MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frr1 Structured version   Visualization version   GIF version

Theorem frr1 9703
Description: Law of general well-founded recursion, part one. This theorem and the following two drop the partial order requirement from fpr1 8238, fpr2 8239, and fpr3 8240, which requires using the axiom of infinity (Contributed by Scott Fenton, 11-Sep-2023.)
Hypothesis
Ref Expression
frr.1 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frr1 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)

Proof of Theorem frr1
Dummy variables 𝑥 𝑦 𝑧 𝑢 𝑣 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))}
21frrlem1 8221 . . 3 {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
3 frr.1 . . 3 𝐹 = frecs(𝑅, 𝐴, 𝐺)
42, 3frrlem15 9701 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} ∧ ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))})) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
52, 3, 4frrlem9 8229 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → Fun 𝐹)
6 eqid 2733 . . 3 ((𝐹 ↾ Pred(t++(𝑅𝐴), 𝐴, 𝑧)) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = ((𝐹 ↾ Pred(t++(𝑅𝐴), 𝐴, 𝑧)) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
7 simpl 484 . . 3 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
8 predres 6297 . . . . 5 Pred(𝑅, 𝐴, 𝑧) = Pred((𝑅𝐴), 𝐴, 𝑧)
9 relres 5970 . . . . . 6 Rel (𝑅𝐴)
10 ssttrcl 9659 . . . . . 6 (Rel (𝑅𝐴) → (𝑅𝐴) ⊆ t++(𝑅𝐴))
11 predrelss 6295 . . . . . 6 ((𝑅𝐴) ⊆ t++(𝑅𝐴) → Pred((𝑅𝐴), 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
129, 10, 11mp2b 10 . . . . 5 Pred((𝑅𝐴), 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧)
138, 12eqsstri 3982 . . . 4 Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧)
1413a1i 11 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
15 frrlem16 9702 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑎 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑎) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
16 ttrclse 9671 . . . . 5 (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)
17 setlikespec 6283 . . . . . 6 ((𝑧𝐴 ∧ t++(𝑅𝐴) Se 𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
1817ancoms 460 . . . . 5 ((t++(𝑅𝐴) Se 𝐴𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
1916, 18sylan 581 . . . 4 ((𝑅 Se 𝐴𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
2019adantll 713 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
21 predss 6265 . . . 4 Pred(t++(𝑅𝐴), 𝐴, 𝑧) ⊆ 𝐴
2221a1i 11 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ⊆ 𝐴)
23 difss 4095 . . . 4 (𝐴 ∖ dom 𝐹) ⊆ 𝐴
24 frmin 9693 . . . 4 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅)) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
2523, 24mpanr1 702 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
262, 3, 4, 6, 7, 14, 15, 20, 22, 25frrlem14 8234 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → dom 𝐹 = 𝐴)
27 df-fn 6503 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
285, 26, 27sylanbrc 584 1 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  {cab 2710  wne 2940  wral 3061  wrex 3070  Vcvv 3447  cdif 3911  cun 3912  wss 3914  c0 4286  {csn 4590  cop 4596   Fr wfr 5589   Se wse 5590  dom cdm 5637  cres 5639  Rel wrel 5642  Predcpred 6256  Fun wfun 6494   Fn wfn 6495  cfv 6500  (class class class)co 7361  frecscfrecs 8215  t++cttrcl 9651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676  ax-inf2 9585
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-oadd 8420  df-ttrcl 9652
This theorem is referenced by:  frr2  9704  frr3  9705
  Copyright terms: Public domain W3C validator