| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > partfun2 | Structured version Visualization version GIF version | ||
| Description: Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. See also partfun 6633 and ifmpt2v 7454. (Contributed by Thierry Arnoux, 25-Jan-2026.) |
| Ref | Expression |
|---|---|
| partfun2.1 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| partfun2 | ⊢ (𝑥 ∈ 𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = ((𝑥 ∈ 𝐷 ↦ 𝐵) ∪ (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | partfun 6633 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐷, 𝐵, 𝐶)) = ((𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) ∪ (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)) | |
| 2 | partfun2.1 | . . . . . 6 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
| 3 | 2 | reqabi 3419 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | 3 | baib 535 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐷 ↔ 𝜑)) |
| 5 | 4 | ifbid 4498 | . . 3 ⊢ (𝑥 ∈ 𝐴 → if(𝑥 ∈ 𝐷, 𝐵, 𝐶) = if(𝜑, 𝐵, 𝐶)) |
| 6 | 5 | mpteq2ia 5188 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐷, 𝐵, 𝐶)) = (𝑥 ∈ 𝐴 ↦ if(𝜑, 𝐵, 𝐶)) |
| 7 | 2 | ssrab3 4031 | . . . . 5 ⊢ 𝐷 ⊆ 𝐴 |
| 8 | sseqin2 4172 | . . . . 5 ⊢ (𝐷 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐷) = 𝐷) | |
| 9 | 7, 8 | mpbi 230 | . . . 4 ⊢ (𝐴 ∩ 𝐷) = 𝐷 |
| 10 | 9 | mpteq1i 5184 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| 11 | 10 | uneq1i 4113 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) ∪ (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)) = ((𝑥 ∈ 𝐷 ↦ 𝐵) ∪ (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)) |
| 12 | 1, 6, 11 | 3eqtr3i 2764 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝜑, 𝐵, 𝐶)) = ((𝑥 ∈ 𝐷 ↦ 𝐵) ∪ (𝑥 ∈ (𝐴 ∖ 𝐷) ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 {crab 3396 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ifcif 4474 ↦ cmpt 5174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-if 4475 df-opab 5156 df-mpt 5175 |
| This theorem is referenced by: extvfvcl 33587 |
| Copyright terms: Public domain | W3C validator |