| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelxp2 | Structured version Visualization version GIF version | ||
| Description: The second member of an ordered pair of classes in a Cartesian product belongs to second Cartesian product argument. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelxp2 | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐵 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5650 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐵 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 〈cop 4579 × cxp 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 |
| This theorem is referenced by: dff4 7034 eceqoveq 8746 axdc4lem 10346 canthp1lem2 10544 cicrcl 17710 txcmplem1 23556 txlm 23563 brcgr 28878 nvex 30591 fldextfld2 33661 prsrn 33928 pprodss4v 35926 poimirlem27 37686 natglobalincr 46974 fuco1 49421 fuco2 49423 fucoid2 49449 fucocolem2 49454 reldmlan2 49717 reldmran2 49718 lanrcl 49721 ranrcl 49722 |
| Copyright terms: Public domain | W3C validator |