![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fliftel | Structured version Visualization version GIF version |
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftel | ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5150 | . . 3 ⊢ (𝐶𝐹𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝐹) | |
2 | flift.1 | . . . 4 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) | |
3 | 2 | eleq2i 2826 | . . 3 ⊢ (⟨𝐶, 𝐷⟩ ∈ 𝐹 ↔ ⟨𝐶, 𝐷⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩)) |
4 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) | |
5 | opex 5465 | . . . 4 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
6 | 4, 5 | elrnmpti 5960 | . . 3 ⊢ (⟨𝐶, 𝐷⟩ ∈ ran (𝑥 ∈ 𝑋 ↦ ⟨𝐴, 𝐵⟩) ↔ ∃𝑥 ∈ 𝑋 ⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩) |
7 | 1, 3, 6 | 3bitri 297 | . 2 ⊢ (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 ⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩) |
8 | flift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
9 | flift.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
10 | opthg2 5480 | . . . 4 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) | |
11 | 8, 9, 10 | syl2anc 585 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
12 | 11 | rexbidva 3177 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝑋 ⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
13 | 7, 12 | bitrid 283 | 1 ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ⟨cop 4635 class class class wbr 5149 ↦ cmpt 5232 ran crn 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-mpt 5233 df-cnv 5685 df-dm 5687 df-rn 5688 |
This theorem is referenced by: fliftcnv 7308 fliftfun 7309 fliftf 7312 fliftval 7313 qliftel 8794 |
Copyright terms: Public domain | W3C validator |