Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh9aOLDN Structured version   Visualization version   GIF version

Theorem mapdh9aOLDN 37860
Description: Lemma for part (9) in [Baer] p. 48. (Contributed by NM, 14-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8h.f (𝜑𝐹𝐷)
mapdh8h.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh9a.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh9a.t (𝜑𝑇𝑉)
Assertion
Ref Expression
mapdh9aOLDN (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   𝑥,𝐼   ,𝑉   𝑦,𝑧,𝐷   𝑦,𝐹,𝑧   𝑦,𝐼,𝑧   𝑦,𝑁,𝑧   𝑦, 0 ,𝑧   𝑦,𝑇,𝑧   𝑧,𝑈   𝑦,𝑉,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧   𝑧,,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝑄(𝑦,𝑧,)   𝑅(𝑦,𝑧)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,)   𝐽(𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧,)   𝑀(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑧,)

Proof of Theorem mapdh9aOLDN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . . . . 6 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . . . . 6 = (-g𝑈)
5 mapdh8a.o . . . . . 6 0 = (0g𝑈)
6 mapdh8a.n . . . . . 6 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . . . . 6 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . . . . 6 𝑅 = (-g𝐶)
10 mapdh8a.q . . . . . 6 𝑄 = (0g𝐶)
11 mapdh8a.j . . . . . 6 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . . . . 6 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15143ad2ant1 1167 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh8h.f . . . . . . 7 (𝜑𝐹𝐷)
17163ad2ant1 1167 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝐹𝐷)
18 mapdh8h.mn . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
19183ad2ant1 1167 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdh9a.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21203ad2ant1 1167 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 eqid 2825 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
231, 2, 14dvhlmod 37180 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
24233ad2ant1 1167 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑈 ∈ LMod)
2520eldifad 3810 . . . . . . . . 9 (𝜑𝑋𝑉)
26 mapdh9a.t . . . . . . . . 9 (𝜑𝑇𝑉)
273, 22, 6, 23, 25, 26lspprcl 19344 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
28273ad2ant1 1167 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
29 simp2l 1260 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑧𝑉)
30 simp3l 1262 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
315, 22, 24, 28, 29, 30lssneln0 19316 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
32 simp2r 1261 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑤𝑉)
33 simp3r 1263 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))
345, 22, 24, 28, 32, 33lssneln0 19316 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑤 ∈ (𝑉 ∖ { 0 }))
351, 2, 14dvhlvec 37179 . . . . . . . . . 10 (𝜑𝑈 ∈ LVec)
36353ad2ant1 1167 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑈 ∈ LVec)
37253ad2ant1 1167 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑋𝑉)
38263ad2ant1 1167 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑇𝑉)
393, 6, 36, 29, 37, 38, 30lspindpi 19499 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
4039simpld 490 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
4140necomd 3054 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
423, 6, 36, 32, 37, 38, 33lspindpi 19499 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))
4342simpld 490 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
4443necomd 3054 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
4539simprd 491 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
4642simprd 491 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
471, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 31, 34, 41, 44, 45, 46, 38mapdh8 37858 . . . . 5 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
48473exp 1152 . . . 4 (𝜑 → ((𝑧𝑉𝑤𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))))
4948ralrimivv 3179 . . 3 (𝜑 → ∀𝑧𝑉𝑤𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)))
501, 2, 3, 6, 14, 25, 26dvh3dim 37516 . . . . 5 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
5114ad2antrr 717 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5216ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝐹𝐷)
5318ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
5420ad2antrr 717 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
55 simplr 785 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧𝑉)
5635ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LVec)
5725ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋𝑉)
5826ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑇𝑉)
59 simpr 479 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
603, 6, 56, 55, 57, 58, 59lspindpi 19499 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
6160simpld 490 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
6261necomd 3054 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
6310, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 51, 52, 53, 54, 55, 62mapdhcl 37797 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ∈ 𝐷)
64 eqidd 2826 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩))
6523ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LMod)
6627ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
675, 22, 65, 66, 55, 59lssneln0 19316 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 }))
6810, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 51, 52, 53, 54, 67, 63, 62mapdheq 37798 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ↔ ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))}))))
6964, 68mpbid 224 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))})))
7069simpld 490 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}))
7160simprd 491 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
7210, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 51, 63, 70, 67, 58, 71mapdhcl 37797 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)
7372ex 403 . . . . . . 7 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
7473ancld 546 . . . . . 6 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7574reximdva 3225 . . . . 5 (𝜑 → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7650, 75mpd 15 . . . 4 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
77 eleq1w 2889 . . . . . 6 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})))
7877notbid 310 . . . . 5 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})))
79 oteq1 4634 . . . . . . 7 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)
80 oteq3 4636 . . . . . . . . 9 (𝑧 = 𝑤 → ⟨𝑋, 𝐹, 𝑧⟩ = ⟨𝑋, 𝐹, 𝑤⟩)
8180fveq2d 6441 . . . . . . . 8 (𝑧 = 𝑤 → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
8281oteq2d 4638 . . . . . . 7 (𝑧 = 𝑤 → ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
8379, 82eqtrd 2861 . . . . . 6 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
8483fveq2d 6441 . . . . 5 (𝑧 = 𝑤 → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
8578, 84reusv3 5107 . . . 4 (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷) → (∀𝑧𝑉𝑤𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
8676, 85syl 17 . . 3 (𝜑 → (∀𝑧𝑉𝑤𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
8749, 86mpbid 224 . 2 (𝜑 → ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
88 reusv1 5099 . . 3 (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
8950, 88syl 17 . 2 (𝜑 → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
9087, 89mpbird 249 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wne 2999  wral 3117  wrex 3118  ∃!wreu 3119  Vcvv 3414  cdif 3795  ifcif 4308  {csn 4399  {cpr 4401  cotp 4407  cmpt 4954  cfv 6127  crio 6870  (class class class)co 6910  1st c1st 7431  2nd c2nd 7432  Basecbs 16229  0gc0g 16460  -gcsg 17785  LModclmod 19226  LSubSpclss 19295  LSpanclspn 19337  LVecclvec 19468  HLchlt 35420  LHypclh 36054  DVecHcdvh 37148  LCDualclcd 37656  mapdcmpd 37694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-riotaBAD 35023
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-ot 4408  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-tpos 7622  df-undef 7669  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-sca 16328  df-vsca 16329  df-0g 16462  df-mre 16606  df-mrc 16607  df-acs 16609  df-proset 17288  df-poset 17306  df-plt 17318  df-lub 17334  df-glb 17335  df-join 17336  df-meet 17337  df-p0 17399  df-p1 17400  df-lat 17406  df-clat 17468  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-cntz 18107  df-oppg 18133  df-lsm 18409  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-dvr 19044  df-drng 19112  df-lmod 19228  df-lss 19296  df-lsp 19338  df-lvec 19469  df-lsatoms 35046  df-lshyp 35047  df-lcv 35089  df-lfl 35128  df-lkr 35156  df-ldual 35194  df-oposet 35246  df-ol 35248  df-oml 35249  df-covers 35336  df-ats 35337  df-atl 35368  df-cvlat 35392  df-hlat 35421  df-llines 35568  df-lplanes 35569  df-lvols 35570  df-lines 35571  df-psubsp 35573  df-pmap 35574  df-padd 35866  df-lhyp 36058  df-laut 36059  df-ldil 36174  df-ltrn 36175  df-trl 36229  df-tgrp 36813  df-tendo 36825  df-edring 36827  df-dveca 37073  df-disoa 37099  df-dvech 37149  df-dib 37209  df-dic 37243  df-dih 37299  df-doch 37418  df-djh 37465  df-lcdual 37657  df-mapd 37695
This theorem is referenced by:  hdmap1eulemOLDN  37893
  Copyright terms: Public domain W3C validator