Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifiso Structured version   Visualization version   GIF version

Theorem xrge0iifiso 33918
Description: The defined bijection from the closed unit interval onto the extended nonnegative reals is an order isomorphism. (Contributed by Thierry Arnoux, 31-Mar-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifiso 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
Distinct variable group:   𝑥,𝐹

Proof of Theorem xrge0iifiso
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 13367 . . 3 (0[,]1) ⊆ ℝ*
2 xrltso 13077 . . 3 < Or ℝ*
3 soss 5559 . . 3 ((0[,]1) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]1)))
41, 2, 3mp2 9 . 2 < Or (0[,]1)
5 iccssxr 13367 . . 3 (0[,]+∞) ⊆ ℝ*
6 cnvso 6249 . . . . 5 ( < Or ℝ* < Or ℝ*)
72, 6mpbi 230 . . . 4 < Or ℝ*
8 sopo 5558 . . . 4 ( < Or ℝ* < Po ℝ*)
97, 8ax-mp 5 . . 3 < Po ℝ*
10 poss 5541 . . 3 ((0[,]+∞) ⊆ ℝ* → ( < Po ℝ* < Po (0[,]+∞)))
115, 9, 10mp2 9 . 2 < Po (0[,]+∞)
12 xrge0iifhmeo.1 . . . . 5 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
1312xrge0iifcnv 33916 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑧 ∈ (0[,]+∞) ↦ if(𝑧 = +∞, 0, (exp‘-𝑧))))
1413simpli 483 . . 3 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
15 f1ofo 6789 . . 3 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)–onto→(0[,]+∞))
1614, 15ax-mp 5 . 2 𝐹:(0[,]1)–onto→(0[,]+∞)
17 0xr 11197 . . . . . . . 8 0 ∈ ℝ*
18 1xr 11209 . . . . . . . 8 1 ∈ ℝ*
19 0le1 11677 . . . . . . . 8 0 ≤ 1
20 snunioc 13417 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
2117, 18, 19, 20mp3an 1463 . . . . . . 7 ({0} ∪ (0(,]1)) = (0[,]1)
2221eleq2i 2820 . . . . . 6 (𝑤 ∈ ({0} ∪ (0(,]1)) ↔ 𝑤 ∈ (0[,]1))
23 elun 4112 . . . . . 6 (𝑤 ∈ ({0} ∪ (0(,]1)) ↔ (𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)))
2422, 23bitr3i 277 . . . . 5 (𝑤 ∈ (0[,]1) ↔ (𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)))
25 velsn 4601 . . . . . . 7 (𝑤 ∈ {0} ↔ 𝑤 = 0)
26 elunitrn 13404 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
2726adantr 480 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ∈ ℝ)
28 simpr 484 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 0 < 𝑧)
29 elicc01 13403 . . . . . . . . . . . . 13 (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1))
3029simp3bi 1147 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) → 𝑧 ≤ 1)
3130adantr 480 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ≤ 1)
32 1re 11150 . . . . . . . . . . . 12 1 ∈ ℝ
33 elioc2 13346 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑧 ∈ (0(,]1) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ 1)))
3417, 32, 33mp2an 692 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ 1))
3527, 28, 31, 34syl3anbrc 1344 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ∈ (0(,]1))
36 pnfxr 11204 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
37 0le0 12263 . . . . . . . . . . . . . . 15 0 ≤ 0
38 ltpnf 13056 . . . . . . . . . . . . . . . 16 (1 ∈ ℝ → 1 < +∞)
3932, 38ax-mp 5 . . . . . . . . . . . . . . 15 1 < +∞
40 iocssioo 13376 . . . . . . . . . . . . . . 15 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
4117, 36, 37, 39, 40mp4an 693 . . . . . . . . . . . . . 14 (0(,]1) ⊆ (0(,)+∞)
42 ioorp 13362 . . . . . . . . . . . . . 14 (0(,)+∞) = ℝ+
4341, 42sseqtri 3992 . . . . . . . . . . . . 13 (0(,]1) ⊆ ℝ+
4443sseli 3939 . . . . . . . . . . . 12 (𝑧 ∈ (0(,]1) → 𝑧 ∈ ℝ+)
45 relogcl 26517 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+ → (log‘𝑧) ∈ ℝ)
4645renegcld 11581 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → -(log‘𝑧) ∈ ℝ)
47 ltpnf 13056 . . . . . . . . . . . . . 14 (-(log‘𝑧) ∈ ℝ → -(log‘𝑧) < +∞)
4846, 47syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+ → -(log‘𝑧) < +∞)
49 brcnvg 5833 . . . . . . . . . . . . . 14 ((+∞ ∈ ℝ* ∧ -(log‘𝑧) ∈ ℝ) → (+∞ < -(log‘𝑧) ↔ -(log‘𝑧) < +∞))
5036, 46, 49sylancr 587 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+ → (+∞ < -(log‘𝑧) ↔ -(log‘𝑧) < +∞))
5148, 50mpbird 257 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → +∞ < -(log‘𝑧))
5244, 51syl 17 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) → +∞ < -(log‘𝑧))
5312xrge0iifcv 33917 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) → (𝐹𝑧) = -(log‘𝑧))
5452, 53breqtrrd 5130 . . . . . . . . . 10 (𝑧 ∈ (0(,]1) → +∞ < (𝐹𝑧))
5535, 54syl 17 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → +∞ < (𝐹𝑧))
5655ex 412 . . . . . . . 8 (𝑧 ∈ (0[,]1) → (0 < 𝑧 → +∞ < (𝐹𝑧)))
57 breq1 5105 . . . . . . . . 9 (𝑤 = 0 → (𝑤 < 𝑧 ↔ 0 < 𝑧))
58 fveq2 6840 . . . . . . . . . . 11 (𝑤 = 0 → (𝐹𝑤) = (𝐹‘0))
59 0elunit 13406 . . . . . . . . . . . 12 0 ∈ (0[,]1)
60 iftrue 4490 . . . . . . . . . . . . 13 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
61 pnfex 11203 . . . . . . . . . . . . 13 +∞ ∈ V
6260, 12, 61fvmpt 6950 . . . . . . . . . . . 12 (0 ∈ (0[,]1) → (𝐹‘0) = +∞)
6359, 62ax-mp 5 . . . . . . . . . . 11 (𝐹‘0) = +∞
6458, 63eqtrdi 2780 . . . . . . . . . 10 (𝑤 = 0 → (𝐹𝑤) = +∞)
6564breq1d 5112 . . . . . . . . 9 (𝑤 = 0 → ((𝐹𝑤) < (𝐹𝑧) ↔ +∞ < (𝐹𝑧)))
6657, 65imbi12d 344 . . . . . . . 8 (𝑤 = 0 → ((𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)) ↔ (0 < 𝑧 → +∞ < (𝐹𝑧))))
6756, 66imbitrrid 246 . . . . . . 7 (𝑤 = 0 → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
6825, 67sylbi 217 . . . . . 6 (𝑤 ∈ {0} → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
69 simpll 766 . . . . . . . . 9 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 ∈ (0(,]1))
7026ad2antlr 727 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ∈ ℝ)
71 0re 11152 . . . . . . . . . . . 12 0 ∈ ℝ
7271a1i 11 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 ∈ ℝ)
7343sseli 3939 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,]1) → 𝑤 ∈ ℝ+)
7473rpred 12971 . . . . . . . . . . . 12 (𝑤 ∈ (0(,]1) → 𝑤 ∈ ℝ)
7574ad2antrr 726 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 ∈ ℝ)
76 elioc2 13346 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑤 ∈ (0(,]1) ↔ (𝑤 ∈ ℝ ∧ 0 < 𝑤𝑤 ≤ 1)))
7717, 32, 76mp2an 692 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,]1) ↔ (𝑤 ∈ ℝ ∧ 0 < 𝑤𝑤 ≤ 1))
7877simp2bi 1146 . . . . . . . . . . . 12 (𝑤 ∈ (0(,]1) → 0 < 𝑤)
7978ad2antrr 726 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 < 𝑤)
80 simpr 484 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 < 𝑧)
8172, 75, 70, 79, 80lttrd 11311 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 < 𝑧)
8230ad2antlr 727 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ≤ 1)
8370, 81, 82, 34syl3anbrc 1344 . . . . . . . . 9 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ∈ (0(,]1))
8469, 83jca 511 . . . . . . . 8 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → (𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)))
8573adantr 480 . . . . . . . . . . . . 13 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → 𝑤 ∈ ℝ+)
8685relogcld 26565 . . . . . . . . . . . 12 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (log‘𝑤) ∈ ℝ)
8744adantl 481 . . . . . . . . . . . . 13 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → 𝑧 ∈ ℝ+)
8887relogcld 26565 . . . . . . . . . . . 12 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (log‘𝑧) ∈ ℝ)
8986, 88ltnegd 11732 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → ((log‘𝑤) < (log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤)))
90 logltb 26542 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑤 < 𝑧 ↔ (log‘𝑤) < (log‘𝑧)))
9173, 44, 90syl2an 596 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 ↔ (log‘𝑤) < (log‘𝑧)))
92 negex 11395 . . . . . . . . . . . . 13 -(log‘𝑤) ∈ V
93 negex 11395 . . . . . . . . . . . . 13 -(log‘𝑧) ∈ V
9492, 93brcnv 5836 . . . . . . . . . . . 12 (-(log‘𝑤) < -(log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤))
9594a1i 11 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (-(log‘𝑤) < -(log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤)))
9689, 91, 953bitr4d 311 . . . . . . . . . 10 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 ↔ -(log‘𝑤) < -(log‘𝑧)))
9796biimpd 229 . . . . . . . . 9 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 → -(log‘𝑤) < -(log‘𝑧)))
9812xrge0iifcv 33917 . . . . . . . . . 10 (𝑤 ∈ (0(,]1) → (𝐹𝑤) = -(log‘𝑤))
9998, 53breqan12d 5118 . . . . . . . . 9 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → ((𝐹𝑤) < (𝐹𝑧) ↔ -(log‘𝑤) < -(log‘𝑧)))
10097, 99sylibrd 259 . . . . . . . 8 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))
10184, 80, 100sylc 65 . . . . . . 7 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → (𝐹𝑤) < (𝐹𝑧))
102101exp31 419 . . . . . 6 (𝑤 ∈ (0(,]1) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
10368, 102jaoi 857 . . . . 5 ((𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
10424, 103sylbi 217 . . . 4 (𝑤 ∈ (0[,]1) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
105104imp 406 . . 3 ((𝑤 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))
106105rgen2 3175 . 2 𝑤 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))
107 soisoi 7285 . 2 ((( < Or (0[,]1) ∧ < Po (0[,]+∞)) ∧ (𝐹:(0[,]1)–onto→(0[,]+∞) ∧ ∀𝑤 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))) → 𝐹 Isom < , < ((0[,]1), (0[,]+∞)))
1084, 11, 16, 106, 107mp4an 693 1 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cun 3909  wss 3911  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183   Po wpo 5537   Or wor 5538  ccnv 5630  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499   Isom wiso 6500  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  -cneg 11382  +crp 12927  (,)cioo 13282  (,]cioc 13283  [,]cicc 13285  expce 16003  logclog 26496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498
This theorem is referenced by:  xrge0iifhmeo  33919
  Copyright terms: Public domain W3C validator