Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1eulemOLDN | Structured version Visualization version GIF version |
Description: Lemma for hdmap1euOLDN 39766. TODO: combine with hdmap1euOLDN 39766 or at least share some hypotheses. (Contributed by NM, 15-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmap1eulem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1eulem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1eulem.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1eulem.s | ⊢ − = (-g‘𝑈) |
hdmap1eulem.o | ⊢ 0 = (0g‘𝑈) |
hdmap1eulem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap1eulem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1eulem.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1eulem.r | ⊢ 𝑅 = (-g‘𝐶) |
hdmap1eulem.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmap1eulem.j | ⊢ 𝐽 = (LSpan‘𝐶) |
hdmap1eulem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap1eulem.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1eulem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1eulem.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
hdmap1eulem.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap1eulem.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1eulem.y | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
hdmap1eulem.l | ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
Ref | Expression |
---|---|
hdmap1eulemOLDN | ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1eulem.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1eulem.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap1eulem.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap1eulem.s | . . 3 ⊢ − = (-g‘𝑈) | |
5 | hdmap1eulem.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | hdmap1eulem.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | hdmap1eulem.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap1eulem.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
9 | hdmap1eulem.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
10 | hdmap1eulem.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
11 | hdmap1eulem.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
12 | hdmap1eulem.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | hdmap1eulem.l | . . 3 ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
14 | hdmap1eulem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | hdmap1eulem.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
16 | hdmap1eulem.mn | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
17 | hdmap1eulem.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
18 | hdmap1eulem.y | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | mapdh9aOLDN 39731 | . 2 ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
20 | hdmap1eulem.i | . . . . . . . . . 10 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
21 | 14 | ad2antrr 722 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
22 | 17 | ad2antrr 722 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
23 | 15 | ad2antrr 722 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝐹 ∈ 𝐷) |
24 | simplr 765 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ 𝑉) | |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21, 22, 23, 24, 13 | hdmap1valc 39744 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑋, 𝐹, 𝑧〉) = (𝐿‘〈𝑋, 𝐹, 𝑧〉)) |
26 | 25 | oteq2d 4814 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉 = 〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) |
27 | 26 | fveq2d 6760 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐼‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) |
28 | eqid 2738 | . . . . . . . . 9 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
29 | 1, 2, 14 | dvhlmod 39051 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ LMod) |
30 | 29 | ad2antrr 722 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LMod) |
31 | 17 | eldifad 3895 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
32 | 3, 28, 6, 29, 31, 18 | lspprcl 20155 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈)) |
33 | 32 | ad2antrr 722 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈)) |
34 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) | |
35 | 5, 28, 30, 33, 24, 34 | lssneln0 20129 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 })) |
36 | 16 | ad2antrr 722 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
37 | 1, 2, 14 | dvhlvec 39050 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑈 ∈ LVec) |
38 | 37 | ad2antrr 722 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LVec) |
39 | 31 | ad2antrr 722 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋 ∈ 𝑉) |
40 | 18 | ad2antrr 722 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑇 ∈ 𝑉) |
41 | 3, 6, 38, 24, 39, 40, 34 | lspindpi 20309 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) |
42 | 41 | simpld 494 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋})) |
43 | 42 | necomd 2998 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧})) |
44 | 10, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 21, 23, 36, 22, 24, 43 | mapdhcl 39668 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐿‘〈𝑋, 𝐹, 𝑧〉) ∈ 𝐷) |
45 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 21, 35, 44, 40, 13 | hdmap1valc 39744 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) |
46 | 27, 45 | eqtrd 2778 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) |
47 | 46 | eqeq2d 2749 | . . . . 5 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉) ↔ 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
48 | 47 | pm5.74da 800 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
49 | 48 | ralbidva 3119 | . . 3 ⊢ (𝜑 → (∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) ↔ ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
50 | 49 | reubidv 3315 | . 2 ⊢ (𝜑 → (∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)) ↔ ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐿‘〈𝑧, (𝐿‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉)))) |
51 | 19, 50 | mpbird 256 | 1 ⊢ (𝜑 → ∃!𝑦 ∈ 𝐷 ∀𝑧 ∈ 𝑉 (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘〈𝑧, (𝐼‘〈𝑋, 𝐹, 𝑧〉), 𝑇〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃!wreu 3065 Vcvv 3422 ∖ cdif 3880 ifcif 4456 {csn 4558 {cpr 4560 〈cotp 4566 ↦ cmpt 5153 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 Basecbs 16840 0gc0g 17067 -gcsg 18494 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 LVecclvec 20279 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 LCDualclcd 39527 mapdcmpd 39565 HDMap1chdma1 39732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lshyp 36918 df-lcv 36960 df-lfl 36999 df-lkr 37027 df-ldual 37065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tgrp 38684 df-tendo 38696 df-edring 38698 df-dveca 38944 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 df-djh 39336 df-lcdual 39528 df-mapd 39566 df-hdmap1 39734 |
This theorem is referenced by: hdmap1euOLDN 39766 |
Copyright terms: Public domain | W3C validator |