![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelxp2 | Structured version Visualization version GIF version |
Description: The second member of an ordered pair of classes in a Cartesian product belongs to second Cartesian product argument. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelxp2 | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐵 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5439 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
2 | 1 | simprbi 489 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐵 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 〈cop 4441 × cxp 5401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-opab 4988 df-xp 5409 |
This theorem is referenced by: dff4 6688 eceqoveq 8200 axdc4lem 9673 canthp1lem2 9871 cicrcl 16943 txcmplem1 21968 txlm 21975 brcgr 26404 nvex 28180 fldextfld2 30701 prsrn 30834 pprodss4v 32903 poimirlem27 34397 |
Copyright terms: Public domain | W3C validator |