MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftel Structured version   Visualization version   GIF version

Theorem fliftel 7307
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftel (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑅   𝑥,𝐷   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftel
StepHypRef Expression
1 df-br 5125 . . 3 (𝐶𝐹𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝐹)
2 flift.1 . . . 4 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
32eleq2i 2827 . . 3 (⟨𝐶, 𝐷⟩ ∈ 𝐹 ↔ ⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
4 eqid 2736 . . . 4 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
5 opex 5444 . . . 4 𝐴, 𝐵⟩ ∈ V
64, 5elrnmpti 5947 . . 3 (⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩)
71, 3, 63bitri 297 . 2 (𝐶𝐹𝐷 ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩)
8 flift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑅)
9 flift.3 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑆)
10 opthg2 5459 . . . 4 ((𝐴𝑅𝐵𝑆) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴𝐷 = 𝐵)))
118, 9, 10syl2anc 584 . . 3 ((𝜑𝑥𝑋) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴𝐷 = 𝐵)))
1211rexbidva 3163 . 2 (𝜑 → (∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
137, 12bitrid 283 1 (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  cop 4612   class class class wbr 5124  cmpt 5206  ran crn 5660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-mpt 5207  df-cnv 5667  df-dm 5669  df-rn 5670
This theorem is referenced by:  fliftcnv  7309  fliftfun  7310  fliftf  7313  fliftval  7314  qliftel  8819
  Copyright terms: Public domain W3C validator