MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftel Structured version   Visualization version   GIF version

Theorem fliftel 7345
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftel (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑅   𝑥,𝐷   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftel
StepHypRef Expression
1 df-br 5167 . . 3 (𝐶𝐹𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝐹)
2 flift.1 . . . 4 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
32eleq2i 2836 . . 3 (⟨𝐶, 𝐷⟩ ∈ 𝐹 ↔ ⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
4 eqid 2740 . . . 4 (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
5 opex 5484 . . . 4 𝐴, 𝐵⟩ ∈ V
64, 5elrnmpti 5985 . . 3 (⟨𝐶, 𝐷⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩)
71, 3, 63bitri 297 . 2 (𝐶𝐹𝐷 ↔ ∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩)
8 flift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑅)
9 flift.3 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑆)
10 opthg2 5499 . . . 4 ((𝐴𝑅𝐵𝑆) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴𝐷 = 𝐵)))
118, 9, 10syl2anc 583 . . 3 ((𝜑𝑥𝑋) → (⟨𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝐶 = 𝐴𝐷 = 𝐵)))
1211rexbidva 3183 . 2 (𝜑 → (∃𝑥𝑋𝐶, 𝐷⟩ = ⟨𝐴, 𝐵⟩ ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
137, 12bitrid 283 1 (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  cop 4654   class class class wbr 5166  cmpt 5249  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  fliftcnv  7347  fliftfun  7348  fliftf  7351  fliftval  7352  qliftel  8858
  Copyright terms: Public domain W3C validator