Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oteq3d | Structured version Visualization version GIF version |
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
oteq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
oteq3d | ⊢ (𝜑 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oteq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | oteq3 4812 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 〈cotp 4566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-ot 4567 |
This theorem is referenced by: oteq123d 4816 idafval 17688 coafval 17695 arwlid 17703 arwrid 17704 arwass 17705 efgi 19240 efgtf 19243 efgtval 19244 efgval2 19245 mapdh6bN 39678 mapdh6cN 39679 mapdh6dN 39680 mapdh6gN 39683 hdmap1l6b 39752 hdmap1l6c 39753 hdmap1l6d 39754 hdmap1l6g 39757 |
Copyright terms: Public domain | W3C validator |