| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oteq3d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| oteq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| oteq3d | ⊢ (𝜑 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oteq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | oteq3 4848 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cotp 4597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-ot 4598 |
| This theorem is referenced by: oteq123d 4852 idafval 18019 coafval 18026 arwlid 18034 arwrid 18035 arwass 18036 efgi 19649 efgtf 19652 efgtval 19653 efgval2 19654 mapdh6bN 41731 mapdh6cN 41732 mapdh6dN 41733 mapdh6gN 41736 hdmap1l6b 41805 hdmap1l6c 41806 hdmap1l6d 41807 hdmap1l6g 41810 |
| Copyright terms: Public domain | W3C validator |