MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frr1 Structured version   Visualization version   GIF version

Theorem frr1 9652
Description: Law of general well-founded recursion, part one. This theorem and the following two drop the partial order requirement from fpr1 8233, fpr2 8234, and fpr3 8235, which requires using the axiom of infinity (Contributed by Scott Fenton, 11-Sep-2023.)
Hypothesis
Ref Expression
frr.1 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frr1 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)

Proof of Theorem frr1
Dummy variables 𝑥 𝑦 𝑧 𝑢 𝑣 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))}
21frrlem1 8216 . . 3 {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
3 frr.1 . . 3 𝐹 = frecs(𝑅, 𝐴, 𝐺)
42, 3frrlem15 9650 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} ∧ ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))})) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
52, 3, 4frrlem9 8224 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → Fun 𝐹)
6 eqid 2731 . . 3 ((𝐹 ↾ Pred(t++(𝑅𝐴), 𝐴, 𝑧)) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = ((𝐹 ↾ Pred(t++(𝑅𝐴), 𝐴, 𝑧)) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
7 simpl 482 . . 3 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
8 predres 6286 . . . . 5 Pred(𝑅, 𝐴, 𝑧) = Pred((𝑅𝐴), 𝐴, 𝑧)
9 relres 5953 . . . . . 6 Rel (𝑅𝐴)
10 ssttrcl 9605 . . . . . 6 (Rel (𝑅𝐴) → (𝑅𝐴) ⊆ t++(𝑅𝐴))
11 predrelss 6284 . . . . . 6 ((𝑅𝐴) ⊆ t++(𝑅𝐴) → Pred((𝑅𝐴), 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
129, 10, 11mp2b 10 . . . . 5 Pred((𝑅𝐴), 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧)
138, 12eqsstri 3976 . . . 4 Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧)
1413a1i 11 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
15 frrlem16 9651 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑎 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑎) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
16 ttrclse 9617 . . . . 5 (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)
17 setlikespec 6272 . . . . . 6 ((𝑧𝐴 ∧ t++(𝑅𝐴) Se 𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
1817ancoms 458 . . . . 5 ((t++(𝑅𝐴) Se 𝐴𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
1916, 18sylan 580 . . . 4 ((𝑅 Se 𝐴𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
2019adantll 714 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
21 predss 6256 . . . 4 Pred(t++(𝑅𝐴), 𝐴, 𝑧) ⊆ 𝐴
2221a1i 11 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ⊆ 𝐴)
23 difss 4083 . . . 4 (𝐴 ∖ dom 𝐹) ⊆ 𝐴
24 frmin 9642 . . . 4 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅)) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
2523, 24mpanr1 703 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
262, 3, 4, 6, 7, 14, 15, 20, 22, 25frrlem14 8229 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → dom 𝐹 = 𝐴)
27 df-fn 6484 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
285, 26, 27sylanbrc 583 1 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  cun 3895  wss 3897  c0 4280  {csn 4573  cop 4579   Fr wfr 5564   Se wse 5565  dom cdm 5614  cres 5616  Rel wrel 5619  Predcpred 6247  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346  frecscfrecs 8210  t++cttrcl 9597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-ttrcl 9598
This theorem is referenced by:  frr2  9653  frr3  9654
  Copyright terms: Public domain W3C validator