Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh9a Structured version   Visualization version   GIF version

Theorem mapdh9a 39540
Description: Lemma for part (9) in [Baer] p. 48. TODO: why is this 50% larger than mapdh9aOLDN 39541? (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8h.f (𝜑𝐹𝐷)
mapdh8h.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh9a.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh9a.t (𝜑𝑇𝑉)
Assertion
Ref Expression
mapdh9a (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   𝑥,𝐼   ,𝑉   𝑦,𝑧,𝐷   𝑦,𝐹,𝑧   𝑦,𝐼,𝑧   𝑦,𝑁,𝑧   𝑦, 0 ,𝑧   𝑦,𝑇,𝑧   𝑧,𝑈   𝑦,𝑉,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧   𝑧,,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝑄(𝑦,𝑧,)   𝑅(𝑦,𝑧)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,)   𝐽(𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧,)   𝑀(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑧,)

Proof of Theorem mapdh9a
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . . . . . 7 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . . . . . 7 = (-g𝑈)
5 mapdh8a.o . . . . . . 7 0 = (0g𝑈)
6 mapdh8a.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . . . . . 7 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . . . . . 7 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . . . . . 7 𝑅 = (-g𝐶)
10 mapdh8a.q . . . . . . 7 𝑄 = (0g𝐶)
11 mapdh8a.j . . . . . . 7 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . . . . . 7 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . . . . . 7 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . . . . . . 8 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15143ad2ant1 1135 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh8h.f . . . . . . . 8 (𝜑𝐹𝐷)
17163ad2ant1 1135 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝐹𝐷)
18 mapdh8h.mn . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
19183ad2ant1 1135 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdh9a.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21203ad2ant1 1135 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 simp3ll 1246 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
23 simp3rl 1248 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝑤 ∈ (𝑉 ∖ { 0 }))
24 simplrl 777 . . . . . . . . 9 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
25243ad2ant3 1137 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
2625necomd 2996 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
27 simprrl 781 . . . . . . . . 9 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
28273ad2ant3 1137 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
2928necomd 2996 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
30 simplrr 778 . . . . . . . 8 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
31303ad2ant3 1137 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
32 simprrr 782 . . . . . . . 8 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
33323ad2ant3 1137 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
34 mapdh9a.t . . . . . . . 8 (𝜑𝑇𝑉)
35343ad2ant1 1135 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝑇𝑉)
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 35mapdh8 39539 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
37363exp 1121 . . . . 5 (𝜑 → ((𝑧𝑉𝑤𝑉) → (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))))
3837ralrimivv 3111 . . . 4 (𝜑 → ∀𝑧𝑉𝑤𝑉 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)))
3920eldifad 3878 . . . . . . . 8 (𝜑𝑋𝑉)
401, 2, 3, 6, 14, 39, 34dvh3dim 39197 . . . . . . 7 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
41 eqid 2737 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
421, 2, 14dvhlmod 38861 . . . . . . . . . . . 12 (𝜑𝑈 ∈ LMod)
4342ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LMod)
443, 41, 6, 42, 39, 34lspprcl 20015 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
4544ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
46 simplr 769 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧𝑉)
47 simpr 488 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
485, 41, 43, 45, 46, 47lssneln0 19989 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 }))
491, 2, 14dvhlvec 38860 . . . . . . . . . . . 12 (𝜑𝑈 ∈ LVec)
5049ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LVec)
5139ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋𝑉)
5234ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑇𝑉)
533, 6, 50, 46, 51, 52, 47lspindpi 20169 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
5448, 53jca 515 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))))
5554ex 416 . . . . . . . 8 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))))
5655reximdva 3193 . . . . . . 7 (𝜑 → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ∃𝑧𝑉 (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))))
5740, 56mpd 15 . . . . . 6 (𝜑 → ∃𝑧𝑉 (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))))
5814ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5916ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝐹𝐷)
6018ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
6120ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
62 simplr 769 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝑧𝑉)
63 simprrl 781 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
6463necomd 2996 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
6510, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 58, 59, 60, 61, 62, 64mapdhcl 39478 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ∈ 𝐷)
66 eqidd 2738 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩))
67 simprl 771 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
6810, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 58, 59, 60, 61, 67, 65, 64mapdheq 39479 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → ((𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ↔ ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))}))))
6966, 68mpbid 235 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))})))
7069simpld 498 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}))
7134ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝑇𝑉)
72 simprrr 782 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
7310, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 58, 65, 70, 67, 71, 72mapdhcl 39478 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)
7473ex 416 . . . . . . . 8 ((𝜑𝑧𝑉) → ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
7574ancld 554 . . . . . . 7 ((𝜑𝑧𝑉) → ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7675reximdva 3193 . . . . . 6 (𝜑 → (∃𝑧𝑉 (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → ∃𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7757, 76mpd 15 . . . . 5 (𝜑 → ∃𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
78 eleq1w 2820 . . . . . . 7 (𝑧 = 𝑤 → (𝑧 ∈ (𝑉 ∖ { 0 }) ↔ 𝑤 ∈ (𝑉 ∖ { 0 })))
79 sneq 4551 . . . . . . . . . 10 (𝑧 = 𝑤 → {𝑧} = {𝑤})
8079fveq2d 6721 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑁‘{𝑧}) = (𝑁‘{𝑤}))
8180neeq1d 3000 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ↔ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋})))
8280neeq1d 3000 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}) ↔ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))
8381, 82anbi12d 634 . . . . . . 7 (𝑧 = 𝑤 → (((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})) ↔ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))
8478, 83anbi12d 634 . . . . . 6 (𝑧 = 𝑤 → ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ↔ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))))
85 oteq1 4793 . . . . . . . 8 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)
86 oteq3 4795 . . . . . . . . . 10 (𝑧 = 𝑤 → ⟨𝑋, 𝐹, 𝑧⟩ = ⟨𝑋, 𝐹, 𝑤⟩)
8786fveq2d 6721 . . . . . . . . 9 (𝑧 = 𝑤 → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
8887oteq2d 4797 . . . . . . . 8 (𝑧 = 𝑤 → ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
8985, 88eqtrd 2777 . . . . . . 7 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
9089fveq2d 6721 . . . . . 6 (𝑧 = 𝑤 → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
9184, 90reusv3 5298 . . . . 5 (∃𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷) → (∀𝑧𝑉𝑤𝑉 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
9277, 91syl 17 . . . 4 (𝜑 → (∀𝑧𝑉𝑤𝑉 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
9338, 92mpbid 235 . . 3 (𝜑 → ∃𝑦𝐷𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
94 ioran 984 . . . . . . . 8 (¬ (𝑧 ∈ (𝑁‘{𝑋}) ∨ 𝑧 ∈ (𝑁‘{𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})))
95 elun 4063 . . . . . . . 8 (𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) ↔ (𝑧 ∈ (𝑁‘{𝑋}) ∨ 𝑧 ∈ (𝑁‘{𝑇})))
9694, 95xchnxbir 336 . . . . . . 7 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})))
9742ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → 𝑈 ∈ LMod)
983, 41, 6lspsncl 20014 . . . . . . . . . . . 12 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
9942, 39, 98syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
10099ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
101 simplr 769 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → 𝑧𝑉)
102 simprl 771 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋}))
1035, 41, 97, 100, 101, 102lssneln0 19989 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
104103ex 416 . . . . . . . 8 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 })))
10542ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑈 ∈ LMod)
106 simplr 769 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑧𝑉)
10739ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑋𝑉)
108 simpr 488 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → ¬ 𝑧 ∈ (𝑁‘{𝑋}))
1093, 6, 105, 106, 107, 108lspsnne2 20155 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
110109ex 416 . . . . . . . . 9 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋}) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋})))
11142ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑈 ∈ LMod)
112 simplr 769 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑧𝑉)
11334ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑇𝑉)
114 simpr 488 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑇}))
1153, 6, 111, 112, 113, 114lspsnne2 20155 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
116115ex 416 . . . . . . . . 9 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑇}) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
117110, 116anim12d 612 . . . . . . . 8 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))))
118104, 117jcad 516 . . . . . . 7 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))))
11996, 118syl5bi 245 . . . . . 6 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))))
120119imim1d 82 . . . . 5 ((𝜑𝑧𝑉) → (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) → (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
121120ralimdva 3100 . . . 4 (𝜑 → (∀𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) → ∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
122121reximdv 3192 . . 3 (𝜑 → (∃𝑦𝐷𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) → ∃𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
12393, 122mpd 15 . 2 (𝜑 → ∃𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
1243, 6, 42, 39, 34lspprid1 20034 . . . . . . . 8 (𝜑𝑋 ∈ (𝑁‘{𝑋, 𝑇}))
12541, 6, 42, 44, 124lspsnel5a 20033 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑇}))
1263, 6, 42, 39, 34lspprid2 20035 . . . . . . . 8 (𝜑𝑇 ∈ (𝑁‘{𝑋, 𝑇}))
12741, 6, 42, 44, 126lspsnel5a 20033 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑇}))
128125, 127unssd 4100 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) ⊆ (𝑁‘{𝑋, 𝑇}))
129128ssneld 3903 . . . . 5 (𝜑 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))))
130129reximdv 3192 . . . 4 (𝜑 → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ∃𝑧𝑉 ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))))
13140, 130mpd 15 . . 3 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})))
132 reusv1 5290 . . 3 (∃𝑧𝑉 ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
133131, 132syl 17 . 2 (𝜑 → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
134123, 133mpbird 260 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  ∃!wreu 3063  Vcvv 3408  cdif 3863  cun 3864  ifcif 4439  {csn 4541  {cpr 4543  cotp 4549  cmpt 5135  cfv 6380  crio 7169  (class class class)co 7213  1st c1st 7759  2nd c2nd 7760  Basecbs 16760  0gc0g 16944  -gcsg 18367  LModclmod 19899  LSubSpclss 19968  LSpanclspn 20008  LVecclvec 20139  HLchlt 37101  LHypclh 37735  DVecHcdvh 38829  LCDualclcd 39337  mapdcmpd 39375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-riotaBAD 36704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-ot 4550  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-undef 8015  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-0g 16946  df-mre 17089  df-mrc 17090  df-acs 17092  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-p1 17932  df-lat 17938  df-clat 18005  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-cntz 18711  df-oppg 18738  df-lsm 19025  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-dvr 19701  df-drng 19769  df-lmod 19901  df-lss 19969  df-lsp 20009  df-lvec 20140  df-lsatoms 36727  df-lshyp 36728  df-lcv 36770  df-lfl 36809  df-lkr 36837  df-ldual 36875  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-llines 37249  df-lplanes 37250  df-lvols 37251  df-lines 37252  df-psubsp 37254  df-pmap 37255  df-padd 37547  df-lhyp 37739  df-laut 37740  df-ldil 37855  df-ltrn 37856  df-trl 37910  df-tgrp 38494  df-tendo 38506  df-edring 38508  df-dveca 38754  df-disoa 38780  df-dvech 38830  df-dib 38890  df-dic 38924  df-dih 38980  df-doch 39099  df-djh 39146  df-lcdual 39338  df-mapd 39376
This theorem is referenced by:  hdmap1eulem  39573
  Copyright terms: Public domain W3C validator