MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth2 Structured version   Visualization version   GIF version

Theorem opth2 5455
Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
Hypotheses
Ref Expression
opth2.1 𝐶 ∈ V
opth2.2 𝐷 ∈ V
Assertion
Ref Expression
opth2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem opth2
StepHypRef Expression
1 opth2.1 . 2 𝐶 ∈ V
2 opth2.2 . 2 𝐷 ∈ V
3 opthg2 5454 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
41, 2, 3mp2an 692 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608
This theorem is referenced by:  eqvinop  5462  opelxp  5690  fsn  7125  opiota  8058  canthwe  10665  ltresr  11154  mat1dimelbas  22409  fmucndlem  24229  hgt750lemb  34688  diblsmopel  41190  cdlemn7  41222  dihordlem7  41233  xihopellsmN  41273  dihopellsm  41274  dihpN  41355
  Copyright terms: Public domain W3C validator