Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifiso Structured version   Visualization version   GIF version

Theorem xrge0iifiso 33896
Description: The defined bijection from the closed unit interval onto the extended nonnegative reals is an order isomorphism. (Contributed by Thierry Arnoux, 31-Mar-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifiso 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
Distinct variable group:   𝑥,𝐹

Proof of Theorem xrge0iifiso
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 13467 . . 3 (0[,]1) ⊆ ℝ*
2 xrltso 13180 . . 3 < Or ℝ*
3 soss 5617 . . 3 ((0[,]1) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]1)))
41, 2, 3mp2 9 . 2 < Or (0[,]1)
5 iccssxr 13467 . . 3 (0[,]+∞) ⊆ ℝ*
6 cnvso 6310 . . . . 5 ( < Or ℝ* < Or ℝ*)
72, 6mpbi 230 . . . 4 < Or ℝ*
8 sopo 5616 . . . 4 ( < Or ℝ* < Po ℝ*)
97, 8ax-mp 5 . . 3 < Po ℝ*
10 poss 5599 . . 3 ((0[,]+∞) ⊆ ℝ* → ( < Po ℝ* < Po (0[,]+∞)))
115, 9, 10mp2 9 . 2 < Po (0[,]+∞)
12 xrge0iifhmeo.1 . . . . 5 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
1312xrge0iifcnv 33894 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑧 ∈ (0[,]+∞) ↦ if(𝑧 = +∞, 0, (exp‘-𝑧))))
1413simpli 483 . . 3 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
15 f1ofo 6856 . . 3 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)–onto→(0[,]+∞))
1614, 15ax-mp 5 . 2 𝐹:(0[,]1)–onto→(0[,]+∞)
17 0xr 11306 . . . . . . . 8 0 ∈ ℝ*
18 1xr 11318 . . . . . . . 8 1 ∈ ℝ*
19 0le1 11784 . . . . . . . 8 0 ≤ 1
20 snunioc 13517 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
2117, 18, 19, 20mp3an 1460 . . . . . . 7 ({0} ∪ (0(,]1)) = (0[,]1)
2221eleq2i 2831 . . . . . 6 (𝑤 ∈ ({0} ∪ (0(,]1)) ↔ 𝑤 ∈ (0[,]1))
23 elun 4163 . . . . . 6 (𝑤 ∈ ({0} ∪ (0(,]1)) ↔ (𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)))
2422, 23bitr3i 277 . . . . 5 (𝑤 ∈ (0[,]1) ↔ (𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)))
25 velsn 4647 . . . . . . 7 (𝑤 ∈ {0} ↔ 𝑤 = 0)
26 elunitrn 13504 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
2726adantr 480 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ∈ ℝ)
28 simpr 484 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 0 < 𝑧)
29 elicc01 13503 . . . . . . . . . . . . 13 (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1))
3029simp3bi 1146 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) → 𝑧 ≤ 1)
3130adantr 480 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ≤ 1)
32 1re 11259 . . . . . . . . . . . 12 1 ∈ ℝ
33 elioc2 13447 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑧 ∈ (0(,]1) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ 1)))
3417, 32, 33mp2an 692 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ 1))
3527, 28, 31, 34syl3anbrc 1342 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ∈ (0(,]1))
36 pnfxr 11313 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
37 0le0 12365 . . . . . . . . . . . . . . 15 0 ≤ 0
38 ltpnf 13160 . . . . . . . . . . . . . . . 16 (1 ∈ ℝ → 1 < +∞)
3932, 38ax-mp 5 . . . . . . . . . . . . . . 15 1 < +∞
40 iocssioo 13476 . . . . . . . . . . . . . . 15 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
4117, 36, 37, 39, 40mp4an 693 . . . . . . . . . . . . . 14 (0(,]1) ⊆ (0(,)+∞)
42 ioorp 13462 . . . . . . . . . . . . . 14 (0(,)+∞) = ℝ+
4341, 42sseqtri 4032 . . . . . . . . . . . . 13 (0(,]1) ⊆ ℝ+
4443sseli 3991 . . . . . . . . . . . 12 (𝑧 ∈ (0(,]1) → 𝑧 ∈ ℝ+)
45 relogcl 26632 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+ → (log‘𝑧) ∈ ℝ)
4645renegcld 11688 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → -(log‘𝑧) ∈ ℝ)
47 ltpnf 13160 . . . . . . . . . . . . . 14 (-(log‘𝑧) ∈ ℝ → -(log‘𝑧) < +∞)
4846, 47syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+ → -(log‘𝑧) < +∞)
49 brcnvg 5893 . . . . . . . . . . . . . 14 ((+∞ ∈ ℝ* ∧ -(log‘𝑧) ∈ ℝ) → (+∞ < -(log‘𝑧) ↔ -(log‘𝑧) < +∞))
5036, 46, 49sylancr 587 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+ → (+∞ < -(log‘𝑧) ↔ -(log‘𝑧) < +∞))
5148, 50mpbird 257 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → +∞ < -(log‘𝑧))
5244, 51syl 17 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) → +∞ < -(log‘𝑧))
5312xrge0iifcv 33895 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) → (𝐹𝑧) = -(log‘𝑧))
5452, 53breqtrrd 5176 . . . . . . . . . 10 (𝑧 ∈ (0(,]1) → +∞ < (𝐹𝑧))
5535, 54syl 17 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → +∞ < (𝐹𝑧))
5655ex 412 . . . . . . . 8 (𝑧 ∈ (0[,]1) → (0 < 𝑧 → +∞ < (𝐹𝑧)))
57 breq1 5151 . . . . . . . . 9 (𝑤 = 0 → (𝑤 < 𝑧 ↔ 0 < 𝑧))
58 fveq2 6907 . . . . . . . . . . 11 (𝑤 = 0 → (𝐹𝑤) = (𝐹‘0))
59 0elunit 13506 . . . . . . . . . . . 12 0 ∈ (0[,]1)
60 iftrue 4537 . . . . . . . . . . . . 13 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
61 pnfex 11312 . . . . . . . . . . . . 13 +∞ ∈ V
6260, 12, 61fvmpt 7016 . . . . . . . . . . . 12 (0 ∈ (0[,]1) → (𝐹‘0) = +∞)
6359, 62ax-mp 5 . . . . . . . . . . 11 (𝐹‘0) = +∞
6458, 63eqtrdi 2791 . . . . . . . . . 10 (𝑤 = 0 → (𝐹𝑤) = +∞)
6564breq1d 5158 . . . . . . . . 9 (𝑤 = 0 → ((𝐹𝑤) < (𝐹𝑧) ↔ +∞ < (𝐹𝑧)))
6657, 65imbi12d 344 . . . . . . . 8 (𝑤 = 0 → ((𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)) ↔ (0 < 𝑧 → +∞ < (𝐹𝑧))))
6756, 66imbitrrid 246 . . . . . . 7 (𝑤 = 0 → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
6825, 67sylbi 217 . . . . . 6 (𝑤 ∈ {0} → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
69 simpll 767 . . . . . . . . 9 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 ∈ (0(,]1))
7026ad2antlr 727 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ∈ ℝ)
71 0re 11261 . . . . . . . . . . . 12 0 ∈ ℝ
7271a1i 11 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 ∈ ℝ)
7343sseli 3991 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,]1) → 𝑤 ∈ ℝ+)
7473rpred 13075 . . . . . . . . . . . 12 (𝑤 ∈ (0(,]1) → 𝑤 ∈ ℝ)
7574ad2antrr 726 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 ∈ ℝ)
76 elioc2 13447 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑤 ∈ (0(,]1) ↔ (𝑤 ∈ ℝ ∧ 0 < 𝑤𝑤 ≤ 1)))
7717, 32, 76mp2an 692 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,]1) ↔ (𝑤 ∈ ℝ ∧ 0 < 𝑤𝑤 ≤ 1))
7877simp2bi 1145 . . . . . . . . . . . 12 (𝑤 ∈ (0(,]1) → 0 < 𝑤)
7978ad2antrr 726 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 < 𝑤)
80 simpr 484 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 < 𝑧)
8172, 75, 70, 79, 80lttrd 11420 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 < 𝑧)
8230ad2antlr 727 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ≤ 1)
8370, 81, 82, 34syl3anbrc 1342 . . . . . . . . 9 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ∈ (0(,]1))
8469, 83jca 511 . . . . . . . 8 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → (𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)))
8573adantr 480 . . . . . . . . . . . . 13 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → 𝑤 ∈ ℝ+)
8685relogcld 26680 . . . . . . . . . . . 12 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (log‘𝑤) ∈ ℝ)
8744adantl 481 . . . . . . . . . . . . 13 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → 𝑧 ∈ ℝ+)
8887relogcld 26680 . . . . . . . . . . . 12 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (log‘𝑧) ∈ ℝ)
8986, 88ltnegd 11839 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → ((log‘𝑤) < (log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤)))
90 logltb 26657 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑤 < 𝑧 ↔ (log‘𝑤) < (log‘𝑧)))
9173, 44, 90syl2an 596 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 ↔ (log‘𝑤) < (log‘𝑧)))
92 negex 11504 . . . . . . . . . . . . 13 -(log‘𝑤) ∈ V
93 negex 11504 . . . . . . . . . . . . 13 -(log‘𝑧) ∈ V
9492, 93brcnv 5896 . . . . . . . . . . . 12 (-(log‘𝑤) < -(log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤))
9594a1i 11 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (-(log‘𝑤) < -(log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤)))
9689, 91, 953bitr4d 311 . . . . . . . . . 10 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 ↔ -(log‘𝑤) < -(log‘𝑧)))
9796biimpd 229 . . . . . . . . 9 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 → -(log‘𝑤) < -(log‘𝑧)))
9812xrge0iifcv 33895 . . . . . . . . . 10 (𝑤 ∈ (0(,]1) → (𝐹𝑤) = -(log‘𝑤))
9998, 53breqan12d 5164 . . . . . . . . 9 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → ((𝐹𝑤) < (𝐹𝑧) ↔ -(log‘𝑤) < -(log‘𝑧)))
10097, 99sylibrd 259 . . . . . . . 8 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))
10184, 80, 100sylc 65 . . . . . . 7 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → (𝐹𝑤) < (𝐹𝑧))
102101exp31 419 . . . . . 6 (𝑤 ∈ (0(,]1) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
10368, 102jaoi 857 . . . . 5 ((𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
10424, 103sylbi 217 . . . 4 (𝑤 ∈ (0[,]1) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
105104imp 406 . . 3 ((𝑤 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))
106105rgen2 3197 . 2 𝑤 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))
107 soisoi 7348 . 2 ((( < Or (0[,]1) ∧ < Po (0[,]+∞)) ∧ (𝐹:(0[,]1)–onto→(0[,]+∞) ∧ ∀𝑤 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))) → 𝐹 Isom < , < ((0[,]1), (0[,]+∞)))
1084, 11, 16, 106, 107mp4an 693 1 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wral 3059  cun 3961  wss 3963  ifcif 4531  {csn 4631   class class class wbr 5148  cmpt 5231   Po wpo 5595   Or wor 5596  ccnv 5688  ontowfo 6561  1-1-ontowf1o 6562  cfv 6563   Isom wiso 6564  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  -cneg 11491  +crp 13032  (,)cioo 13384  (,]cioc 13385  [,]cicc 13387  expce 16094  logclog 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613
This theorem is referenced by:  xrge0iifhmeo  33897
  Copyright terms: Public domain W3C validator