![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1eulemOLDN | Structured version Visualization version GIF version |
Description: Lemma for hdmap1euOLDN 38412. TODO: combine with hdmap1euOLDN 38412 or at least share some hypotheses. (Contributed by NM, 15-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmap1eulem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1eulem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1eulem.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1eulem.s | ⊢ − = (-g‘𝑈) |
hdmap1eulem.o | ⊢ 0 = (0g‘𝑈) |
hdmap1eulem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap1eulem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1eulem.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1eulem.r | ⊢ 𝑅 = (-g‘𝐶) |
hdmap1eulem.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmap1eulem.j | ⊢ 𝐽 = (LSpan‘𝐶) |
hdmap1eulem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap1eulem.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1eulem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1eulem.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
hdmap1eulem.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap1eulem.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1eulem.y | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
hdmap1eulem.l | ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
Ref | Expression |
---|---|
hdmap1eulemOLDN | ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1eulem.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1eulem.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap1eulem.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap1eulem.s | . . 3 ⊢ − = (-g‘𝑈) | |
5 | hdmap1eulem.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | hdmap1eulem.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | hdmap1eulem.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap1eulem.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
9 | hdmap1eulem.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
10 | hdmap1eulem.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
11 | hdmap1eulem.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
12 | hdmap1eulem.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | hdmap1eulem.l | . . 3 ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
14 | hdmap1eulem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | hdmap1eulem.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
16 | hdmap1eulem.mn | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
17 | hdmap1eulem.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
18 | hdmap1eulem.y | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | mapdh9aOLDN 38377 | . 2 ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
20 | hdmap1eulem.i | . . . . . . . . . 10 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
21 | 14 | ad2antrr 713 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
22 | 17 | ad2antrr 713 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
23 | 15 | ad2antrr 713 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝐹 ∈ 𝐷) |
24 | simplr 756 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ 𝑉) | |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21, 22, 23, 24, 13 | hdmap1valc 38390 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑋, 𝐹, 𝑧〉) = (𝐿‘〈𝑋, 𝐹, 𝑧〉)) |
26 | 25 | oteq2d 4690 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉 = 〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) |
27 | 26 | fveq2d 6503 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐼‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) |
28 | eqid 2778 | . . . . . . . . 9 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
29 | 1, 2, 14 | dvhlmod 37697 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ LMod) |
30 | 29 | ad2antrr 713 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LMod) |
31 | 17 | eldifad 3841 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
32 | 3, 28, 6, 29, 31, 18 | lspprcl 19472 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈)) |
33 | 32 | ad2antrr 713 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈)) |
34 | simpr 477 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) | |
35 | 5, 28, 30, 33, 24, 34 | lssneln0 19446 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 })) |
36 | 16 | ad2antrr 713 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
37 | 1, 2, 14 | dvhlvec 37696 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑈 ∈ LVec) |
38 | 37 | ad2antrr 713 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LVec) |
39 | 31 | ad2antrr 713 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋 ∈ 𝑉) |
40 | 18 | ad2antrr 713 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑇 ∈ 𝑉) |
41 | 3, 6, 38, 24, 39, 40, 34 | lspindpi 19626 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) |
42 | 41 | simpld 487 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋})) |
43 | 42 | necomd 3022 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧})) |
44 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 21, 23, 36, 22, 24, 43 | mapdhcl 38314 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐿‘〈𝑋, 𝐹, 𝑧〉) ∈ 𝐷) |
45 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21, 35, 44, 40, 13 | hdmap1valc 38390 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) |
46 | 27, 45 | eqtrd 2814 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) |
47 | 46 | eqeq2d 2788 | . . . . 5 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) ↔ 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
48 | 47 | pm5.74da 791 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
49 | 48 | ralbidva 3146 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) ↔ ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
50 | 49 | reubidv 3329 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) ↔ ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
51 | 19, 50 | mpbird 249 | 1 ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ∀wral 3088 ∃!wreu 3090 Vcvv 3415 ∖ cdif 3826 ifcif 4350 {csn 4441 {cpr 4443 〈cotp 4449 ↦ cmpt 5008 ‘cfv 6188 ℩crio 6936 (class class class)co 6976 1st c1st 7499 2nd c2nd 7500 Basecbs 16339 0gc0g 16569 -gcsg 17893 LModclmod 19356 LSubSpclss 19425 LSpanclspn 19465 LVecclvec 19596 HLchlt 35937 LHypclh 36571 DVecHcdvh 37665 LCDualclcd 38173 mapdcmpd 38211 HDMap1chdma1 38378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-riotaBAD 35540 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-ot 4450 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-tpos 7695 df-undef 7742 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-n0 11708 df-z 11794 df-uz 12059 df-fz 12709 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-sca 16437 df-vsca 16438 df-0g 16571 df-mre 16715 df-mrc 16716 df-acs 16718 df-proset 17396 df-poset 17414 df-plt 17426 df-lub 17442 df-glb 17443 df-join 17444 df-meet 17445 df-p0 17507 df-p1 17508 df-lat 17514 df-clat 17576 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-submnd 17804 df-grp 17894 df-minusg 17895 df-sbg 17896 df-subg 18060 df-cntz 18218 df-oppg 18245 df-lsm 18522 df-cmn 18668 df-abl 18669 df-mgp 18963 df-ur 18975 df-ring 19022 df-oppr 19096 df-dvdsr 19114 df-unit 19115 df-invr 19145 df-dvr 19156 df-drng 19227 df-lmod 19358 df-lss 19426 df-lsp 19466 df-lvec 19597 df-lsatoms 35563 df-lshyp 35564 df-lcv 35606 df-lfl 35645 df-lkr 35673 df-ldual 35711 df-oposet 35763 df-ol 35765 df-oml 35766 df-covers 35853 df-ats 35854 df-atl 35885 df-cvlat 35909 df-hlat 35938 df-llines 36085 df-lplanes 36086 df-lvols 36087 df-lines 36088 df-psubsp 36090 df-pmap 36091 df-padd 36383 df-lhyp 36575 df-laut 36576 df-ldil 36691 df-ltrn 36692 df-trl 36746 df-tgrp 37330 df-tendo 37342 df-edring 37344 df-dveca 37590 df-disoa 37616 df-dvech 37666 df-dib 37726 df-dic 37760 df-dih 37816 df-doch 37935 df-djh 37982 df-lcdual 38174 df-mapd 38212 df-hdmap1 38380 |
This theorem is referenced by: hdmap1euOLDN 38412 |
Copyright terms: Public domain | W3C validator |