Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh9aOLDN Structured version   Visualization version   GIF version

Theorem mapdh9aOLDN 40253
Description: Lemma for part (9) in [Baer] p. 48. (Contributed by NM, 14-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8h.f (𝜑𝐹𝐷)
mapdh8h.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh9a.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh9a.t (𝜑𝑇𝑉)
Assertion
Ref Expression
mapdh9aOLDN (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   𝑥,𝐼   ,𝑉   𝑦,𝑧,𝐷   𝑦,𝐹,𝑧   𝑦,𝐼,𝑧   𝑦,𝑁,𝑧   𝑦, 0 ,𝑧   𝑦,𝑇,𝑧   𝑧,𝑈   𝑦,𝑉,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧   𝑧,,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝑄(𝑦,𝑧,)   𝑅(𝑦,𝑧)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,)   𝐽(𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧,)   𝑀(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑧,)

Proof of Theorem mapdh9aOLDN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . . . . 6 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . . . . 6 = (-g𝑈)
5 mapdh8a.o . . . . . 6 0 = (0g𝑈)
6 mapdh8a.n . . . . . 6 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . . . . 6 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . . . . 6 𝑅 = (-g𝐶)
10 mapdh8a.q . . . . . 6 𝑄 = (0g𝐶)
11 mapdh8a.j . . . . . 6 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . . . . 6 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15143ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh8h.f . . . . . . 7 (𝜑𝐹𝐷)
17163ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝐹𝐷)
18 mapdh8h.mn . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
19183ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdh9a.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21203ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 eqid 2736 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
231, 2, 14dvhlmod 39573 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
24233ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑈 ∈ LMod)
2520eldifad 3922 . . . . . . . . 9 (𝜑𝑋𝑉)
26 mapdh9a.t . . . . . . . . 9 (𝜑𝑇𝑉)
273, 22, 6, 23, 25, 26lspprcl 20439 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
28273ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
29 simp2l 1199 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑧𝑉)
30 simp3l 1201 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
315, 22, 24, 28, 29, 30lssneln0 20413 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
32 simp2r 1200 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑤𝑉)
33 simp3r 1202 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))
345, 22, 24, 28, 32, 33lssneln0 20413 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑤 ∈ (𝑉 ∖ { 0 }))
351, 2, 14dvhlvec 39572 . . . . . . . . . 10 (𝜑𝑈 ∈ LVec)
36353ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑈 ∈ LVec)
37253ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑋𝑉)
38263ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑇𝑉)
393, 6, 36, 29, 37, 38, 30lspindpi 20593 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
4039simpld 495 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
4140necomd 2999 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
423, 6, 36, 32, 37, 38, 33lspindpi 20593 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))
4342simpld 495 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
4443necomd 2999 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
4539simprd 496 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
4642simprd 496 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
471, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 31, 34, 41, 44, 45, 46, 38mapdh8 40251 . . . . 5 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
48473exp 1119 . . . 4 (𝜑 → ((𝑧𝑉𝑤𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))))
4948ralrimivv 3195 . . 3 (𝜑 → ∀𝑧𝑉𝑤𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)))
501, 2, 3, 6, 14, 25, 26dvh3dim 39909 . . . . 5 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
5114ad2antrr 724 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5216ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝐹𝐷)
5318ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
5420ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
55 simplr 767 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧𝑉)
5635ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LVec)
5725ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋𝑉)
5826ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑇𝑉)
59 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
603, 6, 56, 55, 57, 58, 59lspindpi 20593 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
6160simpld 495 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
6261necomd 2999 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
6310, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 51, 52, 53, 54, 55, 62mapdhcl 40190 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ∈ 𝐷)
64 eqidd 2737 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩))
6523ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LMod)
6627ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
675, 22, 65, 66, 55, 59lssneln0 20413 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 }))
6810, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 51, 52, 53, 54, 67, 63, 62mapdheq 40191 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ↔ ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))}))))
6964, 68mpbid 231 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))})))
7069simpld 495 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}))
7160simprd 496 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
7210, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 51, 63, 70, 67, 58, 71mapdhcl 40190 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)
7372ex 413 . . . . . . 7 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
7473ancld 551 . . . . . 6 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7574reximdva 3165 . . . . 5 (𝜑 → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7650, 75mpd 15 . . . 4 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
77 eleq1w 2820 . . . . . 6 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})))
7877notbid 317 . . . . 5 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})))
79 oteq1 4839 . . . . . . 7 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)
80 oteq3 4841 . . . . . . . . 9 (𝑧 = 𝑤 → ⟨𝑋, 𝐹, 𝑧⟩ = ⟨𝑋, 𝐹, 𝑤⟩)
8180fveq2d 6846 . . . . . . . 8 (𝑧 = 𝑤 → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
8281oteq2d 4843 . . . . . . 7 (𝑧 = 𝑤 → ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
8379, 82eqtrd 2776 . . . . . 6 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
8483fveq2d 6846 . . . . 5 (𝑧 = 𝑤 → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
8578, 84reusv3 5360 . . . 4 (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷) → (∀𝑧𝑉𝑤𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
8676, 85syl 17 . . 3 (𝜑 → (∀𝑧𝑉𝑤𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
8749, 86mpbid 231 . 2 (𝜑 → ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
88 reusv1 5352 . . 3 (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
8950, 88syl 17 . 2 (𝜑 → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
9087, 89mpbird 256 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  ∃!wreu 3351  Vcvv 3445  cdif 3907  ifcif 4486  {csn 4586  {cpr 4588  cotp 4594  cmpt 5188  cfv 6496  crio 7312  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  Basecbs 17083  0gc0g 17321  -gcsg 18750  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432  LVecclvec 20563  HLchlt 37812  LHypclh 38447  DVecHcdvh 39541  LCDualclcd 40049  mapdcmpd 40087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-mre 17466  df-mrc 17467  df-acs 17469  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-oppg 19124  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lsatoms 37438  df-lshyp 37439  df-lcv 37481  df-lfl 37520  df-lkr 37548  df-ldual 37586  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tgrp 39206  df-tendo 39218  df-edring 39220  df-dveca 39466  df-disoa 39492  df-dvech 39542  df-dib 39602  df-dic 39636  df-dih 39692  df-doch 39811  df-djh 39858  df-lcdual 40050  df-mapd 40088
This theorem is referenced by:  hdmap1eulemOLDN  40286
  Copyright terms: Public domain W3C validator