Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsequz2 Structured version   Visualization version   GIF version

Theorem incsequz2 35018
Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
incsequz2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))
Distinct variable groups:   𝑘,𝐹,𝑚,𝑛   𝐴,𝑘,𝑚,𝑛

Proof of Theorem incsequz2
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 incsequz 35017 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
2 nnssre 11636 . . . . . . . 8 ℕ ⊆ ℝ
3 ltso 10715 . . . . . . . . 9 < Or ℝ
4 sopo 5486 . . . . . . . . 9 ( < Or ℝ → < Po ℝ)
53, 4ax-mp 5 . . . . . . . 8 < Po ℝ
6 poss 5470 . . . . . . . 8 (ℕ ⊆ ℝ → ( < Po ℝ → < Po ℕ))
72, 5, 6mp2 9 . . . . . . 7 < Po ℕ
8 seqpo 35016 . . . . . . 7 (( < Po ℕ ∧ 𝐹:ℕ⟶ℕ) → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
97, 8mpan 688 . . . . . 6 (𝐹:ℕ⟶ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
109biimpd 231 . . . . 5 (𝐹:ℕ⟶ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) → ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
1110imdistani 571 . . . 4 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
12 uzp1 12273 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑛) → (𝑘 = 𝑛𝑘 ∈ (ℤ‘(𝑛 + 1))))
13 fveq2 6664 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1413adantl 484 . . . . . . . . . . . 12 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) = (𝐹𝑛))
15 ffvelrn 6843 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℕ)
1615nnzd 12080 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℤ)
17 uzid 12252 . . . . . . . . . . . . . 14 ((𝐹𝑛) ∈ ℤ → (𝐹𝑛) ∈ (ℤ‘(𝐹𝑛)))
1816, 17syl 17 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℤ‘(𝐹𝑛)))
1918adantr 483 . . . . . . . . . . . 12 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑛) ∈ (ℤ‘(𝐹𝑛)))
2014, 19eqeltrd 2913 . . . . . . . . . . 11 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
2120adantllr 717 . . . . . . . . . 10 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
22 fvoveq1 7173 . . . . . . . . . . . . . . 15 (𝑝 = 𝑛 → (ℤ‘(𝑝 + 1)) = (ℤ‘(𝑛 + 1)))
23 fveq2 6664 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
2423breq1d 5068 . . . . . . . . . . . . . . 15 (𝑝 = 𝑛 → ((𝐹𝑝) < (𝐹𝑞) ↔ (𝐹𝑛) < (𝐹𝑞)))
2522, 24raleqbidv 3401 . . . . . . . . . . . . . 14 (𝑝 = 𝑛 → (∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞) ↔ ∀𝑞 ∈ (ℤ‘(𝑛 + 1))(𝐹𝑛) < (𝐹𝑞)))
2625rspccva 3621 . . . . . . . . . . . . 13 ((∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞) ∧ 𝑛 ∈ ℕ) → ∀𝑞 ∈ (ℤ‘(𝑛 + 1))(𝐹𝑛) < (𝐹𝑞))
27 fveq2 6664 . . . . . . . . . . . . . . 15 (𝑞 = 𝑘 → (𝐹𝑞) = (𝐹𝑘))
2827breq2d 5070 . . . . . . . . . . . . . 14 (𝑞 = 𝑘 → ((𝐹𝑛) < (𝐹𝑞) ↔ (𝐹𝑛) < (𝐹𝑘)))
2928rspccva 3621 . . . . . . . . . . . . 13 ((∀𝑞 ∈ (ℤ‘(𝑛 + 1))(𝐹𝑛) < (𝐹𝑞) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) < (𝐹𝑘))
3026, 29sylan 582 . . . . . . . . . . . 12 (((∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) < (𝐹𝑘))
3130adantlll 716 . . . . . . . . . . 11 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) < (𝐹𝑘))
3216adantr 483 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) ∈ ℤ)
33 peano2nn 11644 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
34 elnnuz 12276 . . . . . . . . . . . . . . . . 17 ((𝑛 + 1) ∈ ℕ ↔ (𝑛 + 1) ∈ (ℤ‘1))
3533, 34sylib 220 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
36 uztrn 12255 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (ℤ‘(𝑛 + 1)) ∧ (𝑛 + 1) ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
3736ancoms 461 . . . . . . . . . . . . . . . . 17 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ (ℤ‘1))
38 elnnuz 12276 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
3937, 38sylibr 236 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ)
4035, 39sylan 582 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ)
41 ffvelrn 6843 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℕ)
4241nnzd 12080 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℤ)
4340, 42sylan2 594 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1)))) → (𝐹𝑘) ∈ ℤ)
4443anassrs 470 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑘) ∈ ℤ)
45 zre 11979 . . . . . . . . . . . . . . 15 ((𝐹𝑛) ∈ ℤ → (𝐹𝑛) ∈ ℝ)
46 zre 11979 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℤ → (𝐹𝑘) ∈ ℝ)
47 ltle 10723 . . . . . . . . . . . . . . 15 (((𝐹𝑛) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑛) ≤ (𝐹𝑘)))
4845, 46, 47syl2an 597 . . . . . . . . . . . . . 14 (((𝐹𝑛) ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑛) ≤ (𝐹𝑘)))
49 eluz 12251 . . . . . . . . . . . . . 14 (((𝐹𝑛) ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ) → ((𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)) ↔ (𝐹𝑛) ≤ (𝐹𝑘)))
5048, 49sylibrd 261 . . . . . . . . . . . . 13 (((𝐹𝑛) ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛))))
5132, 44, 50syl2anc 586 . . . . . . . . . . . 12 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛))))
5251adantllr 717 . . . . . . . . . . 11 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛))))
5331, 52mpd 15 . . . . . . . . . 10 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
5421, 53jaodan 954 . . . . . . . . 9 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ (𝑘 = 𝑛𝑘 ∈ (ℤ‘(𝑛 + 1)))) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
5512, 54sylan2 594 . . . . . . . 8 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
56 uztrn 12255 . . . . . . . . 9 (((𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)) ∧ (𝐹𝑛) ∈ (ℤ𝐴)) → (𝐹𝑘) ∈ (ℤ𝐴))
5756ex 415 . . . . . . . 8 ((𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)) → ((𝐹𝑛) ∈ (ℤ𝐴) → (𝐹𝑘) ∈ (ℤ𝐴)))
5855, 57syl 17 . . . . . . 7 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) ∈ (ℤ𝐴) → (𝐹𝑘) ∈ (ℤ𝐴)))
5958adantllr 717 . . . . . 6 (((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) ∈ (ℤ𝐴) → (𝐹𝑘) ∈ (ℤ𝐴)))
6059ralrimdva 3189 . . . . 5 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝐴) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴)))
6160ex 415 . . . 4 (((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝐴 ∈ ℕ) → (𝑛 ∈ ℕ → ((𝐹𝑛) ∈ (ℤ𝐴) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))))
6211, 61stoic3 1773 . . 3 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → (𝑛 ∈ ℕ → ((𝐹𝑛) ∈ (ℤ𝐴) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))))
6362reximdvai 3272 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴)))
641, 63mpd 15 1 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  wss 3935   class class class wbr 5058   Po wpo 5466   Or wor 5467  wf 6345  cfv 6349  (class class class)co 7150  cr 10530  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cn 11632  cz 11975  cuz 12237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator