| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opth2 | Structured version Visualization version GIF version | ||
| Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.) |
| Ref | Expression |
|---|---|
| opth2.1 | ⊢ 𝐶 ∈ V |
| opth2.2 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| opth2 | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth2.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | opth2.2 | . 2 ⊢ 𝐷 ∈ V | |
| 3 | opthg2 5434 | . 2 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 |
| This theorem is referenced by: eqvinop 5442 opelxp 5667 fsn 7089 opiota 8017 canthwe 10580 ltresr 11069 mat1dimelbas 22334 fmucndlem 24154 hgt750lemb 34620 diblsmopel 41138 cdlemn7 41170 dihordlem7 41181 xihopellsmN 41221 dihopellsm 41222 dihpN 41303 cofidvala 49078 cofidval 49081 |
| Copyright terms: Public domain | W3C validator |