MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frr1 Structured version   Visualization version   GIF version

Theorem frr1 9778
Description: Law of general well-founded recursion, part one. This theorem and the following two drop the partial order requirement from fpr1 8307, fpr2 8308, and fpr3 8309, which requires using the axiom of infinity (Contributed by Scott Fenton, 11-Sep-2023.)
Hypothesis
Ref Expression
frr.1 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frr1 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)

Proof of Theorem frr1
Dummy variables 𝑥 𝑦 𝑧 𝑢 𝑣 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))}
21frrlem1 8290 . . 3 {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
3 frr.1 . . 3 𝐹 = frecs(𝑅, 𝐴, 𝐺)
42, 3frrlem15 9776 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} ∧ ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))})) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
52, 3, 4frrlem9 8298 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → Fun 𝐹)
6 eqid 2736 . . 3 ((𝐹 ↾ Pred(t++(𝑅𝐴), 𝐴, 𝑧)) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = ((𝐹 ↾ Pred(t++(𝑅𝐴), 𝐴, 𝑧)) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
7 simpl 482 . . 3 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
8 predres 6333 . . . . 5 Pred(𝑅, 𝐴, 𝑧) = Pred((𝑅𝐴), 𝐴, 𝑧)
9 relres 5997 . . . . . 6 Rel (𝑅𝐴)
10 ssttrcl 9734 . . . . . 6 (Rel (𝑅𝐴) → (𝑅𝐴) ⊆ t++(𝑅𝐴))
11 predrelss 6331 . . . . . 6 ((𝑅𝐴) ⊆ t++(𝑅𝐴) → Pred((𝑅𝐴), 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
129, 10, 11mp2b 10 . . . . 5 Pred((𝑅𝐴), 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧)
138, 12eqsstri 4010 . . . 4 Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧)
1413a1i 11 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
15 frrlem16 9777 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑎 ∈ Pred (t++(𝑅𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑎) ⊆ Pred(t++(𝑅𝐴), 𝐴, 𝑧))
16 ttrclse 9746 . . . . 5 (𝑅 Se 𝐴 → t++(𝑅𝐴) Se 𝐴)
17 setlikespec 6319 . . . . . 6 ((𝑧𝐴 ∧ t++(𝑅𝐴) Se 𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
1817ancoms 458 . . . . 5 ((t++(𝑅𝐴) Se 𝐴𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
1916, 18sylan 580 . . . 4 ((𝑅 Se 𝐴𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
2019adantll 714 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ∈ V)
21 predss 6303 . . . 4 Pred(t++(𝑅𝐴), 𝐴, 𝑧) ⊆ 𝐴
2221a1i 11 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(t++(𝑅𝐴), 𝐴, 𝑧) ⊆ 𝐴)
23 difss 4116 . . . 4 (𝐴 ∖ dom 𝐹) ⊆ 𝐴
24 frmin 9768 . . . 4 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅)) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
2523, 24mpanr1 703 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
262, 3, 4, 6, 7, 14, 15, 20, 22, 25frrlem14 8303 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → dom 𝐹 = 𝐴)
27 df-fn 6539 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
285, 26, 27sylanbrc 583 1 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  cun 3929  wss 3931  c0 4313  {csn 4606  cop 4612   Fr wfr 5608   Se wse 5609  dom cdm 5659  cres 5661  Rel wrel 5664  Predcpred 6294  Fun wfun 6530   Fn wfn 6531  cfv 6536  (class class class)co 7410  frecscfrecs 8284  t++cttrcl 9726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-ttrcl 9727
This theorem is referenced by:  frr2  9779  frr3  9780
  Copyright terms: Public domain W3C validator