MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth2 Structured version   Visualization version   GIF version

Theorem opth2 5490
Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
Hypotheses
Ref Expression
opth2.1 𝐶 ∈ V
opth2.2 𝐷 ∈ V
Assertion
Ref Expression
opth2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem opth2
StepHypRef Expression
1 opth2.1 . 2 𝐶 ∈ V
2 opth2.2 . 2 𝐷 ∈ V
3 opthg2 5489 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
41, 2, 3mp2an 692 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  cop 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637
This theorem is referenced by:  eqvinop  5497  opelxp  5724  fsn  7154  opiota  8082  canthwe  10688  ltresr  11177  mat1dimelbas  22492  fmucndlem  24315  hgt750lemb  34649  diblsmopel  41153  cdlemn7  41185  dihordlem7  41196  xihopellsmN  41236  dihopellsm  41237  dihpN  41318
  Copyright terms: Public domain W3C validator