| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4849 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
| 2 | opeq2 4850 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 3 | 1, 2 | sylan9eq 2790 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 〈cop 4607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 |
| This theorem is referenced by: opeq12i 4854 opeq12d 4857 cbvopab 5191 cbvopabv 5192 opth 5451 copsex2t 5467 relop 5830 funopg 6570 fvn0ssdmfun 7064 fsn 7125 fnressn 7148 fmptsng 7160 fmptsnd 7161 tpres 7193 cbvoprab12 7496 cbvoprab12v 7497 eqopi 8024 f1o2ndf1 8121 tposoprab 8261 omeu 8597 brecop 8824 ecovcom 8837 ecovass 8838 ecovdi 8839 xpf1o 9153 addsrmo 11087 mulsrmo 11088 addsrpr 11089 mulsrpr 11090 addcnsr 11149 axcnre 11178 seqeq1 14022 opfi1uzind 14529 fsumcnv 15789 fprodcnv 15999 eucalgval2 16600 xpstopnlem1 23747 qustgplem 24059 finsumvtxdg2size 29530 brabgaf 32588 qqhval2 34013 brsegle 36126 copsex2d 37157 finxpreclem3 37411 eqrelf 38273 dvnprodlem1 45975 or2expropbilem1 47061 or2expropbilem2 47062 funop1 47312 ich2exprop 47485 ichnreuop 47486 ichreuopeq 47487 reuopreuprim 47540 uspgrsprf1 48122 |
| Copyright terms: Public domain | W3C validator |