![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelxp2 | Structured version Visualization version GIF version |
Description: The second member of an ordered pair of classes in a Cartesian product belongs to second Cartesian product argument. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opelxp2 | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐵 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 5736 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
2 | 1 | simprbi 496 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐵 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 〈cop 4654 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 |
This theorem is referenced by: dff4 7135 eceqoveq 8880 axdc4lem 10524 canthp1lem2 10722 cicrcl 17864 txcmplem1 23670 txlm 23677 brcgr 28933 nvex 30643 fldextfld2 33663 prsrn 33861 pprodss4v 35848 poimirlem27 37607 natglobalincr 46796 |
Copyright terms: Public domain | W3C validator |