Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fliftel | Structured version Visualization version GIF version |
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftel | ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5075 | . . 3 ⊢ (𝐶𝐹𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐹) | |
2 | flift.1 | . . . 4 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
3 | 2 | eleq2i 2830 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ 𝐹 ↔ 〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉)) |
4 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
5 | opex 5379 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
6 | 4, 5 | elrnmpti 5869 | . . 3 ⊢ (〈𝐶, 𝐷〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ↔ ∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉) |
7 | 1, 3, 6 | 3bitri 297 | . 2 ⊢ (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉) |
8 | flift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
9 | flift.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
10 | opthg2 5394 | . . . 4 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) | |
11 | 8, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
12 | 11 | rexbidva 3225 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝑋 〈𝐶, 𝐷〉 = 〈𝐴, 𝐵〉 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
13 | 7, 12 | bitrid 282 | 1 ⊢ (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶 = 𝐴 ∧ 𝐷 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 〈cop 4567 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: fliftcnv 7182 fliftfun 7183 fliftf 7186 fliftval 7187 qliftel 8589 |
Copyright terms: Public domain | W3C validator |