| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4833 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
| 2 | opeq2 4834 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 3 | 1, 2 | sylan9eq 2784 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 〈cop 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 |
| This theorem is referenced by: opeq12i 4838 opeq12d 4841 cbvopab 5174 cbvopabv 5175 opth 5431 copsex2t 5447 relop 5804 funopg 6534 fvn0ssdmfun 7028 fsn 7089 fnressn 7112 fmptsng 7124 fmptsnd 7125 tpres 7157 cbvoprab12 7458 cbvoprab12v 7459 eqopi 7983 f1o2ndf1 8078 tposoprab 8218 omeu 8526 brecop 8760 ecovcom 8773 ecovass 8774 ecovdi 8775 xpf1o 9080 addsrmo 11002 mulsrmo 11003 addsrpr 11004 mulsrpr 11005 addcnsr 11064 axcnre 11093 seqeq1 13945 opfi1uzind 14452 fsumcnv 15715 fprodcnv 15925 eucalgval2 16527 xpstopnlem1 23672 qustgplem 23984 finsumvtxdg2size 29454 brabgaf 32509 qqhval2 33945 brsegle 36069 copsex2d 37100 finxpreclem3 37354 eqrelf 38217 dvnprodlem1 45917 or2expropbilem1 47006 or2expropbilem2 47007 funop1 47257 ich2exprop 47445 ichnreuop 47446 ichreuopeq 47447 reuopreuprim 47500 uspgrsprf1 48108 |
| Copyright terms: Public domain | W3C validator |