| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4822 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
| 2 | opeq2 4823 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 3 | 1, 2 | sylan9eq 2786 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 〈cop 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 |
| This theorem is referenced by: opeq12i 4827 opeq12d 4830 cbvopab 5161 cbvopabv 5162 opth 5414 copsex2t 5430 relop 5789 funopg 6515 fvn0ssdmfun 7007 fsn 7068 fnressn 7091 fmptsng 7102 fmptsnd 7103 tpres 7135 cbvoprab12 7435 cbvoprab12v 7436 eqopi 7957 f1o2ndf1 8052 tposoprab 8192 omeu 8500 brecop 8734 ecovcom 8747 ecovass 8748 ecovdi 8749 xpf1o 9052 addsrmo 10964 mulsrmo 10965 addsrpr 10966 mulsrpr 10967 addcnsr 11026 axcnre 11055 seqeq1 13911 opfi1uzind 14418 fsumcnv 15680 fprodcnv 15890 eucalgval2 16492 xpstopnlem1 23724 qustgplem 24036 finsumvtxdg2size 29529 brabgaf 32589 qqhval2 33995 brsegle 36150 copsex2d 37181 finxpreclem3 37435 eqrelf 38298 dvnprodlem1 45992 or2expropbilem1 47071 or2expropbilem2 47072 funop1 47322 ich2exprop 47510 ichnreuop 47511 ichreuopeq 47512 reuopreuprim 47565 uspgrsprf1 48186 |
| Copyright terms: Public domain | W3C validator |