| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelxp2 | Structured version Visualization version GIF version | ||
| Description: The second member of an ordered pair of classes in a Cartesian product belongs to second Cartesian product argument. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opelxp2 | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐵 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 5690 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) → 𝐵 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 〈cop 4607 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: dff4 7091 eceqoveq 8836 axdc4lem 10469 canthp1lem2 10667 cicrcl 17816 txcmplem1 23579 txlm 23586 brcgr 28879 nvex 30592 fldextfld2 33690 prsrn 33946 pprodss4v 35902 poimirlem27 37671 natglobalincr 46906 fuco1 49232 fuco2 49234 fucoid2 49260 fucocolem2 49265 reldmlan2 49492 reldmran2 49493 lanrcl 49496 ranrcl 49497 |
| Copyright terms: Public domain | W3C validator |