Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsequz2 Structured version   Visualization version   GIF version

Theorem incsequz2 37715
Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
incsequz2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))
Distinct variable groups:   𝑘,𝐹,𝑚,𝑛   𝐴,𝑘,𝑚,𝑛

Proof of Theorem incsequz2
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 incsequz 37714 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
2 nnssre 12252 . . . . . . . 8 ℕ ⊆ ℝ
3 ltso 11323 . . . . . . . . 9 < Or ℝ
4 sopo 5591 . . . . . . . . 9 ( < Or ℝ → < Po ℝ)
53, 4ax-mp 5 . . . . . . . 8 < Po ℝ
6 poss 5574 . . . . . . . 8 (ℕ ⊆ ℝ → ( < Po ℝ → < Po ℕ))
72, 5, 6mp2 9 . . . . . . 7 < Po ℕ
8 seqpo 37713 . . . . . . 7 (( < Po ℕ ∧ 𝐹:ℕ⟶ℕ) → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
97, 8mpan 690 . . . . . 6 (𝐹:ℕ⟶ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
109biimpd 229 . . . . 5 (𝐹:ℕ⟶ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) → ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
1110imdistani 568 . . . 4 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
12 uzp1 12901 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑛) → (𝑘 = 𝑛𝑘 ∈ (ℤ‘(𝑛 + 1))))
13 fveq2 6886 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1413adantl 481 . . . . . . . . . . . 12 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) = (𝐹𝑛))
15 ffvelcdm 7081 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℕ)
1615nnzd 12623 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℤ)
17 uzid 12875 . . . . . . . . . . . . . 14 ((𝐹𝑛) ∈ ℤ → (𝐹𝑛) ∈ (ℤ‘(𝐹𝑛)))
1816, 17syl 17 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℤ‘(𝐹𝑛)))
1918adantr 480 . . . . . . . . . . . 12 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑛) ∈ (ℤ‘(𝐹𝑛)))
2014, 19eqeltrd 2833 . . . . . . . . . . 11 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
2120adantllr 719 . . . . . . . . . 10 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
22 fvoveq1 7436 . . . . . . . . . . . . . . 15 (𝑝 = 𝑛 → (ℤ‘(𝑝 + 1)) = (ℤ‘(𝑛 + 1)))
23 fveq2 6886 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
2423breq1d 5133 . . . . . . . . . . . . . . 15 (𝑝 = 𝑛 → ((𝐹𝑝) < (𝐹𝑞) ↔ (𝐹𝑛) < (𝐹𝑞)))
2522, 24raleqbidv 3329 . . . . . . . . . . . . . 14 (𝑝 = 𝑛 → (∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞) ↔ ∀𝑞 ∈ (ℤ‘(𝑛 + 1))(𝐹𝑛) < (𝐹𝑞)))
2625rspccva 3604 . . . . . . . . . . . . 13 ((∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞) ∧ 𝑛 ∈ ℕ) → ∀𝑞 ∈ (ℤ‘(𝑛 + 1))(𝐹𝑛) < (𝐹𝑞))
27 fveq2 6886 . . . . . . . . . . . . . . 15 (𝑞 = 𝑘 → (𝐹𝑞) = (𝐹𝑘))
2827breq2d 5135 . . . . . . . . . . . . . 14 (𝑞 = 𝑘 → ((𝐹𝑛) < (𝐹𝑞) ↔ (𝐹𝑛) < (𝐹𝑘)))
2928rspccva 3604 . . . . . . . . . . . . 13 ((∀𝑞 ∈ (ℤ‘(𝑛 + 1))(𝐹𝑛) < (𝐹𝑞) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) < (𝐹𝑘))
3026, 29sylan 580 . . . . . . . . . . . 12 (((∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) < (𝐹𝑘))
3130adantlll 718 . . . . . . . . . . 11 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) < (𝐹𝑘))
3216adantr 480 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) ∈ ℤ)
33 peano2nn 12260 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
34 elnnuz 12904 . . . . . . . . . . . . . . . . 17 ((𝑛 + 1) ∈ ℕ ↔ (𝑛 + 1) ∈ (ℤ‘1))
3533, 34sylib 218 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
36 uztrn 12878 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (ℤ‘(𝑛 + 1)) ∧ (𝑛 + 1) ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
3736ancoms 458 . . . . . . . . . . . . . . . . 17 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ (ℤ‘1))
38 elnnuz 12904 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
3937, 38sylibr 234 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ)
4035, 39sylan 580 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ)
41 ffvelcdm 7081 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℕ)
4241nnzd 12623 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℤ)
4340, 42sylan2 593 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1)))) → (𝐹𝑘) ∈ ℤ)
4443anassrs 467 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑘) ∈ ℤ)
45 zre 12600 . . . . . . . . . . . . . . 15 ((𝐹𝑛) ∈ ℤ → (𝐹𝑛) ∈ ℝ)
46 zre 12600 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℤ → (𝐹𝑘) ∈ ℝ)
47 ltle 11331 . . . . . . . . . . . . . . 15 (((𝐹𝑛) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑛) ≤ (𝐹𝑘)))
4845, 46, 47syl2an 596 . . . . . . . . . . . . . 14 (((𝐹𝑛) ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑛) ≤ (𝐹𝑘)))
49 eluz 12874 . . . . . . . . . . . . . 14 (((𝐹𝑛) ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ) → ((𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)) ↔ (𝐹𝑛) ≤ (𝐹𝑘)))
5048, 49sylibrd 259 . . . . . . . . . . . . 13 (((𝐹𝑛) ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛))))
5132, 44, 50syl2anc 584 . . . . . . . . . . . 12 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛))))
5251adantllr 719 . . . . . . . . . . 11 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛))))
5331, 52mpd 15 . . . . . . . . . 10 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
5421, 53jaodan 959 . . . . . . . . 9 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ (𝑘 = 𝑛𝑘 ∈ (ℤ‘(𝑛 + 1)))) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
5512, 54sylan2 593 . . . . . . . 8 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
56 uztrn 12878 . . . . . . . . 9 (((𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)) ∧ (𝐹𝑛) ∈ (ℤ𝐴)) → (𝐹𝑘) ∈ (ℤ𝐴))
5756ex 412 . . . . . . . 8 ((𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)) → ((𝐹𝑛) ∈ (ℤ𝐴) → (𝐹𝑘) ∈ (ℤ𝐴)))
5855, 57syl 17 . . . . . . 7 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) ∈ (ℤ𝐴) → (𝐹𝑘) ∈ (ℤ𝐴)))
5958adantllr 719 . . . . . 6 (((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) ∈ (ℤ𝐴) → (𝐹𝑘) ∈ (ℤ𝐴)))
6059ralrimdva 3141 . . . . 5 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝐴) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴)))
6160ex 412 . . . 4 (((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝐴 ∈ ℕ) → (𝑛 ∈ ℕ → ((𝐹𝑛) ∈ (ℤ𝐴) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))))
6211, 61stoic3 1775 . . 3 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → (𝑛 ∈ ℕ → ((𝐹𝑛) ∈ (ℤ𝐴) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))))
6362reximdvai 3152 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴)))
641, 63mpd 15 1 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3931   class class class wbr 5123   Po wpo 5570   Or wor 5571  wf 6537  cfv 6541  (class class class)co 7413  cr 11136  1c1 11138   + caddc 11140   < clt 11277  cle 11278  cn 12248  cz 12596  cuz 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator