MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelxp2 Structured version   Visualization version   GIF version

Theorem opelxp2 5631
Description: The second member of an ordered pair of classes in a Cartesian product belongs to second Cartesian product argument. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐵𝐷)

Proof of Theorem opelxp2
StepHypRef Expression
1 opelxp 5625 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
21simprbi 497 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) → 𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cop 4567   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-xp 5595
This theorem is referenced by:  dff4  6977  eceqoveq  8611  axdc4lem  10211  canthp1lem2  10409  cicrcl  17515  txcmplem1  22792  txlm  22799  brcgr  27268  nvex  28973  fldextfld2  31725  prsrn  31865  pprodss4v  34186  poimirlem27  35804  natglobalincr  46512
  Copyright terms: Public domain W3C validator