| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opeq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4840 | . 2 ⊢ (𝐴 = 𝐶 → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐵〉) | |
| 2 | opeq2 4841 | . 2 ⊢ (𝐵 = 𝐷 → 〈𝐶, 𝐵〉 = 〈𝐶, 𝐷〉) | |
| 3 | 1, 2 | sylan9eq 2785 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 〈cop 4598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 |
| This theorem is referenced by: opeq12i 4845 opeq12d 4848 cbvopab 5182 cbvopabv 5183 opth 5439 copsex2t 5455 relop 5817 funopg 6553 fvn0ssdmfun 7049 fsn 7110 fnressn 7133 fmptsng 7145 fmptsnd 7146 tpres 7178 cbvoprab12 7481 cbvoprab12v 7482 eqopi 8007 f1o2ndf1 8104 tposoprab 8244 omeu 8552 brecop 8786 ecovcom 8799 ecovass 8800 ecovdi 8801 xpf1o 9109 addsrmo 11033 mulsrmo 11034 addsrpr 11035 mulsrpr 11036 addcnsr 11095 axcnre 11124 seqeq1 13976 opfi1uzind 14483 fsumcnv 15746 fprodcnv 15956 eucalgval2 16558 xpstopnlem1 23703 qustgplem 24015 finsumvtxdg2size 29485 brabgaf 32543 qqhval2 33979 brsegle 36103 copsex2d 37134 finxpreclem3 37388 eqrelf 38251 dvnprodlem1 45951 or2expropbilem1 47037 or2expropbilem2 47038 funop1 47288 ich2exprop 47476 ichnreuop 47477 ichreuopeq 47478 reuopreuprim 47531 uspgrsprf1 48139 |
| Copyright terms: Public domain | W3C validator |