Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opth2 | Structured version Visualization version GIF version |
Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.) |
Ref | Expression |
---|---|
opth2.1 | ⊢ 𝐶 ∈ V |
opth2.2 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
opth2 | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth2.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | opth2.2 | . 2 ⊢ 𝐷 ∈ V | |
3 | opthg2 5388 | . 2 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: eqvinop 5395 opelxp 5616 fsn 6989 opiota 7872 canthwe 10338 ltresr 10827 mat1dimelbas 21528 fmucndlem 23351 hgt750lemb 32536 diblsmopel 39112 cdlemn7 39144 dihordlem7 39155 xihopellsmN 39195 dihopellsm 39196 dihpN 39277 |
Copyright terms: Public domain | W3C validator |