Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1eulem Structured version   Visualization version   GIF version

Theorem hdmap1eulem 37898
Description: Lemma for hdmap1eu 37900. TODO: combine with hdmap1eu 37900 or at least share some hypotheses. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1eulem.h 𝐻 = (LHyp‘𝐾)
hdmap1eulem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1eulem.v 𝑉 = (Base‘𝑈)
hdmap1eulem.s = (-g𝑈)
hdmap1eulem.o 0 = (0g𝑈)
hdmap1eulem.n 𝑁 = (LSpan‘𝑈)
hdmap1eulem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1eulem.d 𝐷 = (Base‘𝐶)
hdmap1eulem.r 𝑅 = (-g𝐶)
hdmap1eulem.q 𝑄 = (0g𝐶)
hdmap1eulem.j 𝐽 = (LSpan‘𝐶)
hdmap1eulem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1eulem.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1eulem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1eulem.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
hdmap1eulem.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1eulem.f (𝜑𝐹𝐷)
hdmap1eulem.y (𝜑𝑇𝑉)
hdmap1eulem.l 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
Assertion
Ref Expression
hdmap1eulem (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝐶,   𝑥,,𝑦,𝑧,𝐷   ,𝐹,𝑥,𝑦,𝑧   ,𝐽,𝑥   ,𝐿,𝑥,𝑦,𝑧   ,𝑀,𝑥   ,𝑁,𝑥,𝑦,𝑧   0 ,,𝑥,𝑦,𝑧   𝑥,𝑄   𝑅,,𝑥   ,,𝑥   𝑇,,𝑥,𝑦,𝑧   𝑈,,𝑧   ,𝑉,𝑦,𝑧   ,𝑋,𝑥,𝑦,𝑧   𝜑,,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝑄(𝑦,𝑧,)   𝑅(𝑦,𝑧)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,)   𝐼(𝑥,𝑦,𝑧,)   𝐽(𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧,)   𝑀(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑧,)

Proof of Theorem hdmap1eulem
StepHypRef Expression
1 hdmap1eulem.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1eulem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1eulem.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap1eulem.s . . 3 = (-g𝑈)
5 hdmap1eulem.o . . 3 0 = (0g𝑈)
6 hdmap1eulem.n . . 3 𝑁 = (LSpan‘𝑈)
7 hdmap1eulem.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1eulem.d . . 3 𝐷 = (Base‘𝐶)
9 hdmap1eulem.r . . 3 𝑅 = (-g𝐶)
10 hdmap1eulem.q . . 3 𝑄 = (0g𝐶)
11 hdmap1eulem.j . . 3 𝐽 = (LSpan‘𝐶)
12 hdmap1eulem.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1eulem.l . . 3 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 hdmap1eulem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1eulem.f . . 3 (𝜑𝐹𝐷)
16 hdmap1eulem.mn . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 hdmap1eulem.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 hdmap1eulem.y . . 3 (𝜑𝑇𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18mapdh9a 37865 . 2 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
20 hdmap1eulem.i . . . . . . . . . 10 𝐼 = ((HDMap1‘𝐾)‘𝑊)
2114ad2antrr 719 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2217ad2antrr 719 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2315ad2antrr 719 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 𝐹𝐷)
24 simplr 787 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 𝑧𝑉)
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21, 22, 23, 24, 13hdmap1valc 37879 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐿‘⟨𝑋, 𝐹, 𝑧⟩))
2625oteq2d 4637 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)
2726fveq2d 6438 . . . . . . 7 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
28 elun1 4008 . . . . . . . . 9 (𝑧 ∈ (𝑁‘{𝑋}) → 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})))
2928con3i 152 . . . . . . . 8 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋}))
3014ad2antrr 719 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31 eqid 2826 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
321, 2, 14dvhlmod 37186 . . . . . . . . . . 11 (𝜑𝑈 ∈ LMod)
3332ad2antrr 719 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑈 ∈ LMod)
3417eldifad 3811 . . . . . . . . . . . 12 (𝜑𝑋𝑉)
3534ad2antrr 719 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑋𝑉)
363, 31, 6lspsncl 19337 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
3733, 35, 36syl2anc 581 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
38 simplr 787 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑧𝑉)
39 simpr 479 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → ¬ 𝑧 ∈ (𝑁‘{𝑋}))
405, 31, 33, 37, 38, 39lssneln0 19310 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑧 ∈ (𝑉 ∖ { 0 }))
4115ad2antrr 719 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝐹𝐷)
4216ad2antrr 719 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
4317ad2antrr 719 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
443, 6, 33, 38, 35, 39lspsnne2 19478 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
4544necomd 3055 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
4610, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 30, 41, 42, 43, 38, 45mapdhcl 37803 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝐿‘⟨𝑋, 𝐹, 𝑧⟩) ∈ 𝐷)
4718ad2antrr 719 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑇𝑉)
481, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 30, 40, 46, 47, 13hdmap1valc 37879 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
4929, 48sylan2 588 . . . . . . 7 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
5027, 49eqtrd 2862 . . . . . 6 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
5150eqeq2d 2836 . . . . 5 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ↔ 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
5251pm5.74da 840 . . . 4 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5352ralbidva 3195 . . 3 (𝜑 → (∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5453reubidv 3339 . 2 (𝜑 → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5519, 54mpbird 249 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1658  wcel 2166  wral 3118  ∃!wreu 3120  Vcvv 3415  cdif 3796  cun 3797  ifcif 4307  {csn 4398  cotp 4406  cmpt 4953  cfv 6124  crio 6866  (class class class)co 6906  1st c1st 7427  2nd c2nd 7428  Basecbs 16223  0gc0g 16454  -gcsg 17779  LModclmod 19220  LSubSpclss 19289  LSpanclspn 19331  HLchlt 35426  LHypclh 36060  DVecHcdvh 37154  LCDualclcd 37662  mapdcmpd 37700  HDMap1chdma1 37867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-riotaBAD 35029
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-ot 4407  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-of 7158  df-om 7328  df-1st 7429  df-2nd 7430  df-tpos 7618  df-undef 7665  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-map 8125  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-sca 16322  df-vsca 16323  df-0g 16456  df-mre 16600  df-mrc 16601  df-acs 16603  df-proset 17282  df-poset 17300  df-plt 17312  df-lub 17328  df-glb 17329  df-join 17330  df-meet 17331  df-p0 17393  df-p1 17394  df-lat 17400  df-clat 17462  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-submnd 17690  df-grp 17780  df-minusg 17781  df-sbg 17782  df-subg 17943  df-cntz 18101  df-oppg 18127  df-lsm 18403  df-cmn 18549  df-abl 18550  df-mgp 18845  df-ur 18857  df-ring 18904  df-oppr 18978  df-dvdsr 18996  df-unit 18997  df-invr 19027  df-dvr 19038  df-drng 19106  df-lmod 19222  df-lss 19290  df-lsp 19332  df-lvec 19463  df-lsatoms 35052  df-lshyp 35053  df-lcv 35095  df-lfl 35134  df-lkr 35162  df-ldual 35200  df-oposet 35252  df-ol 35254  df-oml 35255  df-covers 35342  df-ats 35343  df-atl 35374  df-cvlat 35398  df-hlat 35427  df-llines 35574  df-lplanes 35575  df-lvols 35576  df-lines 35577  df-psubsp 35579  df-pmap 35580  df-padd 35872  df-lhyp 36064  df-laut 36065  df-ldil 36180  df-ltrn 36181  df-trl 36235  df-tgrp 36819  df-tendo 36831  df-edring 36833  df-dveca 37079  df-disoa 37105  df-dvech 37155  df-dib 37215  df-dic 37249  df-dih 37305  df-doch 37424  df-djh 37471  df-lcdual 37663  df-mapd 37701  df-hdmap1 37869
This theorem is referenced by:  hdmap1eu  37900
  Copyright terms: Public domain W3C validator