MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth2 Structured version   Visualization version   GIF version

Theorem opth2 5389
Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
Hypotheses
Ref Expression
opth2.1 𝐶 ∈ V
opth2.2 𝐷 ∈ V
Assertion
Ref Expression
opth2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem opth2
StepHypRef Expression
1 opth2.1 . 2 𝐶 ∈ V
2 opth2.2 . 2 𝐷 ∈ V
3 opthg2 5388 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
41, 2, 3mp2an 688 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565
This theorem is referenced by:  eqvinop  5395  opelxp  5616  fsn  6989  opiota  7872  canthwe  10338  ltresr  10827  mat1dimelbas  21528  fmucndlem  23351  hgt750lemb  32536  diblsmopel  39112  cdlemn7  39144  dihordlem7  39155  xihopellsmN  39195  dihopellsm  39196  dihpN  39277
  Copyright terms: Public domain W3C validator