| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fliftel | Structured version Visualization version GIF version | ||
| Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
| flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
| flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fliftel | ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5094 | . . 3 ⊢ (𝐶𝐹𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐹) | |
| 2 | flift.1 | . . . 4 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
| 3 | 2 | eleq2i 2825 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ 𝐹 ↔ 〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
| 4 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
| 5 | opex 5407 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 6 | 4, 5 | elrnmpti 5906 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ↔ ∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉) |
| 7 | 1, 3, 6 | 3bitri 297 | . 2 ⊢ (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉) |
| 8 | flift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
| 9 | flift.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
| 10 | opthg2 5422 | . . . 4 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
| 12 | 11 | rexbidva 3155 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
| 13 | 7, 12 | bitrid 283 | 1 ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 〈cop 4581 class class class wbr 5093 ↦ cmpt 5174 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-mpt 5175 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: fliftcnv 7251 fliftfun 7252 fliftf 7255 fliftval 7256 qliftel 8730 |
| Copyright terms: Public domain | W3C validator |