| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelxp2 | Structured version Visualization version GIF version | ||
| Description: The second member of an ordered pair of classes in a Cartesian product belongs to second Cartesian product argument. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelxp2 | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐵 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5674 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐵 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 〈cop 4595 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: dff4 7073 eceqoveq 8795 axdc4lem 10408 canthp1lem2 10606 cicrcl 17765 txcmplem1 23528 txlm 23535 brcgr 28827 nvex 30540 fldextfld2 33644 prsrn 33905 pprodss4v 35872 poimirlem27 37641 natglobalincr 46875 fuco1 49310 fuco2 49312 fucoid2 49338 fucocolem2 49343 reldmlan2 49606 reldmran2 49607 lanrcl 49610 ranrcl 49611 |
| Copyright terms: Public domain | W3C validator |