Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh9aOLDN Structured version   Visualization version   GIF version

Theorem mapdh9aOLDN 41773
Description: Lemma for part (9) in [Baer] p. 48. (Contributed by NM, 14-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8h.f (𝜑𝐹𝐷)
mapdh8h.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh9a.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh9a.t (𝜑𝑇𝑉)
Assertion
Ref Expression
mapdh9aOLDN (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   𝑥,𝐼   ,𝑉   𝑦,𝑧,𝐷   𝑦,𝐹,𝑧   𝑦,𝐼,𝑧   𝑦,𝑁,𝑧   𝑦, 0 ,𝑧   𝑦,𝑇,𝑧   𝑧,𝑈   𝑦,𝑉,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧   𝑧,,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝑄(𝑦,𝑧,)   𝑅(𝑦,𝑧)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,)   𝐽(𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧,)   𝑀(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑧,)

Proof of Theorem mapdh9aOLDN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . . . . 6 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . . . . 6 = (-g𝑈)
5 mapdh8a.o . . . . . 6 0 = (0g𝑈)
6 mapdh8a.n . . . . . 6 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . . . . 6 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . . . . 6 𝑅 = (-g𝐶)
10 mapdh8a.q . . . . . 6 𝑄 = (0g𝐶)
11 mapdh8a.j . . . . . 6 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . . . . 6 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15143ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh8h.f . . . . . . 7 (𝜑𝐹𝐷)
17163ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝐹𝐷)
18 mapdh8h.mn . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
19183ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdh9a.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21203ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 eqid 2735 . . . . . . 7 (LSubSp‘𝑈) = (LSubSp‘𝑈)
231, 2, 14dvhlmod 41093 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
24233ad2ant1 1132 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑈 ∈ LMod)
2520eldifad 3975 . . . . . . . . 9 (𝜑𝑋𝑉)
26 mapdh9a.t . . . . . . . . 9 (𝜑𝑇𝑉)
273, 22, 6, 23, 25, 26lspprcl 20994 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
28273ad2ant1 1132 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
29 simp2l 1198 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑧𝑉)
30 simp3l 1200 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
315, 22, 24, 28, 29, 30lssneln0 20969 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
32 simp2r 1199 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑤𝑉)
33 simp3r 1201 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))
345, 22, 24, 28, 32, 33lssneln0 20969 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑤 ∈ (𝑉 ∖ { 0 }))
351, 2, 14dvhlvec 41092 . . . . . . . . . 10 (𝜑𝑈 ∈ LVec)
36353ad2ant1 1132 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑈 ∈ LVec)
37253ad2ant1 1132 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑋𝑉)
38263ad2ant1 1132 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → 𝑇𝑉)
393, 6, 36, 29, 37, 38, 30lspindpi 21152 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
4039simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
4140necomd 2994 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
423, 6, 36, 32, 37, 38, 33lspindpi 21152 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))
4342simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
4443necomd 2994 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
4539simprd 495 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
4642simprd 495 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
471, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 31, 34, 41, 44, 45, 46, 38mapdh8 41771 . . . . 5 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
48473exp 1118 . . . 4 (𝜑 → ((𝑧𝑉𝑤𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))))
4948ralrimivv 3198 . . 3 (𝜑 → ∀𝑧𝑉𝑤𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)))
501, 2, 3, 6, 14, 25, 26dvh3dim 41429 . . . . 5 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
5114ad2antrr 726 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5216ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝐹𝐷)
5318ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
5420ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
55 simplr 769 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧𝑉)
5635ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LVec)
5725ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋𝑉)
5826ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑇𝑉)
59 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
603, 6, 56, 55, 57, 58, 59lspindpi 21152 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
6160simpld 494 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
6261necomd 2994 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
6310, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 51, 52, 53, 54, 55, 62mapdhcl 41710 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ∈ 𝐷)
64 eqidd 2736 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩))
6523ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LMod)
6627ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
675, 22, 65, 66, 55, 59lssneln0 20969 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 }))
6810, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 51, 52, 53, 54, 67, 63, 62mapdheq 41711 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ↔ ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))}))))
6964, 68mpbid 232 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))})))
7069simpld 494 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}))
7160simprd 495 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
7210, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 51, 63, 70, 67, 58, 71mapdhcl 41710 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)
7372ex 412 . . . . . . 7 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
7473ancld 550 . . . . . 6 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7574reximdva 3166 . . . . 5 (𝜑 → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7650, 75mpd 15 . . . 4 (𝜑 → ∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
77 eleq1w 2822 . . . . . 6 (𝑧 = 𝑤 → (𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ↔ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})))
7877notbid 318 . . . . 5 (𝑧 = 𝑤 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ↔ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})))
79 oteq1 4887 . . . . . . 7 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)
80 oteq3 4889 . . . . . . . . 9 (𝑧 = 𝑤 → ⟨𝑋, 𝐹, 𝑧⟩ = ⟨𝑋, 𝐹, 𝑤⟩)
8180fveq2d 6911 . . . . . . . 8 (𝑧 = 𝑤 → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
8281oteq2d 4891 . . . . . . 7 (𝑧 = 𝑤 → ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
8379, 82eqtrd 2775 . . . . . 6 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
8483fveq2d 6911 . . . . 5 (𝑧 = 𝑤 → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
8578, 84reusv3 5411 . . . 4 (∃𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷) → (∀𝑧𝑉𝑤𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
8676, 85syl 17 . . 3 (𝜑 → (∀𝑧𝑉𝑤𝑉 ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
8749, 86mpbid 232 . 2 (𝜑 → ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
88 reusv1 5403 . . 3 (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
8950, 88syl 17 . 2 (𝜑 → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
9087, 89mpbird 257 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  ∃!wreu 3376  Vcvv 3478  cdif 3960  ifcif 4531  {csn 4631  {cpr 4633  cotp 4639  cmpt 5231  cfv 6563  crio 7387  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  Basecbs 17245  0gc0g 17486  -gcsg 18966  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  LVecclvec 21119  HLchlt 39332  LHypclh 39967  DVecHcdvh 41061  LCDualclcd 41569  mapdcmpd 41607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-oppg 19377  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-nzr 20530  df-rlreg 20711  df-domn 20712  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38958  df-lshyp 38959  df-lcv 39001  df-lfl 39040  df-lkr 39068  df-ldual 39106  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tgrp 40726  df-tendo 40738  df-edring 40740  df-dveca 40986  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212  df-doch 41331  df-djh 41378  df-lcdual 41570  df-mapd 41608
This theorem is referenced by:  hdmap1eulemOLDN  41806
  Copyright terms: Public domain W3C validator