| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4824 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
| 2 | opeq2 4825 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 3 | 1, 2 | sylan9eq 2784 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 〈cop 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 |
| This theorem is referenced by: opeq12i 4829 opeq12d 4832 cbvopab 5164 cbvopabv 5165 opth 5419 copsex2t 5435 relop 5793 funopg 6516 fvn0ssdmfun 7008 fsn 7069 fnressn 7092 fmptsng 7104 fmptsnd 7105 tpres 7137 cbvoprab12 7438 cbvoprab12v 7439 eqopi 7960 f1o2ndf1 8055 tposoprab 8195 omeu 8503 brecop 8737 ecovcom 8750 ecovass 8751 ecovdi 8752 xpf1o 9056 addsrmo 10967 mulsrmo 10968 addsrpr 10969 mulsrpr 10970 addcnsr 11029 axcnre 11058 seqeq1 13911 opfi1uzind 14418 fsumcnv 15680 fprodcnv 15890 eucalgval2 16492 xpstopnlem1 23694 qustgplem 24006 finsumvtxdg2size 29496 brabgaf 32553 qqhval2 33949 brsegle 36082 copsex2d 37113 finxpreclem3 37367 eqrelf 38230 dvnprodlem1 45927 or2expropbilem1 47016 or2expropbilem2 47017 funop1 47267 ich2exprop 47455 ichnreuop 47456 ichreuopeq 47457 reuopreuprim 47510 uspgrsprf1 48131 |
| Copyright terms: Public domain | W3C validator |