𝑦⟩)
98cbvmptv 5223 . . . . 5 (𝑥𝐵 ↦ ⟨𝐴, 𝑥⟩) = (𝑦𝐵 ↦ ⟨𝐴, 𝑦⟩)
107, 9eqtri 2765 . . . 4 𝐹 = (𝑦𝐵 ↦ ⟨𝐴, 𝑦⟩)
116, 10fmptd 7067 . . 3 (𝜑𝐹:𝐵⟶({𝐴} × 𝐵))
12 simpl1 1192 . . . . . . 7 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → 𝜑)
137, 8, 5, 6fvmptd3 6976 . . . . . . . . . . 11 ((𝜑𝑦𝐵) → (𝐹𝑦) = ⟨𝐴, 𝑦⟩)
1413eqcomd 2743 . . . . . . . . . 10 ((𝜑𝑦𝐵) → ⟨𝐴, 𝑦⟩ = (𝐹𝑦))
15143adant3 1133 . . . . . . . . 9 ((𝜑𝑦𝐵𝑧𝐵) → ⟨𝐴, 𝑦⟩ = (𝐹𝑦))
1615adantr 482 . . . . . . . 8 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → ⟨𝐴, 𝑦⟩ = (𝐹𝑦))
17 simpr 486 . . . . . . . 8 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → (𝐹𝑦) = (𝐹𝑧))
18 opeq2 4836 . . . . . . . . . . 11 (𝑦 = 𝑧 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩)
19 simpr 486 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝑧𝐵)
20 opex 5426 . . . . . . . . . . . 12 𝐴, 𝑧⟩ ∈ V
2120a1i 11 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → ⟨𝐴, 𝑧⟩ ∈ V)
2210, 18, 19, 21fvmptd3 6976 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝐹𝑧) = ⟨𝐴, 𝑧⟩)
23223adant2 1132 . . . . . . . . 9 ((𝜑𝑦𝐵𝑧𝐵) → (𝐹𝑧) = ⟨𝐴, 𝑧⟩)
2423adantr 482 . . . . . . . 8 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → (𝐹𝑧) = ⟨𝐴, 𝑧⟩)
2516, 17, 243eqtrd 2781 . . . . . . 7 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩)
26 vex 3452 . . . . . . . . . 10 𝑧 ∈ V
2726a1i 11 . . . . . . . . 9 (𝜑𝑧 ∈ V)
28 opthg2 5441 . . . . . . . . 9 ((𝐴𝑉𝑧 ∈ V) → (⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩ ↔ (𝐴 = 𝐴𝑦 = 𝑧)))
291, 27, 28syl2anc 585 . . . . . . . 8 (𝜑 → (⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩ ↔ (𝐴 = 𝐴𝑦 = 𝑧)))
3029simplbda 501 . . . . . . 7 ((𝜑 ∧ ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩) → 𝑦 = 𝑧)
3112, 25, 30syl2anc 585 . . . . . 6 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → 𝑦 = 𝑧)
3231ex 414 . . . . 5 ((𝜑𝑦𝐵𝑧𝐵) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
33323expb 1121 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
3433ralrimivva 3198 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
35 dff13 7207 . . 3 (𝐹:𝐵1-1→({𝐴} × 𝐵) ↔ (𝐹:𝐵⟶({𝐴} × 𝐵) ∧ ∀𝑦𝐵𝑧𝐵 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
3611, 34, 35sylanbrc 584 . 2 (𝜑𝐹:𝐵1-1→({𝐴} × 𝐵))
37 elsnxp 6248 . . . . . . 7 (𝐴𝑉 → (𝑧 ∈ ({𝐴} × 𝐵) ↔ ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩))
381, 37syl 17 . . . . . 6 (𝜑 → (𝑧 ∈ ({𝐴} × 𝐵) ↔ ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩))
3938biimpa 478 . . . . 5 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩)
4013adantr 482 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ 𝑧 = ⟨𝐴, 𝑦⟩) → (𝐹𝑦) = ⟨𝐴, 𝑦⟩)
41 id 22 . . . . . . . . . . 11 (𝑧 = ⟨𝐴, 𝑦⟩ → 𝑧 = ⟨𝐴, 𝑦⟩)
4241eqcomd 2743 . . . . . . . . . 10 (𝑧 = ⟨𝐴, 𝑦⟩ → ⟨𝐴, 𝑦⟩ = 𝑧)
4342adantl 483 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ 𝑧 = ⟨𝐴, 𝑦⟩) → ⟨𝐴, 𝑦⟩ = 𝑧)
4440, 43eqtr2d 2778 . . . . . . . 8 (((𝜑𝑦𝐵) ∧ 𝑧 = ⟨𝐴, 𝑦⟩) → 𝑧 = (𝐹𝑦))
4544ex 414 . . . . . . 7 ((𝜑𝑦𝐵) → (𝑧 = ⟨𝐴, 𝑦⟩ → 𝑧 = (𝐹𝑦)))
4645adantlr 714 . . . . . 6 (((𝜑𝑧 ∈ ({𝐴} × 𝐵)) ∧ 𝑦𝐵) → (𝑧 = ⟨𝐴, 𝑦⟩ → 𝑧 = (𝐹𝑦)))
4746reximdva 3166 . . . . 5 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → (∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩ → ∃𝑦𝐵 𝑧 = (𝐹𝑦)))
4839, 47mpd 15 . . . 4 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → ∃𝑦𝐵 𝑧 = (𝐹𝑦))
4948ralrimiva 3144 . . 3 (𝜑 → ∀𝑧 ∈ ({𝐴} × 𝐵)∃𝑦𝐵 𝑧 = (𝐹𝑦))
50 dffo3 7057 . . 3 (𝐹:𝐵onto→({𝐴} × 𝐵) ↔ (𝐹:𝐵⟶({𝐴} × 𝐵) ∧ ∀𝑧 ∈ ({𝐴} × 𝐵)∃𝑦𝐵 𝑧 = (𝐹𝑦)))
5111, 49, 50sylanbrc 584 . 2 (𝜑𝐹:𝐵onto→({𝐴} × 𝐵))
52 df-f1o 6508 . 2 (𝐹:𝐵1-1-onto→({𝐴} × 𝐵) ↔ (𝐹:𝐵1-1→({𝐴} × 𝐵) ∧ 𝐹:𝐵onto→({𝐴} × 𝐵)))
5336, 51, 52sylanbrc 584 1 (𝜑𝐹:𝐵1-1-onto→({𝐴} × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3065  wrex 3074  Vcvv 3448  {csn 4591  cop 4597  cmpt 5193   × cxp 5636  wf 6497  1-1wf1 6498  ontowfo 6499  1-1-ontowf1o 6500  cfv 6501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509
This theorem is referenced by:  sge0xp  44744
  Copyright terms: Public domain W3C validator