![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4897 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
2 | opeq2 4898 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
3 | 1, 2 | sylan9eq 2800 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: opeq12i 4902 opeq12d 4905 cbvopab 5238 cbvopabv 5239 opth 5496 copsex2t 5512 relop 5875 funopg 6612 fvn0ssdmfun 7108 fsn 7169 fnressn 7192 fmptsng 7202 fmptsnd 7203 tpres 7238 cbvoprab12 7539 cbvoprab12v 7540 eqopi 8066 f1o2ndf1 8163 tposoprab 8303 omeu 8641 brecop 8868 ecovcom 8881 ecovass 8882 ecovdi 8883 xpf1o 9205 addsrmo 11142 mulsrmo 11143 addsrpr 11144 mulsrpr 11145 addcnsr 11204 axcnre 11233 seqeq1 14055 opfi1uzind 14560 fsumcnv 15821 fprodcnv 16031 eucalgval2 16628 xpstopnlem1 23838 qustgplem 24150 finsumvtxdg2size 29586 brabgaf 32630 qqhval2 33928 brsegle 36072 copsex2d 37105 finxpreclem3 37359 eqrelf 38211 dvnprodlem1 45867 or2expropbilem1 46947 or2expropbilem2 46948 funop1 47198 ich2exprop 47345 ichnreuop 47346 ichreuopeq 47347 reuopreuprim 47400 uspgrsprf1 47870 |
Copyright terms: Public domain | W3C validator |