Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  projf1o Structured version   Visualization version   GIF version

Theorem projf1o 42736
Description: A biijection from a set to a projection in a two dimensional space. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
projf1o.1 (𝜑𝐴𝑉)
projf1o.2 𝐹 = (𝑥𝐵 ↦ ⟨𝐴, 𝑥⟩)
Assertion
Ref Expression
projf1o (𝜑𝐹:𝐵1-1-onto→({𝐴} × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem projf1o
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 projf1o.1 . . . . . . 7 (𝜑𝐴𝑉)
2 snidg 4595 . . . . . . 7 (𝐴𝑉𝐴 ∈ {𝐴})
31, 2syl 17 . . . . . 6 (𝜑𝐴 ∈ {𝐴})
43adantr 481 . . . . 5 ((𝜑𝑦𝐵) → 𝐴 ∈ {𝐴})
5 simpr 485 . . . . 5 ((𝜑𝑦𝐵) → 𝑦𝐵)
64, 5opelxpd 5627 . . . 4 ((𝜑𝑦𝐵) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
7 projf1o.2 . . . . 5 𝐹 = (𝑥𝐵 ↦ ⟨𝐴, 𝑥⟩)
8 opeq2 4805 . . . . . 6 (𝑥 = 𝑦 → ⟨𝐴, 𝑥⟩ = ⟨𝐴, 𝑦⟩)
98cbvmptv 5187 . . . . 5 (𝑥𝐵 ↦ ⟨𝐴, 𝑥⟩) = (𝑦𝐵 ↦ ⟨𝐴, 𝑦⟩)
107, 9eqtri 2766 . . . 4 𝐹 = (𝑦𝐵 ↦ ⟨𝐴, 𝑦⟩)
116, 10fmptd 6988 . . 3 (𝜑𝐹:𝐵⟶({𝐴} × 𝐵))
12 simpl1 1190 . . . . . . 7 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → 𝜑)
137, 8, 5, 6fvmptd3 6898 . . . . . . . . . . 11 ((𝜑𝑦𝐵) → (𝐹𝑦) = ⟨𝐴, 𝑦⟩)
1413eqcomd 2744 . . . . . . . . . 10 ((𝜑𝑦𝐵) → ⟨𝐴, 𝑦⟩ = (𝐹𝑦))
15143adant3 1131 . . . . . . . . 9 ((𝜑𝑦𝐵𝑧𝐵) → ⟨𝐴, 𝑦⟩ = (𝐹𝑦))
1615adantr 481 . . . . . . . 8 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → ⟨𝐴, 𝑦⟩ = (𝐹𝑦))
17 simpr 485 . . . . . . . 8 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → (𝐹𝑦) = (𝐹𝑧))
18 opeq2 4805 . . . . . . . . . . 11 (𝑦 = 𝑧 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩)
19 simpr 485 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → 𝑧𝐵)
20 opex 5379 . . . . . . . . . . . 12 𝐴, 𝑧⟩ ∈ V
2120a1i 11 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → ⟨𝐴, 𝑧⟩ ∈ V)
2210, 18, 19, 21fvmptd3 6898 . . . . . . . . . 10 ((𝜑𝑧𝐵) → (𝐹𝑧) = ⟨𝐴, 𝑧⟩)
23223adant2 1130 . . . . . . . . 9 ((𝜑𝑦𝐵𝑧𝐵) → (𝐹𝑧) = ⟨𝐴, 𝑧⟩)
2423adantr 481 . . . . . . . 8 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → (𝐹𝑧) = ⟨𝐴, 𝑧⟩)
2516, 17, 243eqtrd 2782 . . . . . . 7 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩)
26 vex 3436 . . . . . . . . . 10 𝑧 ∈ V
2726a1i 11 . . . . . . . . 9 (𝜑𝑧 ∈ V)
28 opthg2 5394 . . . . . . . . 9 ((𝐴𝑉𝑧 ∈ V) → (⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩ ↔ (𝐴 = 𝐴𝑦 = 𝑧)))
291, 27, 28syl2anc 584 . . . . . . . 8 (𝜑 → (⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩ ↔ (𝐴 = 𝐴𝑦 = 𝑧)))
3029simplbda 500 . . . . . . 7 ((𝜑 ∧ ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝑧⟩) → 𝑦 = 𝑧)
3112, 25, 30syl2anc 584 . . . . . 6 (((𝜑𝑦𝐵𝑧𝐵) ∧ (𝐹𝑦) = (𝐹𝑧)) → 𝑦 = 𝑧)
3231ex 413 . . . . 5 ((𝜑𝑦𝐵𝑧𝐵) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
33323expb 1119 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
3433ralrimivva 3123 . . 3 (𝜑 → ∀𝑦𝐵𝑧𝐵 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
35 dff13 7128 . . 3 (𝐹:𝐵1-1→({𝐴} × 𝐵) ↔ (𝐹:𝐵⟶({𝐴} × 𝐵) ∧ ∀𝑦𝐵𝑧𝐵 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
3611, 34, 35sylanbrc 583 . 2 (𝜑𝐹:𝐵1-1→({𝐴} × 𝐵))
37 elsnxp 6194 . . . . . . 7 (𝐴𝑉 → (𝑧 ∈ ({𝐴} × 𝐵) ↔ ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩))
381, 37syl 17 . . . . . 6 (𝜑 → (𝑧 ∈ ({𝐴} × 𝐵) ↔ ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩))
3938biimpa 477 . . . . 5 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → ∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩)
4013adantr 481 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ 𝑧 = ⟨𝐴, 𝑦⟩) → (𝐹𝑦) = ⟨𝐴, 𝑦⟩)
41 id 22 . . . . . . . . . . 11 (𝑧 = ⟨𝐴, 𝑦⟩ → 𝑧 = ⟨𝐴, 𝑦⟩)
4241eqcomd 2744 . . . . . . . . . 10 (𝑧 = ⟨𝐴, 𝑦⟩ → ⟨𝐴, 𝑦⟩ = 𝑧)
4342adantl 482 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ 𝑧 = ⟨𝐴, 𝑦⟩) → ⟨𝐴, 𝑦⟩ = 𝑧)
4440, 43eqtr2d 2779 . . . . . . . 8 (((𝜑𝑦𝐵) ∧ 𝑧 = ⟨𝐴, 𝑦⟩) → 𝑧 = (𝐹𝑦))
4544ex 413 . . . . . . 7 ((𝜑𝑦𝐵) → (𝑧 = ⟨𝐴, 𝑦⟩ → 𝑧 = (𝐹𝑦)))
4645adantlr 712 . . . . . 6 (((𝜑𝑧 ∈ ({𝐴} × 𝐵)) ∧ 𝑦𝐵) → (𝑧 = ⟨𝐴, 𝑦⟩ → 𝑧 = (𝐹𝑦)))
4746reximdva 3203 . . . . 5 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → (∃𝑦𝐵 𝑧 = ⟨𝐴, 𝑦⟩ → ∃𝑦𝐵 𝑧 = (𝐹𝑦)))
4839, 47mpd 15 . . . 4 ((𝜑𝑧 ∈ ({𝐴} × 𝐵)) → ∃𝑦𝐵 𝑧 = (𝐹𝑦))
4948ralrimiva 3103 . . 3 (𝜑 → ∀𝑧 ∈ ({𝐴} × 𝐵)∃𝑦𝐵 𝑧 = (𝐹𝑦))
50 dffo3 6978 . . 3 (𝐹:𝐵onto→({𝐴} × 𝐵) ↔ (𝐹:𝐵⟶({𝐴} × 𝐵) ∧ ∀𝑧 ∈ ({𝐴} × 𝐵)∃𝑦𝐵 𝑧 = (𝐹𝑦)))
5111, 49, 50sylanbrc 583 . 2 (𝜑𝐹:𝐵onto→({𝐴} × 𝐵))
52 df-f1o 6440 . 2 (𝐹:𝐵1-1-onto→({𝐴} × 𝐵) ↔ (𝐹:𝐵1-1→({𝐴} × 𝐵) ∧ 𝐹:𝐵onto→({𝐴} × 𝐵)))
5336, 51, 52sylanbrc 583 1 (𝜑𝐹:𝐵1-1-onto→({𝐴} × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  {csn 4561  cop 4567  cmpt 5157   × cxp 5587  wf 6429  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  sge0xp  43967
  Copyright terms: Public domain W3C validator