Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh9aOLDN Structured version   Visualization version   GIF version

Theorem mapdh9aOLDN 39086
Description: Lemma for part (9) in [Baer] p. 48. (Contributed by NM, 14-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8h.f (𝜑𝐹𝐷)
mapdh8h.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh9a.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh9a.t (𝜑𝑇𝑉)
Assertion
Ref Expression
mapdh9aOLDN (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   𝑥,𝐼   ,𝑉   𝑦,𝑧,𝐷   𝑦,𝐹,𝑧   𝑦,𝐼,𝑧   𝑦,𝑁,𝑧   𝑦, 0 ,𝑧   𝑦,𝑇,𝑧   𝑧,𝑈   𝑦,𝑉,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧   𝑧,,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝑄(𝑦,𝑧,)   𝑅(𝑦,𝑧)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,)   𝐽(𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧,)   𝑀(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑧,)

Proof of Theorem mapdh9aOLDN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . . . . 6 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . . . . 6 = (-g𝑈)
5 mapdh8a.o . . . . . 6 0 = (0g𝑈)
6 mapdh8a.n . . . . . 6 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . . . . 6 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . . . . 6 𝑅 = (-g𝐶)
10 mapdh8a.q . . . . . 6 𝑄 = (0g𝐶)
11 mapdh8a.j . . . . . 6 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . . . . 6 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15143ad2ant1 1130 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh8h.f . . . . . . 7 (𝜑𝐹𝐷)
17163ad2ant1 1130 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝐹𝐷)
18 mapdh8h.mn . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
19183ad2ant1 1130 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdh9a.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21203ad2ant1 1130 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 eqid 2798 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
231, 2, 14dvhlmod 38406 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
24233ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑈 ∈ LMod)
2520eldifad 3893 . . . . . . . . 9 (𝜑𝑋𝑉)
26 mapdh9a.t . . . . . . . . 9 (𝜑𝑇𝑉)
273, 22, 6, 23, 25, 26lspprcl 19743 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
28273ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
29 simp2l 1196 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑧𝑉)
30 simp3l 1198 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
315, 22, 24, 28, 29, 30lssneln0 19717 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
32 simp2r 1197 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑤𝑉)
33 simp3r 1199 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))
345, 22, 24, 28, 32, 33lssneln0 19717 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑤 ∈ (𝑉 ∖ { 0 }))
351, 2, 14dvhlvec 38405 . . . . . . . . . 10 (𝜑𝑈 ∈ LVec)
36353ad2ant1 1130 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑈 ∈ LVec)
37253ad2ant1 1130 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑋𝑉)
38263ad2ant1 1130 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑇𝑉)
393, 6, 36, 29, 37, 38, 30lspindpi 19897 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
4039simpld 498 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
4140necomd 3042 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
423, 6, 36, 32, 37, 38, 33lspindpi 19897 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))
4342simpld 498 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
4443necomd 3042 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
4539simprd 499 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
4642simprd 499 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
471, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 31, 34, 41, 44, 45, 46, 38mapdh8 39084 . . . . 5 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
48473exp 1116 . . . 4 (𝜑 → ((𝑧𝑉𝑤𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))))
4948ralrimivv 3155 . . 3 (𝜑 → ∀𝑧𝑉𝑤𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)))
501, 2, 3, 6, 14, 25, 26dvh3dim 38742 . . . . 5 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
5114ad2antrr 725 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5216ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝐹𝐷)
5318ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
5420ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
55 simplr 768 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧𝑉)
5635ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LVec)
5725ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋𝑉)
5826ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑇𝑉)
59 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
603, 6, 56, 55, 57, 58, 59lspindpi 19897 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
6160simpld 498 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
6261necomd 3042 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
6310, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 51, 52, 53, 54, 55, 62mapdhcl 39023 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ∈ 𝐷)
64 eqidd 2799 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩))
6523ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LMod)
6627ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
675, 22, 65, 66, 55, 59lssneln0 19717 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 }))
6810, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 51, 52, 53, 54, 67, 63, 62mapdheq 39024 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ↔ ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))}))))
6964, 68mpbid 235 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))})))
7069simpld 498 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}))
7160simprd 499 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
7210, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 51, 63, 70, 67, 58, 71mapdhcl 39023 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)
7372ex 416 . . . . . . 7 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
7473ancld 554 . . . . . 6 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7574reximdva 3233 . . . . 5 (𝜑 → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7650, 75mpd 15 . . . 4 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
77 eleq1w 2872 . . . . . 6 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})))
7877notbid 321 . . . . 5 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})))
79 oteq1 4774 . . . . . . 7 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)
80 oteq3 4776 . . . . . . . . 9 (𝑧 = 𝑤 → ⟨𝑋, 𝐹, 𝑧⟩ = ⟨𝑋, 𝐹, 𝑤⟩)
8180fveq2d 6649 . . . . . . . 8 (𝑧 = 𝑤 → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
8281oteq2d 4778 . . . . . . 7 (𝑧 = 𝑤 → ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
8379, 82eqtrd 2833 . . . . . 6 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
8483fveq2d 6649 . . . . 5 (𝑧 = 𝑤 → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
8578, 84reusv3 5271 . . . 4 (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷) → (∀𝑧𝑉𝑤𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
8676, 85syl 17 . . 3 (𝜑 → (∀𝑧𝑉𝑤𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
8749, 86mpbid 235 . 2 (𝜑 → ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
88 reusv1 5263 . . 3 (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
8950, 88syl 17 . 2 (𝜑 → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
9087, 89mpbird 260 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  ∃!wreu 3108  Vcvv 3441  cdif 3878  ifcif 4425  {csn 4525  {cpr 4527  cotp 4533  cmpt 5110  cfv 6324  crio 7092  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  Basecbs 16475  0gc0g 16705  -gcsg 18097  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736  LVecclvec 19867  HLchlt 36646  LHypclh 37280  DVecHcdvh 38374  LCDualclcd 38882  mapdcmpd 38920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-undef 7922  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-oppg 18466  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lsatoms 36272  df-lshyp 36273  df-lcv 36315  df-lfl 36354  df-lkr 36382  df-ldual 36420  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796  df-lines 36797  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455  df-tgrp 38039  df-tendo 38051  df-edring 38053  df-dveca 38299  df-disoa 38325  df-dvech 38375  df-dib 38435  df-dic 38469  df-dih 38525  df-doch 38644  df-djh 38691  df-lcdual 38883  df-mapd 38921
This theorem is referenced by:  hdmap1eulemOLDN  39119
  Copyright terms: Public domain W3C validator