Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oteq3d | Structured version Visualization version GIF version |
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
oteq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
oteq3d | ⊢ (𝜑 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oteq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | oteq3 4809 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 〈cotp 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-ext 2709 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3071 df-v 3422 df-dif 3883 df-un 3885 df-nul 4252 df-if 4454 df-sn 4556 df-pr 4558 df-op 4562 df-ot 4564 |
This theorem is referenced by: oteq123d 4813 idafval 17587 coafval 17594 arwlid 17602 arwrid 17603 arwass 17604 efgi 19133 efgtf 19136 efgtval 19137 efgval2 19138 mapdh6bN 39514 mapdh6cN 39515 mapdh6dN 39516 mapdh6gN 39519 hdmap1l6b 39588 hdmap1l6c 39589 hdmap1l6d 39590 hdmap1l6g 39593 |
Copyright terms: Public domain | W3C validator |