Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4801 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
2 | opeq2 4802 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
3 | 1, 2 | sylan9eq 2799 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: opeq12i 4806 opeq12d 4809 cbvopab 5142 cbvopabv 5143 opth 5385 copsex2t 5400 copsex2gOLD 5402 relop 5748 funopg 6452 fvn0ssdmfun 6934 fsn 6989 fnressn 7012 fmptsng 7022 fmptsnd 7023 tpres 7058 cbvoprab12 7342 eqopi 7840 f1o2ndf1 7934 tposoprab 8049 omeu 8378 brecop 8557 ecovcom 8570 ecovass 8571 ecovdi 8572 xpf1o 8875 addsrmo 10760 mulsrmo 10761 addsrpr 10762 mulsrpr 10763 addcnsr 10822 axcnre 10851 seqeq1 13652 opfi1uzind 14143 fsumcnv 15413 fprodcnv 15621 eucalgval2 16214 xpstopnlem1 22868 qustgplem 23180 finsumvtxdg2size 27820 brabgaf 30849 qqhval2 31832 brsegle 34337 copsex2d 35237 finxpreclem3 35491 eqrelf 36322 dvnprodlem1 43377 or2expropbilem1 44413 or2expropbilem2 44414 funop1 44662 ich2exprop 44811 ichnreuop 44812 ichreuopeq 44813 reuopreuprim 44866 uspgrsprf1 45197 |
Copyright terms: Public domain | W3C validator |