Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsequz2 Structured version   Visualization version   GIF version

Theorem incsequz2 37750
Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
incsequz2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))
Distinct variable groups:   𝑘,𝐹,𝑚,𝑛   𝐴,𝑘,𝑚,𝑛

Proof of Theorem incsequz2
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 incsequz 37749 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
2 nnssre 12197 . . . . . . . 8 ℕ ⊆ ℝ
3 ltso 11261 . . . . . . . . 9 < Or ℝ
4 sopo 5568 . . . . . . . . 9 ( < Or ℝ → < Po ℝ)
53, 4ax-mp 5 . . . . . . . 8 < Po ℝ
6 poss 5551 . . . . . . . 8 (ℕ ⊆ ℝ → ( < Po ℝ → < Po ℕ))
72, 5, 6mp2 9 . . . . . . 7 < Po ℕ
8 seqpo 37748 . . . . . . 7 (( < Po ℕ ∧ 𝐹:ℕ⟶ℕ) → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
97, 8mpan 690 . . . . . 6 (𝐹:ℕ⟶ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
109biimpd 229 . . . . 5 (𝐹:ℕ⟶ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) → ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
1110imdistani 568 . . . 4 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)))
12 uzp1 12841 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑛) → (𝑘 = 𝑛𝑘 ∈ (ℤ‘(𝑛 + 1))))
13 fveq2 6861 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1413adantl 481 . . . . . . . . . . . 12 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) = (𝐹𝑛))
15 ffvelcdm 7056 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℕ)
1615nnzd 12563 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℤ)
17 uzid 12815 . . . . . . . . . . . . . 14 ((𝐹𝑛) ∈ ℤ → (𝐹𝑛) ∈ (ℤ‘(𝐹𝑛)))
1816, 17syl 17 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℤ‘(𝐹𝑛)))
1918adantr 480 . . . . . . . . . . . 12 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑛) ∈ (ℤ‘(𝐹𝑛)))
2014, 19eqeltrd 2829 . . . . . . . . . . 11 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
2120adantllr 719 . . . . . . . . . 10 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
22 fvoveq1 7413 . . . . . . . . . . . . . . 15 (𝑝 = 𝑛 → (ℤ‘(𝑝 + 1)) = (ℤ‘(𝑛 + 1)))
23 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
2423breq1d 5120 . . . . . . . . . . . . . . 15 (𝑝 = 𝑛 → ((𝐹𝑝) < (𝐹𝑞) ↔ (𝐹𝑛) < (𝐹𝑞)))
2522, 24raleqbidv 3321 . . . . . . . . . . . . . 14 (𝑝 = 𝑛 → (∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞) ↔ ∀𝑞 ∈ (ℤ‘(𝑛 + 1))(𝐹𝑛) < (𝐹𝑞)))
2625rspccva 3590 . . . . . . . . . . . . 13 ((∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞) ∧ 𝑛 ∈ ℕ) → ∀𝑞 ∈ (ℤ‘(𝑛 + 1))(𝐹𝑛) < (𝐹𝑞))
27 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑞 = 𝑘 → (𝐹𝑞) = (𝐹𝑘))
2827breq2d 5122 . . . . . . . . . . . . . 14 (𝑞 = 𝑘 → ((𝐹𝑛) < (𝐹𝑞) ↔ (𝐹𝑛) < (𝐹𝑘)))
2928rspccva 3590 . . . . . . . . . . . . 13 ((∀𝑞 ∈ (ℤ‘(𝑛 + 1))(𝐹𝑛) < (𝐹𝑞) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) < (𝐹𝑘))
3026, 29sylan 580 . . . . . . . . . . . 12 (((∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) < (𝐹𝑘))
3130adantlll 718 . . . . . . . . . . 11 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) < (𝐹𝑘))
3216adantr 480 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑛) ∈ ℤ)
33 peano2nn 12205 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
34 elnnuz 12844 . . . . . . . . . . . . . . . . 17 ((𝑛 + 1) ∈ ℕ ↔ (𝑛 + 1) ∈ (ℤ‘1))
3533, 34sylib 218 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
36 uztrn 12818 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (ℤ‘(𝑛 + 1)) ∧ (𝑛 + 1) ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
3736ancoms 458 . . . . . . . . . . . . . . . . 17 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ (ℤ‘1))
38 elnnuz 12844 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
3937, 38sylibr 234 . . . . . . . . . . . . . . . 16 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ)
4035, 39sylan 580 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ)
41 ffvelcdm 7056 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℕ)
4241nnzd 12563 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℤ)
4340, 42sylan2 593 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1)))) → (𝐹𝑘) ∈ ℤ)
4443anassrs 467 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑘) ∈ ℤ)
45 zre 12540 . . . . . . . . . . . . . . 15 ((𝐹𝑛) ∈ ℤ → (𝐹𝑛) ∈ ℝ)
46 zre 12540 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℤ → (𝐹𝑘) ∈ ℝ)
47 ltle 11269 . . . . . . . . . . . . . . 15 (((𝐹𝑛) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑛) ≤ (𝐹𝑘)))
4845, 46, 47syl2an 596 . . . . . . . . . . . . . 14 (((𝐹𝑛) ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑛) ≤ (𝐹𝑘)))
49 eluz 12814 . . . . . . . . . . . . . 14 (((𝐹𝑛) ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ) → ((𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)) ↔ (𝐹𝑛) ≤ (𝐹𝑘)))
5048, 49sylibrd 259 . . . . . . . . . . . . 13 (((𝐹𝑛) ∈ ℤ ∧ (𝐹𝑘) ∈ ℤ) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛))))
5132, 44, 50syl2anc 584 . . . . . . . . . . . 12 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛))))
5251adantllr 719 . . . . . . . . . . 11 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → ((𝐹𝑛) < (𝐹𝑘) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛))))
5331, 52mpd 15 . . . . . . . . . 10 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
5421, 53jaodan 959 . . . . . . . . 9 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ (𝑘 = 𝑛𝑘 ∈ (ℤ‘(𝑛 + 1)))) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
5512, 54sylan2 593 . . . . . . . 8 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)))
56 uztrn 12818 . . . . . . . . 9 (((𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)) ∧ (𝐹𝑛) ∈ (ℤ𝐴)) → (𝐹𝑘) ∈ (ℤ𝐴))
5756ex 412 . . . . . . . 8 ((𝐹𝑘) ∈ (ℤ‘(𝐹𝑛)) → ((𝐹𝑛) ∈ (ℤ𝐴) → (𝐹𝑘) ∈ (ℤ𝐴)))
5855, 57syl 17 . . . . . . 7 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) ∈ (ℤ𝐴) → (𝐹𝑘) ∈ (ℤ𝐴)))
5958adantllr 719 . . . . . 6 (((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) ∈ (ℤ𝐴) → (𝐹𝑘) ∈ (ℤ𝐴)))
6059ralrimdva 3134 . . . . 5 ((((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝐴 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝐴) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴)))
6160ex 412 . . . 4 (((𝐹:ℕ⟶ℕ ∧ ∀𝑝 ∈ ℕ ∀𝑞 ∈ (ℤ‘(𝑝 + 1))(𝐹𝑝) < (𝐹𝑞)) ∧ 𝐴 ∈ ℕ) → (𝑛 ∈ ℕ → ((𝐹𝑛) ∈ (ℤ𝐴) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))))
6211, 61stoic3 1776 . . 3 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → (𝑛 ∈ ℕ → ((𝐹𝑛) ∈ (ℤ𝐴) → ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))))
6362reximdvai 3145 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴)))
641, 63mpd 15 1 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(𝐹𝑘) ∈ (ℤ𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110   Po wpo 5547   Or wor 5548  wf 6510  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cn 12193  cz 12536  cuz 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator