Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1eulemOLDN Structured version   Visualization version   GIF version

Theorem hdmap1eulemOLDN 39837
Description: Lemma for hdmap1euOLDN 39839. TODO: combine with hdmap1euOLDN 39839 or at least share some hypotheses. (Contributed by NM, 15-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmap1eulem.h 𝐻 = (LHyp‘𝐾)
hdmap1eulem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1eulem.v 𝑉 = (Base‘𝑈)
hdmap1eulem.s = (-g𝑈)
hdmap1eulem.o 0 = (0g𝑈)
hdmap1eulem.n 𝑁 = (LSpan‘𝑈)
hdmap1eulem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1eulem.d 𝐷 = (Base‘𝐶)
hdmap1eulem.r 𝑅 = (-g𝐶)
hdmap1eulem.q 𝑄 = (0g𝐶)
hdmap1eulem.j 𝐽 = (LSpan‘𝐶)
hdmap1eulem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1eulem.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1eulem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1eulem.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
hdmap1eulem.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1eulem.f (𝜑𝐹𝐷)
hdmap1eulem.y (𝜑𝑇𝑉)
hdmap1eulem.l 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
Assertion
Ref Expression
hdmap1eulemOLDN (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝐶,   𝑥,,𝑦,𝑧,𝐷   ,𝐹,𝑥,𝑦,𝑧   ,𝐽,𝑥   ,𝐿,𝑥,𝑦,𝑧   ,𝑀,𝑥   ,𝑁,𝑥,𝑦,𝑧   0 ,,𝑥,𝑦,𝑧   𝑥,𝑄   𝑅,,𝑥   ,,𝑥   𝑇,,𝑥,𝑦,𝑧   𝑈,,𝑧   ,𝑉,𝑦,𝑧   ,𝑋,𝑥,𝑦,𝑧   𝜑,,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝑄(𝑦,𝑧,)   𝑅(𝑦,𝑧)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,)   𝐼(𝑥,𝑦,𝑧,)   𝐽(𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧,)   𝑀(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑧,)

Proof of Theorem hdmap1eulemOLDN
StepHypRef Expression
1 hdmap1eulem.h . . 3 𝐻 = (LHyp‘𝐾)
2 hdmap1eulem.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1eulem.v . . 3 𝑉 = (Base‘𝑈)
4 hdmap1eulem.s . . 3 = (-g𝑈)
5 hdmap1eulem.o . . 3 0 = (0g𝑈)
6 hdmap1eulem.n . . 3 𝑁 = (LSpan‘𝑈)
7 hdmap1eulem.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1eulem.d . . 3 𝐷 = (Base‘𝐶)
9 hdmap1eulem.r . . 3 𝑅 = (-g𝐶)
10 hdmap1eulem.q . . 3 𝑄 = (0g𝐶)
11 hdmap1eulem.j . . 3 𝐽 = (LSpan‘𝐶)
12 hdmap1eulem.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1eulem.l . . 3 𝐿 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 hdmap1eulem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1eulem.f . . 3 (𝜑𝐹𝐷)
16 hdmap1eulem.mn . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 hdmap1eulem.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 hdmap1eulem.y . . 3 (𝜑𝑇𝑉)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18mapdh9aOLDN 39804 . 2 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
20 hdmap1eulem.i . . . . . . . . . 10 𝐼 = ((HDMap1‘𝐾)‘𝑊)
2114ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2217ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2315ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝐹𝐷)
24 simplr 766 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧𝑉)
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21, 22, 23, 24, 13hdmap1valc 39817 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐿‘⟨𝑋, 𝐹, 𝑧⟩))
2625oteq2d 4817 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)
2726fveq2d 6778 . . . . . . 7 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
28 eqid 2738 . . . . . . . . 9 (LSubSp‘𝑈) = (LSubSp‘𝑈)
291, 2, 14dvhlmod 39124 . . . . . . . . . 10 (𝜑𝑈 ∈ LMod)
3029ad2antrr 723 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LMod)
3117eldifad 3899 . . . . . . . . . . 11 (𝜑𝑋𝑉)
323, 28, 6, 29, 31, 18lspprcl 20240 . . . . . . . . . 10 (𝜑 → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
3332ad2antrr 723 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
34 simpr 485 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
355, 28, 30, 33, 24, 34lssneln0 20214 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 }))
3616ad2antrr 723 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
371, 2, 14dvhlvec 39123 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
3837ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LVec)
3931ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋𝑉)
4018ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑇𝑉)
413, 6, 38, 24, 39, 40, 34lspindpi 20394 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
4241simpld 495 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
4342necomd 2999 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
4410, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 21, 23, 36, 22, 24, 43mapdhcl 39741 . . . . . . . 8 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐿‘⟨𝑋, 𝐹, 𝑧⟩) ∈ 𝐷)
451, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21, 35, 44, 40, 13hdmap1valc 39817 . . . . . . 7 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
4627, 45eqtrd 2778 . . . . . 6 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))
4746eqeq2d 2749 . . . . 5 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ↔ 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
4847pm5.74da 801 . . . 4 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
4948ralbidva 3111 . . 3 (𝜑 → (∀𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∀𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5049reubidv 3323 . 2 (𝜑 → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘⟨𝑧, (𝐿‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
5119, 50mpbird 256 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  ∃!wreu 3066  Vcvv 3432  cdif 3884  ifcif 4459  {csn 4561  {cpr 4563  cotp 4569  cmpt 5157  cfv 6433  crio 7231  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  Basecbs 16912  0gc0g 17150  -gcsg 18579  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LVecclvec 20364  HLchlt 37364  LHypclh 37998  DVecHcdvh 39092  LCDualclcd 39600  mapdcmpd 39638  HDMap1chdma1 39805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mre 17295  df-mrc 17296  df-acs 17298  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-oppg 18950  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-lshyp 36991  df-lcv 37033  df-lfl 37072  df-lkr 37100  df-ldual 37138  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tgrp 38757  df-tendo 38769  df-edring 38771  df-dveca 39017  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243  df-doch 39362  df-djh 39409  df-lcdual 39601  df-mapd 39639  df-hdmap1 39807
This theorem is referenced by:  hdmap1euOLDN  39839
  Copyright terms: Public domain W3C validator