MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frr1 Structured version   Visualization version   GIF version

Theorem frr1 9655
Description: Law of general well-founded recursion, part one. This theorem and the following two drop the partial order requirement from fpr1 8236, fpr2 8237, and fpr3 8238, which requires using the axiom of infinity (Contributed by Scott Fenton, 11-Sep-2023.)
Hypothesis
Ref Expression
frr.1 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frr1 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)

Proof of Theorem frr1
Dummy variables 𝑥 𝑦 𝑧 𝑢 𝑣 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))}
21frrlem1 8219 . . 3 {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
3 frr.1 . . 3 𝐹 = frecs(𝑅, 𝐴, 𝐺)
42, 3frrlem15 9653 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} ∧ ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))})) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
52, 3, 4frrlem9 8227 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → Fun 𝐹)
6 eqid 2729 . . 3 ((𝐹 ↾ Pred(t++(𝑅𝐴), 𝐴, 𝑧)) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = ((𝐹 ↾ Pred(t++(𝑅𝐴), 𝐴, 𝑧)) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
7 simpl 482 . . 3 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
8 predres 6287 . . . . 5 Pred(𝑅, 𝐴, 𝑧) = Pred((𝑅𝐴), 𝐴, 𝑧)
9 relres 5956 . . . . . 6 Rel (𝑅𝐴)
10 ssttrcl 9611 . . . . . 6 (Rel (𝑅𝐴) → (𝑅𝐴) ⊆ t++(𝑅𝐴))
11 predrelss 6285 . . . . . 6 ((𝑅𝐴) ⊆ t++(𝑅𝐴) → Pred((𝑅𝐴), 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
129, 10, 11mp2b 10 . . . . 5 Pred((𝑅𝐴), 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧)
138, 12eqsstri 3982 . . . 4 Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧)
1413a1i 11 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
15 frrlem16 9654 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑎 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑎) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
16 ttrclse 9623 . . . . 5 (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)
17 setlikespec 6273 . . . . . 6 ((𝑧𝐴 ∧ t++(𝑅𝐴) Se 𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
1817ancoms 458 . . . . 5 ((t++(𝑅𝐴) Se 𝐴𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
1916, 18sylan 580 . . . 4 ((𝑅 Se 𝐴𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
2019adantll 714 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
21 predss 6257 . . . 4 Pred(t++(𝑅𝐴), 𝐴, 𝑧) ⊆ 𝐴
2221a1i 11 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ⊆ 𝐴)
23 difss 4087 . . . 4 (𝐴 ∖ dom 𝐹) ⊆ 𝐴
24 frmin 9645 . . . 4 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅)) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
2523, 24mpanr1 703 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
262, 3, 4, 6, 7, 14, 15, 20, 22, 25frrlem14 8232 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → dom 𝐹 = 𝐴)
27 df-fn 6485 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
285, 26, 27sylanbrc 583 1 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3436  cdif 3900  cun 3901  wss 3903  c0 4284  {csn 4577  cop 4583   Fr wfr 5569   Se wse 5570  dom cdm 5619  cres 5621  Rel wrel 5624  Predcpred 6248  Fun wfun 6476   Fn wfn 6477  cfv 6482  (class class class)co 7349  frecscfrecs 8213  t++cttrcl 9603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-ttrcl 9604
This theorem is referenced by:  frr2  9656  frr3  9657
  Copyright terms: Public domain W3C validator