Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsequz2 Structured version   Visualization version   GIF version

Theorem incsequz2 33967
Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
incsequz2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))
Distinct variable groups:   𝑘,𝐹,𝑚,𝑛   𝐴,𝑘,𝑚,𝑛

Proof of Theorem incsequz2
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 incsequz 33966 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
2 nnssre 11278 . . . . . . . 8 ℕ ⊆ ℝ
3 ltso 10372 . . . . . . . . 9 < Or ℝ
4 sopo 5215 . . . . . . . . 9 ( < Or ℝ → < Po ℝ)
53, 4ax-mp 5 . . . . . . . 8 < Po ℝ
6 poss 5200 . . . . . . . 8 (ℕ ⊆ ℝ → ( < Po ℝ → < Po ℕ))
72, 5, 6mp2 9 . . . . . . 7 < Po ℕ
8 seqpo 33965 . . . . . . 7 (( < Po ℕ ∧ 𝐹:ℕ⟶ℕ) → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
97, 8mpan 681 . . . . . 6 (𝐹:ℕ⟶ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
109biimpd 220 . . . . 5 (𝐹:ℕ⟶ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) → ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
1110imdistani 564 . . . 4 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
12 uzp1 11921 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑛) → (𝑘 = 𝑛𝑘 ∈ (ℤ‘(𝑛 + 1))))
13 fveq2 6375 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1413adantl 473 . . . . . . . . . . . 12 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) = (𝐹𝑛))
15 ffvelrn 6547 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℕ)
1615nnzd 11728 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℤ)
17 uzid 11901 . . . . . . . . . . . . . 14 ((𝐹𝑛) ∈ ℤ → (𝐹𝑛) ∈ (ℤ‘(𝐹𝑛)))
1816, 17syl 17 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℤ‘(𝐹𝑛)))
1918adantr 472 . . . . . . . . . . . 12 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑛) ∈ (ℤ‘(𝐹𝑛)))
2014, 19eqeltrd 2844 . . . . . . . . . . 11 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
2120adantllr 710 . . . . . . . . . 10 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
22 fvoveq1 6865 . . . . . . . . . . . . . . 15 (𝑝 = 𝑛 → (ℤ‘(𝑝 + 1)) = (ℤ‘(𝑛 + 1)))
23 fveq2 6375 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
2423breq1d 4819 . . . . . . . . . . . . . . 15 (𝑝 = 𝑛 → ((𝐹𝑝) < (𝐹𝑞) ↔ (𝐹𝑛) < (𝐹𝑞)))
2522, 24raleqbidv 3300 . . . . . . . . . . . . . 14 (𝑝 = 𝑛 → (∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞) ↔ ∀𝑞 ∈ (ℤ‘(𝑛 + 1))(𝐹𝑛) < (𝐹𝑞)))
2625rspccva 3460 . . . . . . . . . . . . 13 ((∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞) ∧ 𝑛 ∈ ℕ) → ∀𝑞 ∈ (ℤ‘(𝑛 + 1))(𝐹𝑛) < (𝐹𝑞))
27 fveq2 6375 . . . . . . . . . . . . . . 15 (𝑞 = 𝑘 → (𝐹𝑞) = (𝐹𝑘))
2827breq2d 4821 . . . . . . . . . . . . . 14 (𝑞 = 𝑘 → ((𝐹𝑛) < (𝐹𝑞) ↔ (𝐹𝑛) < (𝐹𝑘)))
2928rspccva 3460 . . . . . . . . . . . . 13 ((∀𝑞 ∈ (ℤ‘(𝑛 + 1))(𝐹𝑛) < (𝐹𝑞) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) < (𝐹𝑘))
3026, 29sylan 575 . . . . . . . . . . . 12 (((∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) < (𝐹𝑘))
3130adantlll 709 . . . . . . . . . . 11 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) < (𝐹𝑘))
3216adantr 472 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) ∈ ℤ)
33 peano2nn 11288 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
34 elnnuz 11924 . . . . . . . . . . . . . . . . 17 ((𝑛 + 1) ∈ ℕ ↔ (𝑛 + 1) ∈ (ℤ‘1))
3533, 34sylib 209 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
36 uztrn 11903 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (ℤ‘(𝑛 + 1)) ∧ (𝑛 + 1) ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
3736ancoms 450 . . . . . . . . . . . . . . . . 17 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ (ℤ‘1))
38 elnnuz 11924 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
3937, 38sylibr 225 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ)
4035, 39sylan 575 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ)
41 ffvelrn 6547 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℕ)
4241nnzd 11728 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℤ)
4340, 42sylan2 586 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1)))) → (𝐹𝑘) ∈ ℤ)
4443anassrs 459 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑘) ∈ ℤ)
45 zre 11628 . . . . . . . . . . . . . . 15 ((𝐹𝑛) ∈ ℤ → (𝐹𝑛) ∈ ℝ)
46 zre 11628 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℤ → (𝐹𝑘) ∈ ℝ)
47 ltle 10380 . . . . . . . . . . . . . . 15 (((𝐹𝑛) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑛) ≤ (𝐹𝑘)))
4845, 46, 47syl2an 589 . . . . . . . . . . . . . 14 (((𝐹𝑛) ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑛) ≤ (𝐹𝑘)))
49 eluz 11900 . . . . . . . . . . . . . 14 (((𝐹𝑛) ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ) → ((𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)) ↔ (𝐹𝑛) ≤ (𝐹𝑘)))
5048, 49sylibrd 250 . . . . . . . . . . . . 13 (((𝐹𝑛) ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛))))
5132, 44, 50syl2anc 579 . . . . . . . . . . . 12 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛))))
5251adantllr 710 . . . . . . . . . . 11 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛))))
5331, 52mpd 15 . . . . . . . . . 10 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
5421, 53jaodan 980 . . . . . . . . 9 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ (𝑘 = 𝑛𝑘 ∈ (ℤ‘(𝑛 + 1)))) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
5512, 54sylan2 586 . . . . . . . 8 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
56 uztrn 11903 . . . . . . . . 9 (((𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)) ∧ (𝐹𝑛) ∈ (ℤ𝐴)) → (𝐹𝑘) ∈ (ℤ𝐴))
5756ex 401 . . . . . . . 8 ((𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)) → ((𝐹𝑛) ∈ (ℤ𝐴) → (𝐹𝑘) ∈ (ℤ𝐴)))
5855, 57syl 17 . . . . . . 7 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) ∈ (ℤ𝐴) → (𝐹𝑘) ∈ (ℤ𝐴)))
5958adantllr 710 . . . . . 6 (((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) ∈ (ℤ𝐴) → (𝐹𝑘) ∈ (ℤ𝐴)))
6059ralrimdva 3116 . . . . 5 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝐴) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴)))
6160ex 401 . . . 4 (((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝐴 ∈ ℕ) → (𝑛 ∈ ℕ → ((𝐹𝑛) ∈ (ℤ𝐴) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))))
6211, 61stoic3 1871 . . 3 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → (𝑛 ∈ ℕ → ((𝐹𝑛) ∈ (ℤ𝐴) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))))
6362reximdvai 3161 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴)))
641, 63mpd 15 1 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wral 3055  wrex 3056  wss 3732   class class class wbr 4809   Po wpo 5196   Or wor 5197  wf 6064  cfv 6068  (class class class)co 6842  cr 10188  1c1 10190   + caddc 10192   < clt 10328  cle 10329  cn 11274  cz 11624  cuz 11886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator