Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifiso Structured version   Visualization version   GIF version

Theorem xrge0iifiso 32516
Description: The defined bijection from the closed unit interval onto the extended nonnegative reals is an order isomorphism. (Contributed by Thierry Arnoux, 31-Mar-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifiso 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
Distinct variable group:   𝑥,𝐹

Proof of Theorem xrge0iifiso
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 13347 . . 3 (0[,]1) ⊆ ℝ*
2 xrltso 13060 . . 3 < Or ℝ*
3 soss 5565 . . 3 ((0[,]1) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]1)))
41, 2, 3mp2 9 . 2 < Or (0[,]1)
5 iccssxr 13347 . . 3 (0[,]+∞) ⊆ ℝ*
6 cnvso 6240 . . . . 5 ( < Or ℝ* < Or ℝ*)
72, 6mpbi 229 . . . 4 < Or ℝ*
8 sopo 5564 . . . 4 ( < Or ℝ* < Po ℝ*)
97, 8ax-mp 5 . . 3 < Po ℝ*
10 poss 5547 . . 3 ((0[,]+∞) ⊆ ℝ* → ( < Po ℝ* < Po (0[,]+∞)))
115, 9, 10mp2 9 . 2 < Po (0[,]+∞)
12 xrge0iifhmeo.1 . . . . 5 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
1312xrge0iifcnv 32514 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑧 ∈ (0[,]+∞) ↦ if(𝑧 = +∞, 0, (exp‘-𝑧))))
1413simpli 484 . . 3 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
15 f1ofo 6791 . . 3 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)–onto→(0[,]+∞))
1614, 15ax-mp 5 . 2 𝐹:(0[,]1)–onto→(0[,]+∞)
17 0xr 11202 . . . . . . . 8 0 ∈ ℝ*
18 1xr 11214 . . . . . . . 8 1 ∈ ℝ*
19 0le1 11678 . . . . . . . 8 0 ≤ 1
20 snunioc 13397 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
2117, 18, 19, 20mp3an 1461 . . . . . . 7 ({0} ∪ (0(,]1)) = (0[,]1)
2221eleq2i 2829 . . . . . 6 (𝑤 ∈ ({0} ∪ (0(,]1)) ↔ 𝑤 ∈ (0[,]1))
23 elun 4108 . . . . . 6 (𝑤 ∈ ({0} ∪ (0(,]1)) ↔ (𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)))
2422, 23bitr3i 276 . . . . 5 (𝑤 ∈ (0[,]1) ↔ (𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)))
25 velsn 4602 . . . . . . 7 (𝑤 ∈ {0} ↔ 𝑤 = 0)
26 elunitrn 13384 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
2726adantr 481 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ∈ ℝ)
28 simpr 485 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 0 < 𝑧)
29 elicc01 13383 . . . . . . . . . . . . 13 (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1))
3029simp3bi 1147 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) → 𝑧 ≤ 1)
3130adantr 481 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ≤ 1)
32 1re 11155 . . . . . . . . . . . 12 1 ∈ ℝ
33 elioc2 13327 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑧 ∈ (0(,]1) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ 1)))
3417, 32, 33mp2an 690 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ 1))
3527, 28, 31, 34syl3anbrc 1343 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ∈ (0(,]1))
36 pnfxr 11209 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
37 0le0 12254 . . . . . . . . . . . . . . 15 0 ≤ 0
38 ltpnf 13041 . . . . . . . . . . . . . . . 16 (1 ∈ ℝ → 1 < +∞)
3932, 38ax-mp 5 . . . . . . . . . . . . . . 15 1 < +∞
40 iocssioo 13356 . . . . . . . . . . . . . . 15 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
4117, 36, 37, 39, 40mp4an 691 . . . . . . . . . . . . . 14 (0(,]1) ⊆ (0(,)+∞)
42 ioorp 13342 . . . . . . . . . . . . . 14 (0(,)+∞) = ℝ+
4341, 42sseqtri 3980 . . . . . . . . . . . . 13 (0(,]1) ⊆ ℝ+
4443sseli 3940 . . . . . . . . . . . 12 (𝑧 ∈ (0(,]1) → 𝑧 ∈ ℝ+)
45 relogcl 25931 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+ → (log‘𝑧) ∈ ℝ)
4645renegcld 11582 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → -(log‘𝑧) ∈ ℝ)
47 ltpnf 13041 . . . . . . . . . . . . . 14 (-(log‘𝑧) ∈ ℝ → -(log‘𝑧) < +∞)
4846, 47syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+ → -(log‘𝑧) < +∞)
49 brcnvg 5835 . . . . . . . . . . . . . 14 ((+∞ ∈ ℝ* ∧ -(log‘𝑧) ∈ ℝ) → (+∞ < -(log‘𝑧) ↔ -(log‘𝑧) < +∞))
5036, 46, 49sylancr 587 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+ → (+∞ < -(log‘𝑧) ↔ -(log‘𝑧) < +∞))
5148, 50mpbird 256 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → +∞ < -(log‘𝑧))
5244, 51syl 17 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) → +∞ < -(log‘𝑧))
5312xrge0iifcv 32515 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) → (𝐹𝑧) = -(log‘𝑧))
5452, 53breqtrrd 5133 . . . . . . . . . 10 (𝑧 ∈ (0(,]1) → +∞ < (𝐹𝑧))
5535, 54syl 17 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → +∞ < (𝐹𝑧))
5655ex 413 . . . . . . . 8 (𝑧 ∈ (0[,]1) → (0 < 𝑧 → +∞ < (𝐹𝑧)))
57 breq1 5108 . . . . . . . . 9 (𝑤 = 0 → (𝑤 < 𝑧 ↔ 0 < 𝑧))
58 fveq2 6842 . . . . . . . . . . 11 (𝑤 = 0 → (𝐹𝑤) = (𝐹‘0))
59 0elunit 13386 . . . . . . . . . . . 12 0 ∈ (0[,]1)
60 iftrue 4492 . . . . . . . . . . . . 13 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
61 pnfex 11208 . . . . . . . . . . . . 13 +∞ ∈ V
6260, 12, 61fvmpt 6948 . . . . . . . . . . . 12 (0 ∈ (0[,]1) → (𝐹‘0) = +∞)
6359, 62ax-mp 5 . . . . . . . . . . 11 (𝐹‘0) = +∞
6458, 63eqtrdi 2792 . . . . . . . . . 10 (𝑤 = 0 → (𝐹𝑤) = +∞)
6564breq1d 5115 . . . . . . . . 9 (𝑤 = 0 → ((𝐹𝑤) < (𝐹𝑧) ↔ +∞ < (𝐹𝑧)))
6657, 65imbi12d 344 . . . . . . . 8 (𝑤 = 0 → ((𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)) ↔ (0 < 𝑧 → +∞ < (𝐹𝑧))))
6756, 66syl5ibr 245 . . . . . . 7 (𝑤 = 0 → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
6825, 67sylbi 216 . . . . . 6 (𝑤 ∈ {0} → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
69 simpll 765 . . . . . . . . 9 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 ∈ (0(,]1))
7026ad2antlr 725 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ∈ ℝ)
71 0re 11157 . . . . . . . . . . . 12 0 ∈ ℝ
7271a1i 11 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 ∈ ℝ)
7343sseli 3940 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,]1) → 𝑤 ∈ ℝ+)
7473rpred 12957 . . . . . . . . . . . 12 (𝑤 ∈ (0(,]1) → 𝑤 ∈ ℝ)
7574ad2antrr 724 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 ∈ ℝ)
76 elioc2 13327 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑤 ∈ (0(,]1) ↔ (𝑤 ∈ ℝ ∧ 0 < 𝑤𝑤 ≤ 1)))
7717, 32, 76mp2an 690 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,]1) ↔ (𝑤 ∈ ℝ ∧ 0 < 𝑤𝑤 ≤ 1))
7877simp2bi 1146 . . . . . . . . . . . 12 (𝑤 ∈ (0(,]1) → 0 < 𝑤)
7978ad2antrr 724 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 < 𝑤)
80 simpr 485 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 < 𝑧)
8172, 75, 70, 79, 80lttrd 11316 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 < 𝑧)
8230ad2antlr 725 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ≤ 1)
8370, 81, 82, 34syl3anbrc 1343 . . . . . . . . 9 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ∈ (0(,]1))
8469, 83jca 512 . . . . . . . 8 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → (𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)))
8573adantr 481 . . . . . . . . . . . . 13 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → 𝑤 ∈ ℝ+)
8685relogcld 25978 . . . . . . . . . . . 12 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (log‘𝑤) ∈ ℝ)
8744adantl 482 . . . . . . . . . . . . 13 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → 𝑧 ∈ ℝ+)
8887relogcld 25978 . . . . . . . . . . . 12 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (log‘𝑧) ∈ ℝ)
8986, 88ltnegd 11733 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → ((log‘𝑤) < (log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤)))
90 logltb 25955 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑤 < 𝑧 ↔ (log‘𝑤) < (log‘𝑧)))
9173, 44, 90syl2an 596 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 ↔ (log‘𝑤) < (log‘𝑧)))
92 negex 11399 . . . . . . . . . . . . 13 -(log‘𝑤) ∈ V
93 negex 11399 . . . . . . . . . . . . 13 -(log‘𝑧) ∈ V
9492, 93brcnv 5838 . . . . . . . . . . . 12 (-(log‘𝑤) < -(log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤))
9594a1i 11 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (-(log‘𝑤) < -(log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤)))
9689, 91, 953bitr4d 310 . . . . . . . . . 10 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 ↔ -(log‘𝑤) < -(log‘𝑧)))
9796biimpd 228 . . . . . . . . 9 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 → -(log‘𝑤) < -(log‘𝑧)))
9812xrge0iifcv 32515 . . . . . . . . . 10 (𝑤 ∈ (0(,]1) → (𝐹𝑤) = -(log‘𝑤))
9998, 53breqan12d 5121 . . . . . . . . 9 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → ((𝐹𝑤) < (𝐹𝑧) ↔ -(log‘𝑤) < -(log‘𝑧)))
10097, 99sylibrd 258 . . . . . . . 8 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))
10184, 80, 100sylc 65 . . . . . . 7 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → (𝐹𝑤) < (𝐹𝑧))
102101exp31 420 . . . . . 6 (𝑤 ∈ (0(,]1) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
10368, 102jaoi 855 . . . . 5 ((𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
10424, 103sylbi 216 . . . 4 (𝑤 ∈ (0[,]1) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
105104imp 407 . . 3 ((𝑤 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))
106105rgen2 3194 . 2 𝑤 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))
107 soisoi 7273 . 2 ((( < Or (0[,]1) ∧ < Po (0[,]+∞)) ∧ (𝐹:(0[,]1)–onto→(0[,]+∞) ∧ ∀𝑤 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))) → 𝐹 Isom < , < ((0[,]1), (0[,]+∞)))
1084, 11, 16, 106, 107mp4an 691 1 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wral 3064  cun 3908  wss 3910  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188   Po wpo 5543   Or wor 5544  ccnv 5632  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496   Isom wiso 6497  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  -cneg 11386  +crp 12915  (,)cioo 13264  (,]cioc 13265  [,]cicc 13267  expce 15944  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912
This theorem is referenced by:  xrge0iifhmeo  32517
  Copyright terms: Public domain W3C validator