MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelxp2 Structured version   Visualization version   GIF version

Theorem opelxp2 5718
Description: The second member of an ordered pair of classes in a Cartesian product belongs to second Cartesian product argument. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐵𝐷)

Proof of Theorem opelxp2
StepHypRef Expression
1 opelxp 5711 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
21simprbi 495 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  cop 4633   × cxp 5673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-opab 5210  df-xp 5681
This theorem is referenced by:  dff4  7101  eceqoveq  8818  axdc4lem  10452  canthp1lem2  10650  cicrcl  17754  txcmplem1  23365  txlm  23372  brcgr  28425  nvex  30131  fldextfld2  33017  prsrn  33193  pprodss4v  35160  poimirlem27  36818  natglobalincr  45889
  Copyright terms: Public domain W3C validator