Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifiso Structured version   Visualization version   GIF version

Theorem xrge0iifiso 32915
Description: The defined bijection from the closed unit interval onto the extended nonnegative reals is an order isomorphism. (Contributed by Thierry Arnoux, 31-Mar-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifiso 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
Distinct variable group:   𝑥,𝐹

Proof of Theorem xrge0iifiso
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 13407 . . 3 (0[,]1) ⊆ ℝ*
2 xrltso 13120 . . 3 < Or ℝ*
3 soss 5609 . . 3 ((0[,]1) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]1)))
41, 2, 3mp2 9 . 2 < Or (0[,]1)
5 iccssxr 13407 . . 3 (0[,]+∞) ⊆ ℝ*
6 cnvso 6288 . . . . 5 ( < Or ℝ* < Or ℝ*)
72, 6mpbi 229 . . . 4 < Or ℝ*
8 sopo 5608 . . . 4 ( < Or ℝ* < Po ℝ*)
97, 8ax-mp 5 . . 3 < Po ℝ*
10 poss 5591 . . 3 ((0[,]+∞) ⊆ ℝ* → ( < Po ℝ* < Po (0[,]+∞)))
115, 9, 10mp2 9 . 2 < Po (0[,]+∞)
12 xrge0iifhmeo.1 . . . . 5 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
1312xrge0iifcnv 32913 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑧 ∈ (0[,]+∞) ↦ if(𝑧 = +∞, 0, (exp‘-𝑧))))
1413simpli 485 . . 3 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
15 f1ofo 6841 . . 3 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)–onto→(0[,]+∞))
1614, 15ax-mp 5 . 2 𝐹:(0[,]1)–onto→(0[,]+∞)
17 0xr 11261 . . . . . . . 8 0 ∈ ℝ*
18 1xr 11273 . . . . . . . 8 1 ∈ ℝ*
19 0le1 11737 . . . . . . . 8 0 ≤ 1
20 snunioc 13457 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
2117, 18, 19, 20mp3an 1462 . . . . . . 7 ({0} ∪ (0(,]1)) = (0[,]1)
2221eleq2i 2826 . . . . . 6 (𝑤 ∈ ({0} ∪ (0(,]1)) ↔ 𝑤 ∈ (0[,]1))
23 elun 4149 . . . . . 6 (𝑤 ∈ ({0} ∪ (0(,]1)) ↔ (𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)))
2422, 23bitr3i 277 . . . . 5 (𝑤 ∈ (0[,]1) ↔ (𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)))
25 velsn 4645 . . . . . . 7 (𝑤 ∈ {0} ↔ 𝑤 = 0)
26 elunitrn 13444 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
2726adantr 482 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ∈ ℝ)
28 simpr 486 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 0 < 𝑧)
29 elicc01 13443 . . . . . . . . . . . . 13 (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1))
3029simp3bi 1148 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) → 𝑧 ≤ 1)
3130adantr 482 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ≤ 1)
32 1re 11214 . . . . . . . . . . . 12 1 ∈ ℝ
33 elioc2 13387 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑧 ∈ (0(,]1) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ 1)))
3417, 32, 33mp2an 691 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ 1))
3527, 28, 31, 34syl3anbrc 1344 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ∈ (0(,]1))
36 pnfxr 11268 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
37 0le0 12313 . . . . . . . . . . . . . . 15 0 ≤ 0
38 ltpnf 13100 . . . . . . . . . . . . . . . 16 (1 ∈ ℝ → 1 < +∞)
3932, 38ax-mp 5 . . . . . . . . . . . . . . 15 1 < +∞
40 iocssioo 13416 . . . . . . . . . . . . . . 15 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
4117, 36, 37, 39, 40mp4an 692 . . . . . . . . . . . . . 14 (0(,]1) ⊆ (0(,)+∞)
42 ioorp 13402 . . . . . . . . . . . . . 14 (0(,)+∞) = ℝ+
4341, 42sseqtri 4019 . . . . . . . . . . . . 13 (0(,]1) ⊆ ℝ+
4443sseli 3979 . . . . . . . . . . . 12 (𝑧 ∈ (0(,]1) → 𝑧 ∈ ℝ+)
45 relogcl 26084 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+ → (log‘𝑧) ∈ ℝ)
4645renegcld 11641 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → -(log‘𝑧) ∈ ℝ)
47 ltpnf 13100 . . . . . . . . . . . . . 14 (-(log‘𝑧) ∈ ℝ → -(log‘𝑧) < +∞)
4846, 47syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+ → -(log‘𝑧) < +∞)
49 brcnvg 5880 . . . . . . . . . . . . . 14 ((+∞ ∈ ℝ* ∧ -(log‘𝑧) ∈ ℝ) → (+∞ < -(log‘𝑧) ↔ -(log‘𝑧) < +∞))
5036, 46, 49sylancr 588 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+ → (+∞ < -(log‘𝑧) ↔ -(log‘𝑧) < +∞))
5148, 50mpbird 257 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → +∞ < -(log‘𝑧))
5244, 51syl 17 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) → +∞ < -(log‘𝑧))
5312xrge0iifcv 32914 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) → (𝐹𝑧) = -(log‘𝑧))
5452, 53breqtrrd 5177 . . . . . . . . . 10 (𝑧 ∈ (0(,]1) → +∞ < (𝐹𝑧))
5535, 54syl 17 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → +∞ < (𝐹𝑧))
5655ex 414 . . . . . . . 8 (𝑧 ∈ (0[,]1) → (0 < 𝑧 → +∞ < (𝐹𝑧)))
57 breq1 5152 . . . . . . . . 9 (𝑤 = 0 → (𝑤 < 𝑧 ↔ 0 < 𝑧))
58 fveq2 6892 . . . . . . . . . . 11 (𝑤 = 0 → (𝐹𝑤) = (𝐹‘0))
59 0elunit 13446 . . . . . . . . . . . 12 0 ∈ (0[,]1)
60 iftrue 4535 . . . . . . . . . . . . 13 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
61 pnfex 11267 . . . . . . . . . . . . 13 +∞ ∈ V
6260, 12, 61fvmpt 6999 . . . . . . . . . . . 12 (0 ∈ (0[,]1) → (𝐹‘0) = +∞)
6359, 62ax-mp 5 . . . . . . . . . . 11 (𝐹‘0) = +∞
6458, 63eqtrdi 2789 . . . . . . . . . 10 (𝑤 = 0 → (𝐹𝑤) = +∞)
6564breq1d 5159 . . . . . . . . 9 (𝑤 = 0 → ((𝐹𝑤) < (𝐹𝑧) ↔ +∞ < (𝐹𝑧)))
6657, 65imbi12d 345 . . . . . . . 8 (𝑤 = 0 → ((𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)) ↔ (0 < 𝑧 → +∞ < (𝐹𝑧))))
6756, 66imbitrrid 245 . . . . . . 7 (𝑤 = 0 → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
6825, 67sylbi 216 . . . . . 6 (𝑤 ∈ {0} → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
69 simpll 766 . . . . . . . . 9 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 ∈ (0(,]1))
7026ad2antlr 726 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ∈ ℝ)
71 0re 11216 . . . . . . . . . . . 12 0 ∈ ℝ
7271a1i 11 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 ∈ ℝ)
7343sseli 3979 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,]1) → 𝑤 ∈ ℝ+)
7473rpred 13016 . . . . . . . . . . . 12 (𝑤 ∈ (0(,]1) → 𝑤 ∈ ℝ)
7574ad2antrr 725 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 ∈ ℝ)
76 elioc2 13387 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑤 ∈ (0(,]1) ↔ (𝑤 ∈ ℝ ∧ 0 < 𝑤𝑤 ≤ 1)))
7717, 32, 76mp2an 691 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,]1) ↔ (𝑤 ∈ ℝ ∧ 0 < 𝑤𝑤 ≤ 1))
7877simp2bi 1147 . . . . . . . . . . . 12 (𝑤 ∈ (0(,]1) → 0 < 𝑤)
7978ad2antrr 725 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 < 𝑤)
80 simpr 486 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 < 𝑧)
8172, 75, 70, 79, 80lttrd 11375 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 < 𝑧)
8230ad2antlr 726 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ≤ 1)
8370, 81, 82, 34syl3anbrc 1344 . . . . . . . . 9 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ∈ (0(,]1))
8469, 83jca 513 . . . . . . . 8 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → (𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)))
8573adantr 482 . . . . . . . . . . . . 13 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → 𝑤 ∈ ℝ+)
8685relogcld 26131 . . . . . . . . . . . 12 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (log‘𝑤) ∈ ℝ)
8744adantl 483 . . . . . . . . . . . . 13 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → 𝑧 ∈ ℝ+)
8887relogcld 26131 . . . . . . . . . . . 12 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (log‘𝑧) ∈ ℝ)
8986, 88ltnegd 11792 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → ((log‘𝑤) < (log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤)))
90 logltb 26108 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑤 < 𝑧 ↔ (log‘𝑤) < (log‘𝑧)))
9173, 44, 90syl2an 597 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 ↔ (log‘𝑤) < (log‘𝑧)))
92 negex 11458 . . . . . . . . . . . . 13 -(log‘𝑤) ∈ V
93 negex 11458 . . . . . . . . . . . . 13 -(log‘𝑧) ∈ V
9492, 93brcnv 5883 . . . . . . . . . . . 12 (-(log‘𝑤) < -(log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤))
9594a1i 11 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (-(log‘𝑤) < -(log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤)))
9689, 91, 953bitr4d 311 . . . . . . . . . 10 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 ↔ -(log‘𝑤) < -(log‘𝑧)))
9796biimpd 228 . . . . . . . . 9 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 → -(log‘𝑤) < -(log‘𝑧)))
9812xrge0iifcv 32914 . . . . . . . . . 10 (𝑤 ∈ (0(,]1) → (𝐹𝑤) = -(log‘𝑤))
9998, 53breqan12d 5165 . . . . . . . . 9 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → ((𝐹𝑤) < (𝐹𝑧) ↔ -(log‘𝑤) < -(log‘𝑧)))
10097, 99sylibrd 259 . . . . . . . 8 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))
10184, 80, 100sylc 65 . . . . . . 7 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → (𝐹𝑤) < (𝐹𝑧))
102101exp31 421 . . . . . 6 (𝑤 ∈ (0(,]1) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
10368, 102jaoi 856 . . . . 5 ((𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
10424, 103sylbi 216 . . . 4 (𝑤 ∈ (0[,]1) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
105104imp 408 . . 3 ((𝑤 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))
106105rgen2 3198 . 2 𝑤 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))
107 soisoi 7325 . 2 ((( < Or (0[,]1) ∧ < Po (0[,]+∞)) ∧ (𝐹:(0[,]1)–onto→(0[,]+∞) ∧ ∀𝑤 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))) → 𝐹 Isom < , < ((0[,]1), (0[,]+∞)))
1084, 11, 16, 106, 107mp4an 692 1 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wral 3062  cun 3947  wss 3949  ifcif 4529  {csn 4629   class class class wbr 5149  cmpt 5232   Po wpo 5587   Or wor 5588  ccnv 5676  ontowfo 6542  1-1-ontowf1o 6543  cfv 6544   Isom wiso 6545  (class class class)co 7409  cr 11109  0cc0 11110  1c1 11111  +∞cpnf 11245  *cxr 11247   < clt 11248  cle 11249  -cneg 11445  +crp 12974  (,)cioo 13324  (,]cioc 13325  [,]cicc 13327  expce 16005  logclog 26063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ioc 13329  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-shft 15014  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15633  df-ef 16011  df-sin 16013  df-cos 16014  df-pi 16016  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-mulg 18951  df-cntz 19181  df-cmn 19650  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-fbas 20941  df-fg 20942  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-lp 22640  df-perf 22641  df-cn 22731  df-cnp 22732  df-haus 22819  df-tx 23066  df-hmeo 23259  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444  df-xms 23826  df-ms 23827  df-tms 23828  df-cncf 24394  df-limc 25383  df-dv 25384  df-log 26065
This theorem is referenced by:  xrge0iifhmeo  32916
  Copyright terms: Public domain W3C validator