MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeq12 Structured version   Visualization version   GIF version

Theorem opeq12 4876
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.)
Assertion
Ref Expression
opeq12 ((𝐴 = 𝐶𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)

Proof of Theorem opeq12
StepHypRef Expression
1 opeq1 4874 . 2 (𝐴 = 𝐶 → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐵⟩)
2 opeq2 4875 . 2 (𝐵 = 𝐷 → ⟨𝐶, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
31, 2sylan9eq 2790 1 ((𝐴 = 𝐶𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  cop 4635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636
This theorem is referenced by:  opeq12i  4879  opeq12d  4882  cbvopab  5221  cbvopabv  5222  opth  5477  copsex2t  5493  copsex2gOLD  5495  relop  5851  funopg  6583  fvn0ssdmfun  7077  fsn  7136  fnressn  7159  fmptsng  7169  fmptsnd  7170  tpres  7205  cbvoprab12  7502  eqopi  8015  f1o2ndf1  8112  tposoprab  8251  omeu  8589  brecop  8808  ecovcom  8821  ecovass  8822  ecovdi  8823  xpf1o  9143  addsrmo  11072  mulsrmo  11073  addsrpr  11074  mulsrpr  11075  addcnsr  11134  axcnre  11163  seqeq1  13975  opfi1uzind  14468  fsumcnv  15725  fprodcnv  15933  eucalgval2  16524  xpstopnlem1  23535  qustgplem  23847  finsumvtxdg2size  29072  brabgaf  32102  qqhval2  33258  brsegle  35382  copsex2d  36325  finxpreclem3  36579  eqrelf  37428  dvnprodlem1  44962  or2expropbilem1  46042  or2expropbilem2  46043  funop1  46291  ich2exprop  46439  ichnreuop  46440  ichreuopeq  46441  reuopreuprim  46494  uspgrsprf1  46825
  Copyright terms: Public domain W3C validator