| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | incsequz 37755 | . 2
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴)) | 
| 2 |  | nnssre 12270 | . . . . . . . 8
⊢ ℕ
⊆ ℝ | 
| 3 |  | ltso 11341 | . . . . . . . . 9
⊢  < Or
ℝ | 
| 4 |  | sopo 5611 | . . . . . . . . 9
⊢ ( < Or
ℝ → < Po ℝ) | 
| 5 | 3, 4 | ax-mp 5 | . . . . . . . 8
⊢  < Po
ℝ | 
| 6 |  | poss 5594 | . . . . . . . 8
⊢ (ℕ
⊆ ℝ → ( < Po ℝ → < Po
ℕ)) | 
| 7 | 2, 5, 6 | mp2 9 | . . . . . . 7
⊢  < Po
ℕ | 
| 8 |  | seqpo 37754 | . . . . . . 7
⊢ (( <
Po ℕ ∧ 𝐹:ℕ⟶ℕ) →
(∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ↔ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞))) | 
| 9 | 7, 8 | mpan 690 | . . . . . 6
⊢ (𝐹:ℕ⟶ℕ →
(∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ↔ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞))) | 
| 10 | 9 | biimpd 229 | . . . . 5
⊢ (𝐹:ℕ⟶ℕ →
(∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) → ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞))) | 
| 11 | 10 | imdistani 568 | . . . 4
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → (𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞))) | 
| 12 |  | uzp1 12919 | . . . . . . . . 9
⊢ (𝑘 ∈
(ℤ≥‘𝑛) → (𝑘 = 𝑛 ∨ 𝑘 ∈ (ℤ≥‘(𝑛 + 1)))) | 
| 13 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) | 
| 14 | 13 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) ∧
𝑘 = 𝑛) → (𝐹‘𝑘) = (𝐹‘𝑛)) | 
| 15 |  | ffvelcdm 7101 | . . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ ℕ) | 
| 16 | 15 | nnzd 12640 | . . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ ℤ) | 
| 17 |  | uzid 12893 | . . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑛) ∈ ℤ → (𝐹‘𝑛) ∈ (ℤ≥‘(𝐹‘𝑛))) | 
| 18 | 16, 17 | syl 17 | . . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ (ℤ≥‘(𝐹‘𝑛))) | 
| 19 | 18 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) ∧
𝑘 = 𝑛) → (𝐹‘𝑛) ∈ (ℤ≥‘(𝐹‘𝑛))) | 
| 20 | 14, 19 | eqeltrd 2841 | . . . . . . . . . . 11
⊢ (((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) ∧
𝑘 = 𝑛) → (𝐹‘𝑘) ∈ (ℤ≥‘(𝐹‘𝑛))) | 
| 21 | 20 | adantllr 719 | . . . . . . . . . 10
⊢ ((((𝐹:ℕ⟶ℕ ∧
∀𝑝 ∈ ℕ
∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹‘𝑘) ∈ (ℤ≥‘(𝐹‘𝑛))) | 
| 22 |  | fvoveq1 7454 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑛 → (ℤ≥‘(𝑝 + 1)) =
(ℤ≥‘(𝑛 + 1))) | 
| 23 |  | fveq2 6906 | . . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑛 → (𝐹‘𝑝) = (𝐹‘𝑛)) | 
| 24 | 23 | breq1d 5153 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑛 → ((𝐹‘𝑝) < (𝐹‘𝑞) ↔ (𝐹‘𝑛) < (𝐹‘𝑞))) | 
| 25 | 22, 24 | raleqbidv 3346 | . . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑛 → (∀𝑞 ∈ (ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞) ↔ ∀𝑞 ∈ (ℤ≥‘(𝑛 + 1))(𝐹‘𝑛) < (𝐹‘𝑞))) | 
| 26 | 25 | rspccva 3621 | . . . . . . . . . . . . 13
⊢
((∀𝑝 ∈
ℕ ∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞) ∧ 𝑛 ∈ ℕ) → ∀𝑞 ∈
(ℤ≥‘(𝑛 + 1))(𝐹‘𝑛) < (𝐹‘𝑞)) | 
| 27 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑞 = 𝑘 → (𝐹‘𝑞) = (𝐹‘𝑘)) | 
| 28 | 27 | breq2d 5155 | . . . . . . . . . . . . . 14
⊢ (𝑞 = 𝑘 → ((𝐹‘𝑛) < (𝐹‘𝑞) ↔ (𝐹‘𝑛) < (𝐹‘𝑘))) | 
| 29 | 28 | rspccva 3621 | . . . . . . . . . . . . 13
⊢
((∀𝑞 ∈
(ℤ≥‘(𝑛 + 1))(𝐹‘𝑛) < (𝐹‘𝑞) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐹‘𝑛) < (𝐹‘𝑘)) | 
| 30 | 26, 29 | sylan 580 | . . . . . . . . . . . 12
⊢
(((∀𝑝 ∈
ℕ ∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐹‘𝑛) < (𝐹‘𝑘)) | 
| 31 | 30 | adantlll 718 | . . . . . . . . . . 11
⊢ ((((𝐹:ℕ⟶ℕ ∧
∀𝑝 ∈ ℕ
∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐹‘𝑛) < (𝐹‘𝑘)) | 
| 32 | 16 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) ∧
𝑘 ∈
(ℤ≥‘(𝑛 + 1))) → (𝐹‘𝑛) ∈ ℤ) | 
| 33 |  | peano2nn 12278 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) | 
| 34 |  | elnnuz 12922 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑛 + 1) ∈ ℕ ↔
(𝑛 + 1) ∈
(ℤ≥‘1)) | 
| 35 | 33, 34 | sylib 218 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
(ℤ≥‘1)) | 
| 36 |  | uztrn 12896 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈
(ℤ≥‘(𝑛 + 1)) ∧ (𝑛 + 1) ∈
(ℤ≥‘1)) → 𝑘 ∈
(ℤ≥‘1)) | 
| 37 | 36 | ancoms 458 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑛 + 1) ∈
(ℤ≥‘1) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → 𝑘 ∈
(ℤ≥‘1)) | 
| 38 |  | elnnuz 12922 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈
(ℤ≥‘1)) | 
| 39 | 37, 38 | sylibr 234 | . . . . . . . . . . . . . . . 16
⊢ (((𝑛 + 1) ∈
(ℤ≥‘1) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → 𝑘 ∈
ℕ) | 
| 40 | 35, 39 | sylan 580 | . . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑘 ∈ ℕ) | 
| 41 |  | ffvelcdm 7101 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑘 ∈ ℕ) →
(𝐹‘𝑘) ∈ ℕ) | 
| 42 | 41 | nnzd 12640 | . . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑘 ∈ ℕ) →
(𝐹‘𝑘) ∈ ℤ) | 
| 43 | 40, 42 | sylan2 593 | . . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 ∈ ℕ ∧
𝑘 ∈
(ℤ≥‘(𝑛 + 1)))) → (𝐹‘𝑘) ∈ ℤ) | 
| 44 | 43 | anassrs 467 | . . . . . . . . . . . . 13
⊢ (((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) ∧
𝑘 ∈
(ℤ≥‘(𝑛 + 1))) → (𝐹‘𝑘) ∈ ℤ) | 
| 45 |  | zre 12617 | . . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑛) ∈ ℤ → (𝐹‘𝑛) ∈ ℝ) | 
| 46 |  | zre 12617 | . . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑘) ∈ ℤ → (𝐹‘𝑘) ∈ ℝ) | 
| 47 |  | ltle 11349 | . . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑛) ∈ ℝ ∧ (𝐹‘𝑘) ∈ ℝ) → ((𝐹‘𝑛) < (𝐹‘𝑘) → (𝐹‘𝑛) ≤ (𝐹‘𝑘))) | 
| 48 | 45, 46, 47 | syl2an 596 | . . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑛) ∈ ℤ ∧ (𝐹‘𝑘) ∈ ℤ) → ((𝐹‘𝑛) < (𝐹‘𝑘) → (𝐹‘𝑛) ≤ (𝐹‘𝑘))) | 
| 49 |  | eluz 12892 | . . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑛) ∈ ℤ ∧ (𝐹‘𝑘) ∈ ℤ) → ((𝐹‘𝑘) ∈ (ℤ≥‘(𝐹‘𝑛)) ↔ (𝐹‘𝑛) ≤ (𝐹‘𝑘))) | 
| 50 | 48, 49 | sylibrd 259 | . . . . . . . . . . . . 13
⊢ (((𝐹‘𝑛) ∈ ℤ ∧ (𝐹‘𝑘) ∈ ℤ) → ((𝐹‘𝑛) < (𝐹‘𝑘) → (𝐹‘𝑘) ∈ (ℤ≥‘(𝐹‘𝑛)))) | 
| 51 | 32, 44, 50 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) ∧
𝑘 ∈
(ℤ≥‘(𝑛 + 1))) → ((𝐹‘𝑛) < (𝐹‘𝑘) → (𝐹‘𝑘) ∈ (ℤ≥‘(𝐹‘𝑛)))) | 
| 52 | 51 | adantllr 719 | . . . . . . . . . . 11
⊢ ((((𝐹:ℕ⟶ℕ ∧
∀𝑝 ∈ ℕ
∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → ((𝐹‘𝑛) < (𝐹‘𝑘) → (𝐹‘𝑘) ∈ (ℤ≥‘(𝐹‘𝑛)))) | 
| 53 | 31, 52 | mpd 15 | . . . . . . . . . 10
⊢ ((((𝐹:ℕ⟶ℕ ∧
∀𝑝 ∈ ℕ
∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐹‘𝑘) ∈ (ℤ≥‘(𝐹‘𝑛))) | 
| 54 | 21, 53 | jaodan 960 | . . . . . . . . 9
⊢ ((((𝐹:ℕ⟶ℕ ∧
∀𝑝 ∈ ℕ
∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞)) ∧ 𝑛 ∈ ℕ) ∧ (𝑘 = 𝑛 ∨ 𝑘 ∈ (ℤ≥‘(𝑛 + 1)))) → (𝐹‘𝑘) ∈ (ℤ≥‘(𝐹‘𝑛))) | 
| 55 | 12, 54 | sylan2 593 | . . . . . . . 8
⊢ ((((𝐹:ℕ⟶ℕ ∧
∀𝑝 ∈ ℕ
∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑘) ∈ (ℤ≥‘(𝐹‘𝑛))) | 
| 56 |  | uztrn 12896 | . . . . . . . . 9
⊢ (((𝐹‘𝑘) ∈ (ℤ≥‘(𝐹‘𝑛)) ∧ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴)) → (𝐹‘𝑘) ∈ (ℤ≥‘𝐴)) | 
| 57 | 56 | ex 412 | . . . . . . . 8
⊢ ((𝐹‘𝑘) ∈ (ℤ≥‘(𝐹‘𝑛)) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝐴) → (𝐹‘𝑘) ∈ (ℤ≥‘𝐴))) | 
| 58 | 55, 57 | syl 17 | . . . . . . 7
⊢ ((((𝐹:ℕ⟶ℕ ∧
∀𝑝 ∈ ℕ
∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝐴) → (𝐹‘𝑘) ∈ (ℤ≥‘𝐴))) | 
| 59 | 58 | adantllr 719 | . . . . . 6
⊢
(((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞)) ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝐴) → (𝐹‘𝑘) ∈ (ℤ≥‘𝐴))) | 
| 60 | 59 | ralrimdva 3154 | . . . . 5
⊢ ((((𝐹:ℕ⟶ℕ ∧
∀𝑝 ∈ ℕ
∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞)) ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝐴) → ∀𝑘 ∈
(ℤ≥‘𝑛)(𝐹‘𝑘) ∈ (ℤ≥‘𝐴))) | 
| 61 | 60 | ex 412 | . . . 4
⊢ (((𝐹:ℕ⟶ℕ ∧
∀𝑝 ∈ ℕ
∀𝑞 ∈
(ℤ≥‘(𝑝 + 1))(𝐹‘𝑝) < (𝐹‘𝑞)) ∧ 𝐴 ∈ ℕ) → (𝑛 ∈ ℕ → ((𝐹‘𝑛) ∈ (ℤ≥‘𝐴) → ∀𝑘 ∈
(ℤ≥‘𝑛)(𝐹‘𝑘) ∈ (ℤ≥‘𝐴)))) | 
| 62 | 11, 61 | stoic3 1776 | . . 3
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → (𝑛 ∈ ℕ → ((𝐹‘𝑛) ∈ (ℤ≥‘𝐴) → ∀𝑘 ∈
(ℤ≥‘𝑛)(𝐹‘𝑘) ∈ (ℤ≥‘𝐴)))) | 
| 63 | 62 | reximdvai 3165 | . 2
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴) → ∃𝑛 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)(𝐹‘𝑘) ∈ (ℤ≥‘𝐴))) | 
| 64 | 1, 63 | mpd 15 | 1
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)(𝐹‘𝑘) ∈ (ℤ≥‘𝐴)) |