| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4837 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
| 2 | opeq2 4838 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 3 | 1, 2 | sylan9eq 2784 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 〈cop 4595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 |
| This theorem is referenced by: opeq12i 4842 opeq12d 4845 cbvopab 5179 cbvopabv 5180 opth 5436 copsex2t 5452 relop 5814 funopg 6550 fvn0ssdmfun 7046 fsn 7107 fnressn 7130 fmptsng 7142 fmptsnd 7143 tpres 7175 cbvoprab12 7478 cbvoprab12v 7479 eqopi 8004 f1o2ndf1 8101 tposoprab 8241 omeu 8549 brecop 8783 ecovcom 8796 ecovass 8797 ecovdi 8798 xpf1o 9103 addsrmo 11026 mulsrmo 11027 addsrpr 11028 mulsrpr 11029 addcnsr 11088 axcnre 11117 seqeq1 13969 opfi1uzind 14476 fsumcnv 15739 fprodcnv 15949 eucalgval2 16551 xpstopnlem1 23696 qustgplem 24008 finsumvtxdg2size 29478 brabgaf 32536 qqhval2 33972 brsegle 36096 copsex2d 37127 finxpreclem3 37381 eqrelf 38244 dvnprodlem1 45944 or2expropbilem1 47033 or2expropbilem2 47034 funop1 47284 ich2exprop 47472 ichnreuop 47473 ichreuopeq 47474 reuopreuprim 47527 uspgrsprf1 48135 |
| Copyright terms: Public domain | W3C validator |