![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapval2 | Structured version Visualization version GIF version |
Description: Value of map from vectors to functionals with a specific auxiliary vector. TODO: Would shorter proofs result if the .ne hypothesis were changed to two ≠ hypothesis? Consider hdmaplem1 41418 through hdmaplem4 41421, which would become obsolete. (Contributed by NM, 15-May-2015.) |
Ref | Expression |
---|---|
hdmapval2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapval2.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapval2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapval2.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapval2.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmapval2.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmapval2.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmapval2.j | ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
hdmapval2.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmapval2.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapval2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapval2.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
hdmapval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hdmapval2.ne | ⊢ (𝜑 → ¬ 𝑋 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))) |
Ref | Expression |
---|---|
hdmapval2 | ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉), 𝑇〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2726 | . . 3 ⊢ (𝜑 → (𝑆‘𝑇) = (𝑆‘𝑇)) | |
2 | hdmapval2.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | hdmapval2.e | . . . 4 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
4 | hdmapval2.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | hdmapval2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
6 | hdmapval2.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | hdmapval2.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmapval2.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
9 | hdmapval2.j | . . . 4 ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | |
10 | hdmapval2.i | . . . 4 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
11 | hdmapval2.s | . . . 4 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
12 | hdmapval2.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
13 | hdmapval2.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
14 | 2, 4, 5, 7, 8, 11, 12, 13 | hdmapcl 41477 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑇) ∈ 𝐷) |
15 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | hdmapval2lem 41478 | . . 3 ⊢ (𝜑 → ((𝑆‘𝑇) = (𝑆‘𝑇) ↔ ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → (𝑆‘𝑇) = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)))) |
16 | 1, 15 | mpbid 231 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → (𝑆‘𝑇) = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉))) |
17 | hdmapval2.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
18 | hdmapval2.ne | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇}))) | |
19 | eleq1 2813 | . . . . 5 ⊢ (𝑧 = 𝑋 → (𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) ↔ 𝑋 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})))) | |
20 | 19 | notbid 317 | . . . 4 ⊢ (𝑧 = 𝑋 → (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) ↔ ¬ 𝑋 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})))) |
21 | oteq1 4887 | . . . . . . 7 ⊢ (𝑧 = 𝑋 → 〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉 = 〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉) | |
22 | oteq3 4889 | . . . . . . . . 9 ⊢ (𝑧 = 𝑋 → 〈𝐸, (𝐽‘𝐸), 𝑧〉 = 〈𝐸, (𝐽‘𝐸), 𝑋〉) | |
23 | 22 | fveq2d 6904 | . . . . . . . 8 ⊢ (𝑧 = 𝑋 → (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉)) |
24 | 23 | oteq2d 4891 | . . . . . . 7 ⊢ (𝑧 = 𝑋 → 〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉 = 〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉), 𝑇〉) |
25 | 21, 24 | eqtrd 2765 | . . . . . 6 ⊢ (𝑧 = 𝑋 → 〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉 = 〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉), 𝑇〉) |
26 | 25 | fveq2d 6904 | . . . . 5 ⊢ (𝑧 = 𝑋 → (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉) = (𝐼‘〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉), 𝑇〉)) |
27 | 26 | eqeq2d 2736 | . . . 4 ⊢ (𝑧 = 𝑋 → ((𝑆‘𝑇) = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉) ↔ (𝑆‘𝑇) = (𝐼‘〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉), 𝑇〉))) |
28 | 20, 27 | imbi12d 343 | . . 3 ⊢ (𝑧 = 𝑋 → ((¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → (𝑆‘𝑇) = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)) ↔ (¬ 𝑋 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → (𝑆‘𝑇) = (𝐼‘〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉), 𝑇〉)))) |
29 | 28 | rspccv 3604 | . 2 ⊢ (∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → (𝑆‘𝑇) = (𝐼‘〈𝑧, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑧〉), 𝑇〉)) → (𝑋 ∈ 𝑉 → (¬ 𝑋 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝑇})) → (𝑆‘𝑇) = (𝐼‘〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉), 𝑇〉)))) |
30 | 16, 17, 18, 29 | syl3c 66 | 1 ⊢ (𝜑 → (𝑆‘𝑇) = (𝐼‘〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉), 𝑇〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∪ cun 3944 {csn 4632 〈cop 4638 〈cotp 4640 I cid 5578 ↾ cres 5683 ‘cfv 6553 Basecbs 17208 LSpanclspn 20895 HLchlt 38996 LHypclh 39631 LTrncltrn 39748 DVecHcdvh 40725 LCDualclcd 41233 HVMapchvm 41403 HDMap1chdma1 41438 HDMapchdma 41439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 ax-riotaBAD 38599 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-of 7689 df-om 7876 df-1st 8002 df-2nd 8003 df-tpos 8240 df-undef 8287 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-er 8733 df-map 8856 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-nn 12260 df-2 12322 df-3 12323 df-4 12324 df-5 12325 df-6 12326 df-n0 12520 df-z 12606 df-uz 12870 df-fz 13534 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-sca 17277 df-vsca 17278 df-0g 17451 df-mre 17594 df-mrc 17595 df-acs 17597 df-proset 18315 df-poset 18333 df-plt 18350 df-lub 18366 df-glb 18367 df-join 18368 df-meet 18369 df-p0 18445 df-p1 18446 df-lat 18452 df-clat 18519 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-grp 18926 df-minusg 18927 df-sbg 18928 df-subg 19112 df-cntz 19306 df-oppg 19335 df-lsm 19629 df-cmn 19775 df-abl 19776 df-mgp 20113 df-rng 20131 df-ur 20160 df-ring 20213 df-oppr 20311 df-dvdsr 20334 df-unit 20335 df-invr 20365 df-dvr 20378 df-drng 20666 df-lmod 20785 df-lss 20856 df-lsp 20896 df-lvec 21028 df-lsatoms 38622 df-lshyp 38623 df-lcv 38665 df-lfl 38704 df-lkr 38732 df-ldual 38770 df-oposet 38822 df-ol 38824 df-oml 38825 df-covers 38912 df-ats 38913 df-atl 38944 df-cvlat 38968 df-hlat 38997 df-llines 39145 df-lplanes 39146 df-lvols 39147 df-lines 39148 df-psubsp 39150 df-pmap 39151 df-padd 39443 df-lhyp 39635 df-laut 39636 df-ldil 39751 df-ltrn 39752 df-trl 39806 df-tgrp 40390 df-tendo 40402 df-edring 40404 df-dveca 40650 df-disoa 40676 df-dvech 40726 df-dib 40786 df-dic 40820 df-dih 40876 df-doch 40995 df-djh 41042 df-lcdual 41234 df-mapd 41272 df-hvmap 41404 df-hdmap1 41440 df-hdmap 41441 |
This theorem is referenced by: hdmapval0 41480 hdmapeveclem 41481 hdmapval3lemN 41484 hdmap10lem 41486 hdmap11lem1 41488 |
Copyright terms: Public domain | W3C validator |