| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opth2 | Structured version Visualization version GIF version | ||
| Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.) |
| Ref | Expression |
|---|---|
| opth2.1 | ⊢ 𝐶 ∈ V |
| opth2.2 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| opth2 | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth2.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | opth2.2 | . 2 ⊢ 𝐷 ∈ V | |
| 3 | opthg2 5426 | . 2 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 |
| This theorem is referenced by: eqvinop 5434 opelxp 5659 fsn 7073 opiota 8001 canthwe 10564 ltresr 11053 mat1dimelbas 22374 fmucndlem 24194 hgt750lemb 34626 diblsmopel 41153 cdlemn7 41185 dihordlem7 41196 xihopellsmN 41236 dihopellsm 41237 dihpN 41318 cofidvala 49105 cofidval 49108 |
| Copyright terms: Public domain | W3C validator |