Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4810 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
2 | opeq2 4811 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
3 | 1, 2 | sylan9eq 2800 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 〈cop 4573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 |
This theorem is referenced by: opeq12i 4815 opeq12d 4818 cbvopab 5151 cbvopabv 5152 opth 5395 copsex2t 5410 copsex2gOLD 5412 relop 5758 funopg 6466 fvn0ssdmfun 6949 fsn 7004 fnressn 7027 fmptsng 7037 fmptsnd 7038 tpres 7073 cbvoprab12 7358 eqopi 7860 f1o2ndf1 7954 tposoprab 8069 omeu 8401 brecop 8582 ecovcom 8595 ecovass 8596 ecovdi 8597 xpf1o 8908 addsrmo 10830 mulsrmo 10831 addsrpr 10832 mulsrpr 10833 addcnsr 10892 axcnre 10921 seqeq1 13722 opfi1uzind 14213 fsumcnv 15483 fprodcnv 15691 eucalgval2 16284 xpstopnlem1 22958 qustgplem 23270 finsumvtxdg2size 27915 brabgaf 30944 qqhval2 31928 brsegle 34406 copsex2d 35306 finxpreclem3 35560 eqrelf 36391 dvnprodlem1 43458 or2expropbilem1 44494 or2expropbilem2 44495 funop1 44743 ich2exprop 44892 ichnreuop 44893 ichreuopeq 44894 reuopreuprim 44947 uspgrsprf1 45278 |
Copyright terms: Public domain | W3C validator |