Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1eulem Structured version   Visualization version   GIF version

Theorem hdmap1eulem 38960
Description: Lemma for hdmap1eu 38962. TODO: combine with hdmap1eu 38962 or at least share some hypotheses. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1eulem.h 𝐻 = (LHyp‘𝐾)
hdmap1eulem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1eulem.v 𝑉 = (Base‘𝑈)
hdmap1eulem.s = (-g𝑈)
hdmap1eulem.o 0 = (0g𝑈)
hdmap1eulem.n 𝑁 = (LSpan‘𝑈)
hdmap1eulem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1eulem.d 𝐷 = (Base‘𝐶)
hdmap1eulem.r 𝑅 = (-g𝐶)
hdmap1eulem.q 𝑄 = (0g𝐶)
hdmap1eulem.j 𝐽 = (LSpan‘𝐶)
hdmap1eulem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1eulem.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1eulem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1eulem.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
hdmap1eulem.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1eulem.f (𝜑𝐹𝐷)
hdmap1eulem.y (𝜑𝑇𝑉)
hdmap1eulem.l 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
Assertion
Ref Expression
hdmap1eulem (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝐶,   𝑥,,𝑦,𝑧,𝐷   ,𝐹,𝑥,𝑦,𝑧   ,𝐽,𝑥   ,𝐿,𝑥,𝑦,𝑧   ,𝑀,𝑥   ,𝑁,𝑥,𝑦,𝑧   0 ,,𝑥,𝑦,𝑧   𝑥,𝑄   𝑅,,𝑥   ,,𝑥   𝑇,,𝑥,𝑦,𝑧   𝑈,,𝑧   ,𝑉,𝑦,𝑧   ,𝑋,𝑥,𝑦,𝑧   𝜑,,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝑄(𝑦,𝑧,)   𝑅(𝑦,𝑧)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,)   𝐼(𝑥,𝑦,𝑧,)   𝐽(𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧,)   𝑀(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑧,)

Proof of Theorem hdmap1eulem
StepHypRef Expression
1 hdmap1eulem.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1eulem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1eulem.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap1eulem.s . . 3 = (-g𝑈)
5 hdmap1eulem.o . . 3 0 = (0g𝑈)
6 hdmap1eulem.n . . 3 𝑁 = (LSpan‘𝑈)
7 hdmap1eulem.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1eulem.d . . 3 𝐷 = (Base‘𝐶)
9 hdmap1eulem.r . . 3 𝑅 = (-g𝐶)
10 hdmap1eulem.q . . 3 𝑄 = (0g𝐶)
11 hdmap1eulem.j . . 3 𝐽 = (LSpan‘𝐶)
12 hdmap1eulem.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1eulem.l . . 3 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 hdmap1eulem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1eulem.f . . 3 (𝜑𝐹𝐷)
16 hdmap1eulem.mn . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 hdmap1eulem.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 hdmap1eulem.y . . 3 (𝜑𝑇𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18mapdh9a 38927 . 2 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
20 hdmap1eulem.i . . . . . . . . . 10 𝐼 = ((HDMap1‘𝐾)‘𝑊)
2114ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2217ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2315ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 𝐹𝐷)
24 simplr 767 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 𝑧𝑉)
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21, 22, 23, 24, 13hdmap1valc 38941 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐿‘⟨𝑋, 𝐹, 𝑧⟩))
2625oteq2d 4818 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)
2726fveq2d 6676 . . . . . . 7 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
28 elun1 4154 . . . . . . . . 9 (𝑧 ∈ (𝑁‘{𝑋}) → 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})))
2928con3i 157 . . . . . . . 8 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋}))
3014ad2antrr 724 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31 eqid 2823 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
321, 2, 14dvhlmod 38248 . . . . . . . . . . 11 (𝜑𝑈 ∈ LMod)
3332ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑈 ∈ LMod)
3417eldifad 3950 . . . . . . . . . . . 12 (𝜑𝑋𝑉)
3534ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑋𝑉)
363, 31, 6lspsncl 19751 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
3733, 35, 36syl2anc 586 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
38 simplr 767 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑧𝑉)
39 simpr 487 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → ¬ 𝑧 ∈ (𝑁‘{𝑋}))
405, 31, 33, 37, 38, 39lssneln0 19726 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑧 ∈ (𝑉 ∖ { 0 }))
4115ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝐹𝐷)
4216ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
4317ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
443, 6, 33, 38, 35, 39lspsnne2 19892 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
4544necomd 3073 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
4610, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 30, 41, 42, 43, 38, 45mapdhcl 38865 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝐿‘⟨𝑋, 𝐹, 𝑧⟩) ∈ 𝐷)
4718ad2antrr 724 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑇𝑉)
481, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 30, 40, 46, 47, 13hdmap1valc 38941 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
4929, 48sylan2 594 . . . . . . 7 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
5027, 49eqtrd 2858 . . . . . 6 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
5150eqeq2d 2834 . . . . 5 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ↔ 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
5251pm5.74da 802 . . . 4 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5352ralbidva 3198 . . 3 (𝜑 → (∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5453reubidv 3391 . 2 (𝜑 → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5519, 54mpbird 259 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  ∃!wreu 3142  Vcvv 3496  cdif 3935  cun 3936  ifcif 4469  {csn 4569  cotp 4577  cmpt 5148  cfv 6357  crio 7115  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  Basecbs 16485  0gc0g 16715  -gcsg 18107  LModclmod 19636  LSubSpclss 19705  LSpanclspn 19745  HLchlt 36488  LHypclh 37122  DVecHcdvh 38216  LCDualclcd 38724  mapdcmpd 38762  HDMap1chdma1 38929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-riotaBAD 36091
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-undef 7941  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-0g 16717  df-mre 16859  df-mrc 16860  df-acs 16862  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-clat 17720  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-oppg 18476  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-dvr 19435  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877  df-lsatoms 36114  df-lshyp 36115  df-lcv 36157  df-lfl 36196  df-lkr 36224  df-ldual 36262  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637  df-lvols 36638  df-lines 36639  df-psubsp 36641  df-pmap 36642  df-padd 36934  df-lhyp 37126  df-laut 37127  df-ldil 37242  df-ltrn 37243  df-trl 37297  df-tgrp 37881  df-tendo 37893  df-edring 37895  df-dveca 38141  df-disoa 38167  df-dvech 38217  df-dib 38277  df-dic 38311  df-dih 38367  df-doch 38486  df-djh 38533  df-lcdual 38725  df-mapd 38763  df-hdmap1 38931
This theorem is referenced by:  hdmap1eu  38962
  Copyright terms: Public domain W3C validator