Step | Hyp | Ref
| Expression |
1 | | mapdh8a.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | mapdh8a.u |
. . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
3 | | mapdh8a.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑈) |
4 | | mapdh8a.s |
. . . . . 6
⊢ − =
(-g‘𝑈) |
5 | | mapdh8a.o |
. . . . . 6
⊢ 0 =
(0g‘𝑈) |
6 | | mapdh8a.n |
. . . . . 6
⊢ 𝑁 = (LSpan‘𝑈) |
7 | | mapdh8a.c |
. . . . . 6
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
8 | | mapdh8a.d |
. . . . . 6
⊢ 𝐷 = (Base‘𝐶) |
9 | | mapdh8a.r |
. . . . . 6
⊢ 𝑅 = (-g‘𝐶) |
10 | | mapdh8a.q |
. . . . . 6
⊢ 𝑄 = (0g‘𝐶) |
11 | | mapdh8a.j |
. . . . . 6
⊢ 𝐽 = (LSpan‘𝐶) |
12 | | mapdh8a.m |
. . . . . 6
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
13 | | mapdh8a.i |
. . . . . 6
⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd
‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))) |
14 | | mapdh8a.k |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
15 | 14 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
16 | | mapdh8h.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
17 | 16 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝐹 ∈ 𝐷) |
18 | | mapdh8h.mn |
. . . . . . 7
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
19 | 18 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
20 | | mapdh9a.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
21 | 20 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
22 | | eqid 2738 |
. . . . . . 7
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
23 | 1, 2, 14 | dvhlmod 39051 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) |
24 | 23 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑈 ∈ LMod) |
25 | 20 | eldifad 3895 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
26 | | mapdh9a.t |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ 𝑉) |
27 | 3, 22, 6, 23, 25, 26 | lspprcl 20155 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈)) |
28 | 27 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈)) |
29 | | simp2l 1197 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑧 ∈ 𝑉) |
30 | | simp3l 1199 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) |
31 | 5, 22, 24, 28, 29, 30 | lssneln0 20129 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑧 ∈ (𝑉 ∖ { 0 })) |
32 | | simp2r 1198 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑤 ∈ 𝑉) |
33 | | simp3r 1200 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) |
34 | 5, 22, 24, 28, 32, 33 | lssneln0 20129 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑤 ∈ (𝑉 ∖ { 0 })) |
35 | 1, 2, 14 | dvhlvec 39050 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ LVec) |
36 | 35 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑈 ∈ LVec) |
37 | 25 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑋 ∈ 𝑉) |
38 | 26 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑇 ∈ 𝑉) |
39 | 3, 6, 36, 29, 37, 38, 30 | lspindpi 20309 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) |
40 | 39 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋})) |
41 | 40 | necomd 2998 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧})) |
42 | 3, 6, 36, 32, 37, 38, 33 | lspindpi 20309 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))) |
43 | 42 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋})) |
44 | 43 | necomd 2998 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤})) |
45 | 39 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})) |
46 | 42 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) |
47 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 15, 17, 19, 21, 31, 34, 41, 44, 45, 46, 38 | mapdh8 39729 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐼‘〈𝑤, (𝐼‘〈𝑋, 𝐹, 𝑤〉), 𝑇〉)) |
48 | 47 | 3exp 1117 |
. . . 4
⊢ (𝜑 → ((𝑧 ∈ 𝑉 ∧ 𝑤 ∈ 𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐼‘〈𝑤, (𝐼‘〈𝑋, 𝐹, 𝑤〉), 𝑇〉)))) |
49 | 48 | ralrimivv 3113 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝑉 ∀𝑤 ∈ 𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐼‘〈𝑤, (𝐼‘〈𝑋, 𝐹, 𝑤〉), 𝑇〉))) |
50 | 1, 2, 3, 6, 14, 25, 26 | dvh3dim 39387 |
. . . . 5
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) |
51 | 14 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
52 | 16 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝐹 ∈ 𝐷) |
53 | 18 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
54 | 20 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
55 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ 𝑉) |
56 | 35 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LVec) |
57 | 25 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋 ∈ 𝑉) |
58 | 26 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑇 ∈ 𝑉) |
59 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) |
60 | 3, 6, 56, 55, 57, 58, 59 | lspindpi 20309 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) |
61 | 60 | simpld 494 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋})) |
62 | 61 | necomd 2998 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧})) |
63 | 10, 13, 1, 12, 2, 3,
4, 5, 6, 7,
8, 9, 11, 51, 52, 53, 54, 55, 62 | mapdhcl 39668 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑋, 𝐹, 𝑧〉) ∈ 𝐷) |
64 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑋, 𝐹, 𝑧〉) = (𝐼‘〈𝑋, 𝐹, 𝑧〉)) |
65 | 23 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LMod) |
66 | 27 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈)) |
67 | 5, 22, 65, 66, 55, 59 | lssneln0 20129 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 })) |
68 | 10, 13, 1, 12, 2, 3,
4, 5, 6, 7,
8, 9, 11, 51, 52, 53, 54, 67, 63, 62 | mapdheq 39669 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝐼‘〈𝑋, 𝐹, 𝑧〉) = (𝐼‘〈𝑋, 𝐹, 𝑧〉) ↔ ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘〈𝑋, 𝐹, 𝑧〉)}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘〈𝑋, 𝐹, 𝑧〉))})))) |
69 | 64, 68 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘〈𝑋, 𝐹, 𝑧〉)}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘〈𝑋, 𝐹, 𝑧〉))}))) |
70 | 69 | simpld 494 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘〈𝑋, 𝐹, 𝑧〉)})) |
71 | 60 | simprd 495 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})) |
72 | 10, 13, 1, 12, 2, 3,
4, 5, 6, 7,
8, 9, 11, 51, 63, 70, 67, 58, 71 | mapdhcl 39668 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) ∈ 𝐷) |
73 | 72 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) ∈ 𝐷)) |
74 | 73 | ancld 550 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) ∈ 𝐷))) |
75 | 74 | reximdva 3202 |
. . . . 5
⊢ (𝜑 → (∃𝑧 ∈ 𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) ∈ 𝐷))) |
76 | 50, 75 | mpd 15 |
. . . 4
⊢ (𝜑 → ∃𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) ∈ 𝐷)) |
77 | | eleq1w 2821 |
. . . . . 6
⊢ (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) |
78 | 77 | notbid 317 |
. . . . 5
⊢ (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) |
79 | | oteq1 4810 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → 〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉 = 〈𝑤, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) |
80 | | oteq3 4812 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → 〈𝑋, 𝐹, 𝑧〉 = 〈𝑋, 𝐹, 𝑤〉) |
81 | 80 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (𝐼‘〈𝑋, 𝐹, 𝑧〉) = (𝐼‘〈𝑋, 𝐹, 𝑤〉)) |
82 | 81 | oteq2d 4814 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → 〈𝑤, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉 = 〈𝑤, (𝐼‘〈𝑋, 𝐹, 𝑤〉), 𝑇〉) |
83 | 79, 82 | eqtrd 2778 |
. . . . . 6
⊢ (𝑧 = 𝑤 → 〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉 = 〈𝑤, (𝐼‘〈𝑋, 𝐹, 𝑤〉), 𝑇〉) |
84 | 83 | fveq2d 6760 |
. . . . 5
⊢ (𝑧 = 𝑤 → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐼‘〈𝑤, (𝐼‘〈𝑋, 𝐹, 𝑤〉), 𝑇〉)) |
85 | 78, 84 | reusv3 5323 |
. . . 4
⊢
(∃𝑧 ∈
𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) ∈ 𝐷) → (∀𝑧 ∈ 𝑉 ∀𝑤 ∈ 𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐼‘〈𝑤, (𝐼‘〈𝑋, 𝐹, 𝑤〉), 𝑇〉)) ↔ ∃𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
86 | 76, 85 | syl 17 |
. . 3
⊢ (𝜑 → (∀𝑧 ∈ 𝑉 ∀𝑤 ∈ 𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐼‘〈𝑤, (𝐼‘〈𝑋, 𝐹, 𝑤〉), 𝑇〉)) ↔ ∃𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
87 | 49, 86 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
88 | | reusv1 5315 |
. . 3
⊢
(∃𝑧 ∈
𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) ↔ ∃𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
89 | 50, 88 | syl 17 |
. 2
⊢ (𝜑 → (∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) ↔ ∃𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
90 | 87, 89 | mpbird 256 |
1
⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |