Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4804 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
2 | opeq2 4805 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
3 | 1, 2 | sylan9eq 2798 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 |
This theorem is referenced by: opeq12i 4809 opeq12d 4812 cbvopab 5146 cbvopabv 5147 opth 5391 copsex2t 5406 copsex2gOLD 5408 relop 5759 funopg 6468 fvn0ssdmfun 6952 fsn 7007 fnressn 7030 fmptsng 7040 fmptsnd 7041 tpres 7076 cbvoprab12 7364 eqopi 7867 f1o2ndf1 7963 tposoprab 8078 omeu 8416 brecop 8599 ecovcom 8612 ecovass 8613 ecovdi 8614 xpf1o 8926 addsrmo 10829 mulsrmo 10830 addsrpr 10831 mulsrpr 10832 addcnsr 10891 axcnre 10920 seqeq1 13724 opfi1uzind 14215 fsumcnv 15485 fprodcnv 15693 eucalgval2 16286 xpstopnlem1 22960 qustgplem 23272 finsumvtxdg2size 27917 brabgaf 30948 qqhval2 31932 brsegle 34410 copsex2d 35310 finxpreclem3 35564 eqrelf 36395 dvnprodlem1 43487 or2expropbilem1 44526 or2expropbilem2 44527 funop1 44775 ich2exprop 44923 ichnreuop 44924 ichreuopeq 44925 reuopreuprim 44978 uspgrsprf1 45309 |
Copyright terms: Public domain | W3C validator |