| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opth2 | Structured version Visualization version GIF version | ||
| Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.) |
| Ref | Expression |
|---|---|
| opth2.1 | ⊢ 𝐶 ∈ V |
| opth2.2 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| opth2 | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth2.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | opth2.2 | . 2 ⊢ 𝐷 ∈ V | |
| 3 | opthg2 5454 | . 2 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 |
| This theorem is referenced by: eqvinop 5462 opelxp 5690 fsn 7125 opiota 8058 canthwe 10665 ltresr 11154 mat1dimelbas 22409 fmucndlem 24229 hgt750lemb 34688 diblsmopel 41190 cdlemn7 41222 dihordlem7 41233 xihopellsmN 41273 dihopellsm 41274 dihpN 41355 |
| Copyright terms: Public domain | W3C validator |