Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frr1 | Structured version Visualization version GIF version |
Description: Law of general well-founded recursion, part one. This theorem and the following two drop the partial order requirement from fpr1 8090, fpr2 8091, and fpr3 8092, which requires using the axiom of infinity (Contributed by Scott Fenton, 11-Sep-2023.) |
Ref | Expression |
---|---|
frr.1 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
frr1 | ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} | |
2 | 1 | frrlem1 8073 | . . 3 ⊢ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
3 | frr.1 | . . 3 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
4 | 2, 3 | frrlem15 9446 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} ∧ ℎ ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))})) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
5 | 2, 3, 4 | frrlem9 8081 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) |
6 | eqid 2738 | . . 3 ⊢ ((𝐹 ↾ TrPred(𝑅, 𝐴, 𝑧)) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = ((𝐹 ↾ TrPred(𝑅, 𝐴, 𝑧)) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
7 | simpl 482 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Fr 𝐴) | |
8 | setlikespec 6217 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V) | |
9 | 8 | ancoms 458 | . . . . 5 ⊢ ((𝑅 Se 𝐴 ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V) |
10 | 9 | adantll 710 | . . . 4 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V) |
11 | trpredpred 9406 | . . . 4 ⊢ (Pred(𝑅, 𝐴, 𝑧) ∈ V → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)) |
13 | frrlem16 9447 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑎 ∈ TrPred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑎) ⊆ TrPred(𝑅, 𝐴, 𝑧)) | |
14 | trpredex 9416 | . . . 4 ⊢ TrPred(𝑅, 𝐴, 𝑧) ∈ V | |
15 | 14 | a1i 11 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → TrPred(𝑅, 𝐴, 𝑧) ∈ V) |
16 | trpredss 9407 | . . . 4 ⊢ (Pred(𝑅, 𝐴, 𝑧) ∈ V → TrPred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) | |
17 | 10, 16 | syl 17 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → TrPred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) |
18 | difss 4062 | . . . 4 ⊢ (𝐴 ∖ dom 𝐹) ⊆ 𝐴 | |
19 | frmin 9438 | . . . 4 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ ((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅)) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) | |
20 | 18, 19 | mpanr1 699 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) |
21 | 2, 3, 4, 6, 7, 12, 13, 15, 17, 20 | frrlem14 8086 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → dom 𝐹 = 𝐴) |
22 | df-fn 6421 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
23 | 5, 21, 22 | sylanbrc 582 | 1 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 {csn 4558 〈cop 4564 Fr wfr 5532 Se wse 5533 dom cdm 5580 ↾ cres 5582 Predcpred 6190 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 frecscfrecs 8067 TrPredctrpred 9395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-trpred 9396 |
This theorem is referenced by: frr2 9449 frr3 9450 |
Copyright terms: Public domain | W3C validator |