![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fliftel | Structured version Visualization version GIF version |
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftel | ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5154 | . . 3 ⊢ (𝐶𝐹𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐹) | |
2 | flift.1 | . . . 4 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
3 | 2 | eleq2i 2818 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ 𝐹 ↔ 〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
4 | eqid 2726 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
5 | opex 5470 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
6 | 4, 5 | elrnmpti 5966 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ↔ ∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉) |
7 | 1, 3, 6 | 3bitri 296 | . 2 ⊢ (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉) |
8 | flift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
9 | flift.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
10 | opthg2 5485 | . . . 4 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) | |
11 | 8, 9, 10 | syl2anc 582 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
12 | 11 | rexbidva 3167 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
13 | 7, 12 | bitrid 282 | 1 ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 〈cop 4639 class class class wbr 5153 ↦ cmpt 5236 ran crn 5683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-mpt 5237 df-cnv 5690 df-dm 5692 df-rn 5693 |
This theorem is referenced by: fliftcnv 7323 fliftfun 7324 fliftf 7327 fliftval 7328 qliftel 8829 |
Copyright terms: Public domain | W3C validator |