Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1eulem Structured version   Visualization version   GIF version

Theorem hdmap1eulem 41427
Description: Lemma for hdmap1eu 41429. TODO: combine with hdmap1eu 41429 or at least share some hypotheses. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1eulem.h 𝐻 = (LHyp‘𝐾)
hdmap1eulem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1eulem.v 𝑉 = (Base‘𝑈)
hdmap1eulem.s = (-g𝑈)
hdmap1eulem.o 0 = (0g𝑈)
hdmap1eulem.n 𝑁 = (LSpan‘𝑈)
hdmap1eulem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1eulem.d 𝐷 = (Base‘𝐶)
hdmap1eulem.r 𝑅 = (-g𝐶)
hdmap1eulem.q 𝑄 = (0g𝐶)
hdmap1eulem.j 𝐽 = (LSpan‘𝐶)
hdmap1eulem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1eulem.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1eulem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1eulem.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
hdmap1eulem.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1eulem.f (𝜑𝐹𝐷)
hdmap1eulem.y (𝜑𝑇𝑉)
hdmap1eulem.l 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
Assertion
Ref Expression
hdmap1eulem (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝐶,   𝑥,,𝑦,𝑧,𝐷   ,𝐹,𝑥,𝑦,𝑧   ,𝐽,𝑥   ,𝐿,𝑥,𝑦,𝑧   ,𝑀,𝑥   ,𝑁,𝑥,𝑦,𝑧   0 ,,𝑥,𝑦,𝑧   𝑥,𝑄   𝑅,,𝑥   ,,𝑥   𝑇,,𝑥,𝑦,𝑧   𝑈,,𝑧   ,𝑉,𝑦,𝑧   ,𝑋,𝑥,𝑦,𝑧   𝜑,,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝑄(𝑦,𝑧,)   𝑅(𝑦,𝑧)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,)   𝐼(𝑥,𝑦,𝑧,)   𝐽(𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧,)   𝑀(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑧,)

Proof of Theorem hdmap1eulem
StepHypRef Expression
1 hdmap1eulem.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1eulem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1eulem.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap1eulem.s . . 3 = (-g𝑈)
5 hdmap1eulem.o . . 3 0 = (0g𝑈)
6 hdmap1eulem.n . . 3 𝑁 = (LSpan‘𝑈)
7 hdmap1eulem.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1eulem.d . . 3 𝐷 = (Base‘𝐶)
9 hdmap1eulem.r . . 3 𝑅 = (-g𝐶)
10 hdmap1eulem.q . . 3 𝑄 = (0g𝐶)
11 hdmap1eulem.j . . 3 𝐽 = (LSpan‘𝐶)
12 hdmap1eulem.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1eulem.l . . 3 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 hdmap1eulem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1eulem.f . . 3 (𝜑𝐹𝐷)
16 hdmap1eulem.mn . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 hdmap1eulem.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 hdmap1eulem.y . . 3 (𝜑𝑇𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18mapdh9a 41394 . 2 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
20 hdmap1eulem.i . . . . . . . . . 10 𝐼 = ((HDMap1‘𝐾)‘𝑊)
2114ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2217ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2315ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 𝐹𝐷)
24 simplr 767 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 𝑧𝑉)
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21, 22, 23, 24, 13hdmap1valc 41408 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐿‘⟨𝑋, 𝐹, 𝑧⟩))
2625oteq2d 4888 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)
2726fveq2d 6900 . . . . . . 7 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
28 elun1 4174 . . . . . . . . 9 (𝑧 ∈ (𝑁‘{𝑋}) → 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})))
2928con3i 154 . . . . . . . 8 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋}))
3014ad2antrr 724 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31 eqid 2725 . . . . . . . . . 10 (LSubSp‘𝑈) = (LSubSp‘𝑈)
321, 2, 14dvhlmod 40715 . . . . . . . . . . 11 (𝜑𝑈 ∈ LMod)
3332ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑈 ∈ LMod)
3417eldifad 3956 . . . . . . . . . . . 12 (𝜑𝑋𝑉)
3534ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑋𝑉)
363, 31, 6lspsncl 20878 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
3733, 35, 36syl2anc 582 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
38 simplr 767 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑧𝑉)
39 simpr 483 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → ¬ 𝑧 ∈ (𝑁‘{𝑋}))
405, 31, 33, 37, 38, 39lssneln0 20854 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑧 ∈ (𝑉 ∖ { 0 }))
4115ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝐹𝐷)
4216ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
4317ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
443, 6, 33, 38, 35, 39lspsnne2 21023 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
4544necomd 2985 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
4610, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 30, 41, 42, 43, 38, 45mapdhcl 41332 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝐿‘⟨𝑋, 𝐹, 𝑧⟩) ∈ 𝐷)
4718ad2antrr 724 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑇𝑉)
481, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 30, 40, 46, 47, 13hdmap1valc 41408 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
4929, 48sylan2 591 . . . . . . 7 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
5027, 49eqtrd 2765 . . . . . 6 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
5150eqeq2d 2736 . . . . 5 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ↔ 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
5251pm5.74da 802 . . . 4 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5352ralbidva 3165 . . 3 (𝜑 → (∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5453reubidv 3381 . 2 (𝜑 → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5519, 54mpbird 256 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  ∃!wreu 3361  Vcvv 3461  cdif 3941  cun 3942  ifcif 4530  {csn 4630  cotp 4638  cmpt 5232  cfv 6549  crio 7374  (class class class)co 7419  1st c1st 7992  2nd c2nd 7993  Basecbs 17188  0gc0g 17429  -gcsg 18905  LModclmod 20760  LSubSpclss 20832  LSpanclspn 20872  HLchlt 38954  LHypclh 39589  DVecHcdvh 40683  LCDualclcd 41191  mapdcmpd 41229  HDMap1chdma1 41396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-riotaBAD 38557
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-undef 8279  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17189  df-ress 17218  df-plusg 17254  df-mulr 17255  df-sca 17257  df-vsca 17258  df-0g 17431  df-mre 17574  df-mrc 17575  df-acs 17577  df-proset 18295  df-poset 18313  df-plt 18330  df-lub 18346  df-glb 18347  df-join 18348  df-meet 18349  df-p0 18425  df-p1 18426  df-lat 18432  df-clat 18499  df-mgm 18608  df-sgrp 18687  df-mnd 18703  df-submnd 18749  df-grp 18906  df-minusg 18907  df-sbg 18908  df-subg 19091  df-cntz 19285  df-oppg 19314  df-lsm 19608  df-cmn 19754  df-abl 19755  df-mgp 20092  df-rng 20110  df-ur 20139  df-ring 20192  df-oppr 20290  df-dvdsr 20313  df-unit 20314  df-invr 20344  df-dvr 20357  df-drng 20643  df-lmod 20762  df-lss 20833  df-lsp 20873  df-lvec 21005  df-lsatoms 38580  df-lshyp 38581  df-lcv 38623  df-lfl 38662  df-lkr 38690  df-ldual 38728  df-oposet 38780  df-ol 38782  df-oml 38783  df-covers 38870  df-ats 38871  df-atl 38902  df-cvlat 38926  df-hlat 38955  df-llines 39103  df-lplanes 39104  df-lvols 39105  df-lines 39106  df-psubsp 39108  df-pmap 39109  df-padd 39401  df-lhyp 39593  df-laut 39594  df-ldil 39709  df-ltrn 39710  df-trl 39764  df-tgrp 40348  df-tendo 40360  df-edring 40362  df-dveca 40608  df-disoa 40634  df-dvech 40684  df-dib 40744  df-dic 40778  df-dih 40834  df-doch 40953  df-djh 41000  df-lcdual 41192  df-mapd 41230  df-hdmap1 41398
This theorem is referenced by:  hdmap1eu  41429
  Copyright terms: Public domain W3C validator