Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh9a Structured version   Visualization version   GIF version

Theorem mapdh9a 39125
 Description: Lemma for part (9) in [Baer] p. 48. TODO: why is this 50% larger than mapdh9aOLDN 39126? (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8h.f (𝜑𝐹𝐷)
mapdh8h.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh9a.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh9a.t (𝜑𝑇𝑉)
Assertion
Ref Expression
mapdh9a (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   𝑥,𝐼   ,𝑉   𝑦,𝑧,𝐷   𝑦,𝐹,𝑧   𝑦,𝐼,𝑧   𝑦,𝑁,𝑧   𝑦, 0 ,𝑧   𝑦,𝑇,𝑧   𝑧,𝑈   𝑦,𝑉,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧   𝑧,,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑦,𝑧)   𝑄(𝑦,𝑧,)   𝑅(𝑦,𝑧)   𝑈(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑧,)   𝐽(𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧,)   𝑀(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑧,)

Proof of Theorem mapdh9a
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . . . . . 7 𝑉 = (Base‘𝑈)
4 mapdh8a.s . . . . . . 7 = (-g𝑈)
5 mapdh8a.o . . . . . . 7 0 = (0g𝑈)
6 mapdh8a.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . . . . . . 7 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . . . . . . 7 𝐷 = (Base‘𝐶)
9 mapdh8a.r . . . . . . 7 𝑅 = (-g𝐶)
10 mapdh8a.q . . . . . . 7 𝑄 = (0g𝐶)
11 mapdh8a.j . . . . . . 7 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . . . . . . 7 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . . . . . . 7 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . . . . . . . 8 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15143ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 mapdh8h.f . . . . . . . 8 (𝜑𝐹𝐷)
17163ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝐹𝐷)
18 mapdh8h.mn . . . . . . . 8 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
19183ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
20 mapdh9a.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
21203ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
22 simp3ll 1241 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
23 simp3rl 1243 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝑤 ∈ (𝑉 ∖ { 0 }))
24 simplrl 776 . . . . . . . . 9 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
25243ad2ant3 1132 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
2625necomd 3042 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
27 simprrl 780 . . . . . . . . 9 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
28273ad2ant3 1132 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
2928necomd 3042 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤}))
30 simplrr 777 . . . . . . . 8 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
31303ad2ant3 1132 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
32 simprrr 781 . . . . . . . 8 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
33323ad2ant3 1132 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
34 mapdh9a.t . . . . . . . 8 (𝜑𝑇𝑉)
35343ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → 𝑇𝑉)
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 35mapdh8 39124 . . . . . 6 ((𝜑 ∧ (𝑧𝑉𝑤𝑉) ∧ ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
37363exp 1116 . . . . 5 (𝜑 → ((𝑧𝑉𝑤𝑉) → (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))))
3837ralrimivv 3155 . . . 4 (𝜑 → ∀𝑧𝑉𝑤𝑉 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)))
3920eldifad 3893 . . . . . . . 8 (𝜑𝑋𝑉)
401, 2, 3, 6, 14, 39, 34dvh3dim 38782 . . . . . . 7 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
41 eqid 2798 . . . . . . . . . . 11 (LSubSp‘𝑈) = (LSubSp‘𝑈)
421, 2, 14dvhlmod 38446 . . . . . . . . . . . 12 (𝜑𝑈 ∈ LMod)
4342ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LMod)
443, 41, 6, 42, 39, 34lspprcl 19751 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
4544ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑁‘{𝑋, 𝑇}) ∈ (LSubSp‘𝑈))
46 simplr 768 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧𝑉)
47 simpr 488 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}))
485, 41, 43, 45, 46, 47lssneln0 19725 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 }))
491, 2, 14dvhlvec 38445 . . . . . . . . . . . 12 (𝜑𝑈 ∈ LVec)
5049ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑈 ∈ LVec)
5139ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑋𝑉)
5234ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → 𝑇𝑉)
533, 6, 50, 46, 51, 52, 47lspindpi 19905 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
5448, 53jca 515 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇})) → (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))))
5554ex 416 . . . . . . . 8 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))))
5655reximdva 3233 . . . . . . 7 (𝜑 → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ∃𝑧𝑉 (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))))
5740, 56mpd 15 . . . . . 6 (𝜑 → ∃𝑧𝑉 (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))))
5814ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5916ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝐹𝐷)
6018ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
6120ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
62 simplr 768 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝑧𝑉)
63 simprrl 780 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
6463necomd 3042 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑧}))
6510, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 58, 59, 60, 61, 62, 64mapdhcl 39063 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ∈ 𝐷)
66 eqidd 2799 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩))
67 simprl 770 . . . . . . . . . . . . 13 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
6810, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 58, 59, 60, 61, 67, 65, 64mapdheq 39064 . . . . . . . . . . . 12 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → ((𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) ↔ ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))}))))
6966, 68mpbid 235 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → ((𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑧)})) = (𝐽‘{(𝐹𝑅(𝐼‘⟨𝑋, 𝐹, 𝑧⟩))})))
7069simpld 498 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑀‘(𝑁‘{𝑧})) = (𝐽‘{(𝐼‘⟨𝑋, 𝐹, 𝑧⟩)}))
7134ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → 𝑇𝑉)
72 simprrr 781 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
7310, 13, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 11, 58, 65, 70, 67, 71, 72mapdhcl 39063 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)
7473ex 416 . . . . . . . 8 ((𝜑𝑧𝑉) → ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
7574ancld 554 . . . . . . 7 ((𝜑𝑧𝑉) → ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7675reximdva 3233 . . . . . 6 (𝜑 → (∃𝑧𝑉 (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → ∃𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷)))
7757, 76mpd 15 . . . . 5 (𝜑 → ∃𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷))
78 eleq1w 2872 . . . . . . 7 (𝑧 = 𝑤 → (𝑧 ∈ (𝑉 ∖ { 0 }) ↔ 𝑤 ∈ (𝑉 ∖ { 0 })))
79 sneq 4535 . . . . . . . . . 10 (𝑧 = 𝑤 → {𝑧} = {𝑤})
8079fveq2d 6654 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑁‘{𝑧}) = (𝑁‘{𝑤}))
8180neeq1d 3046 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ↔ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋})))
8280neeq1d 3046 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}) ↔ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))
8381, 82anbi12d 633 . . . . . . 7 (𝑧 = 𝑤 → (((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})) ↔ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))))
8478, 83anbi12d 633 . . . . . 6 (𝑧 = 𝑤 → ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ↔ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))))
85 oteq1 4775 . . . . . . . 8 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)
86 oteq3 4777 . . . . . . . . . 10 (𝑧 = 𝑤 → ⟨𝑋, 𝐹, 𝑧⟩ = ⟨𝑋, 𝐹, 𝑤⟩)
8786fveq2d 6654 . . . . . . . . 9 (𝑧 = 𝑤 → (𝐼‘⟨𝑋, 𝐹, 𝑧⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑤⟩))
8887oteq2d 4779 . . . . . . . 8 (𝑧 = 𝑤 → ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
8985, 88eqtrd 2833 . . . . . . 7 (𝑧 = 𝑤 → ⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩ = ⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)
9089fveq2d 6654 . . . . . 6 (𝑧 = 𝑤 → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩))
9184, 90reusv3 5272 . . . . 5 (∃𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) ∈ 𝐷) → (∀𝑧𝑉𝑤𝑉 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
9277, 91syl 17 . . . 4 (𝜑 → (∀𝑧𝑉𝑤𝑉 (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) ∧ (𝑤 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})))) → (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩) = (𝐼‘⟨𝑤, (𝐼‘⟨𝑋, 𝐹, 𝑤⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
9338, 92mpbid 235 . . 3 (𝜑 → ∃𝑦𝐷𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
94 ioran 981 . . . . . . . 8 (¬ (𝑧 ∈ (𝑁‘{𝑋}) ∨ 𝑧 ∈ (𝑁‘{𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})))
95 elun 4076 . . . . . . . 8 (𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) ↔ (𝑧 ∈ (𝑁‘{𝑋}) ∨ 𝑧 ∈ (𝑁‘{𝑇})))
9694, 95xchnxbir 336 . . . . . . 7 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) ↔ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})))
9742ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → 𝑈 ∈ LMod)
983, 41, 6lspsncl 19750 . . . . . . . . . . . 12 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
9942, 39, 98syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
10099ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
101 simplr 768 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → 𝑧𝑉)
102 simprl 770 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → ¬ 𝑧 ∈ (𝑁‘{𝑋}))
1035, 41, 97, 100, 101, 102lssneln0 19725 . . . . . . . . 9 (((𝜑𝑧𝑉) ∧ (¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇}))) → 𝑧 ∈ (𝑉 ∖ { 0 }))
104103ex 416 . . . . . . . 8 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑧 ∈ (𝑉 ∖ { 0 })))
10542ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑈 ∈ LMod)
106 simplr 768 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑧𝑉)
10739ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → 𝑋𝑉)
108 simpr 488 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → ¬ 𝑧 ∈ (𝑁‘{𝑋}))
1093, 6, 105, 106, 107, 108lspsnne2 19891 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑋})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}))
110109ex 416 . . . . . . . . 9 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑋}) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑋})))
11142ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑈 ∈ LMod)
112 simplr 768 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑧𝑉)
11334ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → 𝑇𝑉)
114 simpr 488 . . . . . . . . . . 11 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → ¬ 𝑧 ∈ (𝑁‘{𝑇}))
1153, 6, 111, 112, 113, 114lspsnne2 19891 . . . . . . . . . 10 (((𝜑𝑧𝑉) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))
116115ex 416 . . . . . . . . 9 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ (𝑁‘{𝑇}) → (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))
117110, 116anim12d 611 . . . . . . . 8 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))))
118104, 117jcad 516 . . . . . . 7 ((𝜑𝑧𝑉) → ((¬ 𝑧 ∈ (𝑁‘{𝑋}) ∧ ¬ 𝑧 ∈ (𝑁‘{𝑇})) → (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))))
11996, 118syl5bi 245 . . . . . 6 ((𝜑𝑧𝑉) → (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → (𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇})))))
120119imim1d 82 . . . . 5 ((𝜑𝑧𝑉) → (((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) → (¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
121120ralimdva 3144 . . . 4 (𝜑 → (∀𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) → ∀𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
122121reximdv 3232 . . 3 (𝜑 → (∃𝑦𝐷𝑧𝑉 ((𝑧 ∈ (𝑉 ∖ { 0 }) ∧ ((𝑁‘{𝑧}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑧}) ≠ (𝑁‘{𝑇}))) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) → ∃𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
12393, 122mpd 15 . 2 (𝜑 → ∃𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
1243, 6, 42, 39, 34lspprid1 19770 . . . . . . . 8 (𝜑𝑋 ∈ (𝑁‘{𝑋, 𝑇}))
12541, 6, 42, 44, 124lspsnel5a 19769 . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑇}))
1263, 6, 42, 39, 34lspprid2 19771 . . . . . . . 8 (𝜑𝑇 ∈ (𝑁‘{𝑋, 𝑇}))
12741, 6, 42, 44, 126lspsnel5a 19769 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑇}))
128125, 127unssd 4113 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) ⊆ (𝑁‘{𝑋, 𝑇}))
129128ssneld 3917 . . . . 5 (𝜑 → (¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))))
130129reximdv 3232 . . . 4 (𝜑 → (∃𝑧𝑉 ¬ 𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → ∃𝑧𝑉 ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇}))))
13140, 130mpd 15 . . 3 (𝜑 → ∃𝑧𝑉 ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})))
132 reusv1 5264 . . 3 (∃𝑧𝑉 ¬ 𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
133131, 132syl 17 . 2 (𝜑 → (∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)) ↔ ∃𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩))))
134123, 133mpbird 260 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑇})) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  ∃!wreu 3108  Vcvv 3441   ∖ cdif 3878   ∪ cun 3879  ifcif 4425  {csn 4525  {cpr 4527  ⟨cotp 4533   ↦ cmpt 5111  ‘cfv 6327  ℩crio 7097  (class class class)co 7140  1st c1st 7676  2nd c2nd 7677  Basecbs 16482  0gc0g 16712  -gcsg 18104  LModclmod 19635  LSubSpclss 19704  LSpanclspn 19744  LVecclvec 19875  HLchlt 36686  LHypclh 37320  DVecHcdvh 38414  LCDualclcd 38922  mapdcmpd 38960 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610  ax-riotaBAD 36289 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7395  df-om 7568  df-1st 7678  df-2nd 7679  df-tpos 7882  df-undef 7929  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-0g 16714  df-mre 16856  df-mrc 16857  df-acs 16859  df-proset 17537  df-poset 17555  df-plt 17567  df-lub 17583  df-glb 17584  df-join 17585  df-meet 17586  df-p0 17648  df-p1 17649  df-lat 17655  df-clat 17717  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-subg 18276  df-cntz 18447  df-oppg 18474  df-lsm 18761  df-cmn 18908  df-abl 18909  df-mgp 19241  df-ur 19253  df-ring 19300  df-oppr 19377  df-dvdsr 19395  df-unit 19396  df-invr 19426  df-dvr 19437  df-drng 19505  df-lmod 19637  df-lss 19705  df-lsp 19745  df-lvec 19876  df-lsatoms 36312  df-lshyp 36313  df-lcv 36355  df-lfl 36394  df-lkr 36422  df-ldual 36460  df-oposet 36512  df-ol 36514  df-oml 36515  df-covers 36602  df-ats 36603  df-atl 36634  df-cvlat 36658  df-hlat 36687  df-llines 36834  df-lplanes 36835  df-lvols 36836  df-lines 36837  df-psubsp 36839  df-pmap 36840  df-padd 37132  df-lhyp 37324  df-laut 37325  df-ldil 37440  df-ltrn 37441  df-trl 37495  df-tgrp 38079  df-tendo 38091  df-edring 38093  df-dveca 38339  df-disoa 38365  df-dvech 38415  df-dib 38475  df-dic 38509  df-dih 38565  df-doch 38684  df-djh 38731  df-lcdual 38923  df-mapd 38961 This theorem is referenced by:  hdmap1eulem  39158
 Copyright terms: Public domain W3C validator