| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1eulem | Structured version Visualization version GIF version | ||
| Description: Lemma for hdmap1eu 41843. TODO: combine with hdmap1eu 41843 or at least share some hypotheses. (Contributed by NM, 15-May-2015.) |
| Ref | Expression |
|---|---|
| hdmap1eulem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap1eulem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap1eulem.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap1eulem.s | ⊢ − = (-g‘𝑈) |
| hdmap1eulem.o | ⊢ 0 = (0g‘𝑈) |
| hdmap1eulem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap1eulem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap1eulem.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmap1eulem.r | ⊢ 𝑅 = (-g‘𝐶) |
| hdmap1eulem.q | ⊢ 𝑄 = (0g‘𝐶) |
| hdmap1eulem.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| hdmap1eulem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmap1eulem.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmap1eulem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap1eulem.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| hdmap1eulem.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap1eulem.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| hdmap1eulem.y | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| hdmap1eulem.l | ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| Ref | Expression |
|---|---|
| hdmap1eulem | ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap1eulem.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap1eulem.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmap1eulem.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmap1eulem.s | . . 3 ⊢ − = (-g‘𝑈) | |
| 5 | hdmap1eulem.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 6 | hdmap1eulem.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | hdmap1eulem.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | hdmap1eulem.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | hdmap1eulem.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 10 | hdmap1eulem.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
| 11 | hdmap1eulem.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | hdmap1eulem.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | hdmap1eulem.l | . . 3 ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 14 | hdmap1eulem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | hdmap1eulem.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 16 | hdmap1eulem.mn | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 17 | hdmap1eulem.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 18 | hdmap1eulem.y | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | mapdh9a 41808 | . 2 ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
| 20 | hdmap1eulem.i | . . . . . . . . . 10 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 21 | 14 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 22 | 17 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 23 | 15 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 𝐹 ∈ 𝐷) |
| 24 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 𝑧 ∈ 𝑉) | |
| 25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21, 22, 23, 24, 13 | hdmap1valc 41822 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘〈𝑋, 𝐹, 𝑧〉) = (𝐿‘〈𝑋, 𝐹, 𝑧〉)) |
| 26 | 25 | oteq2d 4862 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → 〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉 = 〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) |
| 27 | 26 | fveq2d 6880 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐼‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) |
| 28 | elun1 4157 | . . . . . . . . 9 ⊢ (𝑧 ∈ (𝑁‘{𝑋}) → 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) | |
| 29 | 28 | con3i 154 | . . . . . . . 8 ⊢ (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋})) |
| 30 | 14 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 31 | eqid 2735 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 32 | 1, 2, 14 | dvhlmod 41129 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 33 | 32 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑈 ∈ LMod) |
| 34 | 17 | eldifad 3938 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 35 | 34 | ad2antrr 726 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑋 ∈ 𝑉) |
| 36 | 3, 31, 6 | lspsncl 20934 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
| 37 | 33, 35, 36 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
| 38 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑧 ∈ 𝑉) | |
| 39 | simpr 484 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → ¬ 𝑧 ∈ (𝑁‘{𝑋})) | |
| 40 | 5, 31, 33, 37, 38, 39 | lssneln0 20910 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑧 ∈ (𝑉 ∖ { 0 })) |
| 41 | 15 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝐹 ∈ 𝐷) |
| 42 | 16 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| 43 | 17 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 44 | 3, 6, 33, 38, 35, 39 | lspsnne2 21079 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋})) |
| 45 | 44 | necomd 2987 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧})) |
| 46 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 30, 41, 42, 43, 38, 45 | mapdhcl 41746 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝐿‘〈𝑋, 𝐹, 𝑧〉) ∈ 𝐷) |
| 47 | 18 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑇 ∈ 𝑉) |
| 48 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 30, 40, 46, 47, 13 | hdmap1valc 41822 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝐼‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) |
| 49 | 29, 48 | sylan2 593 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) |
| 50 | 27, 49 | eqtrd 2770 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) |
| 51 | 50 | eqeq2d 2746 | . . . . 5 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))) → (𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) ↔ 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
| 52 | 51 | pm5.74da 803 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉) → ((¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) ↔ (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
| 53 | 52 | ralbidva 3161 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) ↔ ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
| 54 | 53 | reubidv 3377 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) ↔ ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
| 55 | 19, 54 | mpbird 257 | 1 ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃!wreu 3357 Vcvv 3459 ∖ cdif 3923 ∪ cun 3924 ifcif 4500 {csn 4601 〈cotp 4609 ↦ cmpt 5201 ‘cfv 6531 ℩crio 7361 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 Basecbs 17228 0gc0g 17453 -gcsg 18918 LModclmod 20817 LSubSpclss 20888 LSpanclspn 20928 HLchlt 39368 LHypclh 40003 DVecHcdvh 41097 LCDualclcd 41605 mapdcmpd 41643 HDMap1chdma1 41810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-riotaBAD 38971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-undef 8272 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-0g 17455 df-mre 17598 df-mrc 17599 df-acs 17601 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cntz 19300 df-oppg 19329 df-lsm 19617 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-nzr 20473 df-rlreg 20654 df-domn 20655 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lvec 21061 df-lsatoms 38994 df-lshyp 38995 df-lcv 39037 df-lfl 39076 df-lkr 39104 df-ldual 39142 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39517 df-lplanes 39518 df-lvols 39519 df-lines 39520 df-psubsp 39522 df-pmap 39523 df-padd 39815 df-lhyp 40007 df-laut 40008 df-ldil 40123 df-ltrn 40124 df-trl 40178 df-tgrp 40762 df-tendo 40774 df-edring 40776 df-dveca 41022 df-disoa 41048 df-dvech 41098 df-dib 41158 df-dic 41192 df-dih 41248 df-doch 41367 df-djh 41414 df-lcdual 41606 df-mapd 41644 df-hdmap1 41812 |
| This theorem is referenced by: hdmap1eu 41843 |
| Copyright terms: Public domain | W3C validator |