| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnressnsn | Structured version Visualization version GIF version | ||
| Description: The range of a restriction to a singleton is a singleton. See dmressnsn 5976. (Contributed by Thierry Arnoux, 25-Jan-2026.) |
| Ref | Expression |
|---|---|
| rnressnsn | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ran (𝐹 ↾ {𝐴}) = {(𝐹‘𝐴)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6516 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | fnressn 7097 | . . . 4 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹 ↾ {𝐴}) = {〈𝐴, (𝐹‘𝐴)〉}) | |
| 3 | 1, 2 | sylanb 581 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹 ↾ {𝐴}) = {〈𝐴, (𝐹‘𝐴)〉}) |
| 4 | 3 | rneqd 5882 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ran (𝐹 ↾ {𝐴}) = ran {〈𝐴, (𝐹‘𝐴)〉}) |
| 5 | rnsnopg 6173 | . . 3 ⊢ (𝐴 ∈ dom 𝐹 → ran {〈𝐴, (𝐹‘𝐴)〉} = {(𝐹‘𝐴)}) | |
| 6 | 5 | adantl 481 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ran {〈𝐴, (𝐹‘𝐴)〉} = {(𝐹‘𝐴)}) |
| 7 | 4, 6 | eqtrd 2768 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ran (𝐹 ↾ {𝐴}) = {(𝐹‘𝐴)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4575 〈cop 4581 dom cdm 5619 ran crn 5620 ↾ cres 5621 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 |
| This theorem is referenced by: esplyind 33613 |
| Copyright terms: Public domain | W3C validator |