![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4874 | . 2 ⊢ (𝐴 = 𝐶 → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐵⟩) | |
2 | opeq2 4875 | . 2 ⊢ (𝐵 = 𝐷 → ⟨𝐶, 𝐵⟩ = ⟨𝐶, 𝐷⟩) | |
3 | 1, 2 | sylan9eq 2790 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ⟨cop 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 |
This theorem is referenced by: opeq12i 4879 opeq12d 4882 cbvopab 5221 cbvopabv 5222 opth 5477 copsex2t 5493 copsex2gOLD 5495 relop 5851 funopg 6583 fvn0ssdmfun 7077 fsn 7136 fnressn 7159 fmptsng 7169 fmptsnd 7170 tpres 7205 cbvoprab12 7502 eqopi 8015 f1o2ndf1 8112 tposoprab 8251 omeu 8589 brecop 8808 ecovcom 8821 ecovass 8822 ecovdi 8823 xpf1o 9143 addsrmo 11072 mulsrmo 11073 addsrpr 11074 mulsrpr 11075 addcnsr 11134 axcnre 11163 seqeq1 13975 opfi1uzind 14468 fsumcnv 15725 fprodcnv 15933 eucalgval2 16524 xpstopnlem1 23535 qustgplem 23847 finsumvtxdg2size 29072 brabgaf 32102 qqhval2 33258 brsegle 35382 copsex2d 36325 finxpreclem3 36579 eqrelf 37428 dvnprodlem1 44962 or2expropbilem1 46042 or2expropbilem2 46043 funop1 46291 ich2exprop 46439 ichnreuop 46440 ichreuopeq 46441 reuopreuprim 46494 uspgrsprf1 46825 |
Copyright terms: Public domain | W3C validator |