Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oteq3d | Structured version Visualization version GIF version |
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
oteq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
oteq3d | ⊢ (𝜑 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oteq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | oteq3 4815 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 〈cotp 4569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-ot 4570 |
This theorem is referenced by: oteq123d 4819 idafval 17772 coafval 17779 arwlid 17787 arwrid 17788 arwass 17789 efgi 19325 efgtf 19328 efgtval 19329 efgval2 19330 mapdh6bN 39751 mapdh6cN 39752 mapdh6dN 39753 mapdh6gN 39756 hdmap1l6b 39825 hdmap1l6c 39826 hdmap1l6d 39827 hdmap1l6g 39830 |
Copyright terms: Public domain | W3C validator |