| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opth2 | Structured version Visualization version GIF version | ||
| Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.) |
| Ref | Expression |
|---|---|
| opth2.1 | ⊢ 𝐶 ∈ V |
| opth2.2 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| opth2 | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth2.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | opth2.2 | . 2 ⊢ 𝐷 ∈ V | |
| 3 | opthg2 5442 | . 2 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 |
| This theorem is referenced by: eqvinop 5450 opelxp 5677 fsn 7110 opiota 8041 canthwe 10611 ltresr 11100 mat1dimelbas 22365 fmucndlem 24185 hgt750lemb 34654 diblsmopel 41172 cdlemn7 41204 dihordlem7 41215 xihopellsmN 41255 dihopellsm 41256 dihpN 41337 cofidvala 49109 cofidval 49112 |
| Copyright terms: Public domain | W3C validator |