Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partfun2 Structured version   Visualization version   GIF version

Theorem partfun2 32661
Description: Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. See also partfun 6633 and ifmpt2v 7454. (Contributed by Thierry Arnoux, 25-Jan-2026.)
Hypothesis
Ref Expression
partfun2.1 𝐷 = {𝑥𝐴𝜑}
Assertion
Ref Expression
partfun2 (𝑥𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = ((𝑥𝐷𝐵) ∪ (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem partfun2
StepHypRef Expression
1 partfun 6633 . 2 (𝑥𝐴 ↦ if(𝑥𝐷, 𝐵, 𝐶)) = ((𝑥 ∈ (𝐴𝐷) ↦ 𝐵) ∪ (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))
2 partfun2.1 . . . . . 6 𝐷 = {𝑥𝐴𝜑}
32reqabi 3419 . . . . 5 (𝑥𝐷 ↔ (𝑥𝐴𝜑))
43baib 535 . . . 4 (𝑥𝐴 → (𝑥𝐷𝜑))
54ifbid 4498 . . 3 (𝑥𝐴 → if(𝑥𝐷, 𝐵, 𝐶) = if(𝜑, 𝐵, 𝐶))
65mpteq2ia 5188 . 2 (𝑥𝐴 ↦ if(𝑥𝐷, 𝐵, 𝐶)) = (𝑥𝐴 ↦ if(𝜑, 𝐵, 𝐶))
72ssrab3 4031 . . . . 5 𝐷𝐴
8 sseqin2 4172 . . . . 5 (𝐷𝐴 ↔ (𝐴𝐷) = 𝐷)
97, 8mpbi 230 . . . 4 (𝐴𝐷) = 𝐷
109mpteq1i 5184 . . 3 (𝑥 ∈ (𝐴𝐷) ↦ 𝐵) = (𝑥𝐷𝐵)
1110uneq1i 4113 . 2 ((𝑥 ∈ (𝐴𝐷) ↦ 𝐵) ∪ (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)) = ((𝑥𝐷𝐵) ∪ (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))
121, 6, 113eqtr3i 2764 1 (𝑥𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = ((𝑥𝐷𝐵) ∪ (𝑥 ∈ (𝐴𝐷) ↦ 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  {crab 3396  cdif 3895  cun 3896  cin 3897  wss 3898  ifcif 4474  cmpt 5174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-if 4475  df-opab 5156  df-mpt 5175
This theorem is referenced by:  extvfvcl  33587
  Copyright terms: Public domain W3C validator