Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frr1 | Structured version Visualization version GIF version |
Description: Law of general founded recursion, part one. This may look like a restatement of the founded partial recursion theorems dropping the partial ordering requirement, but that change mandates that we use the Axiom of Infinity. (Contributed by Scott Fenton, 11-Sep-2023.) |
Ref | Expression |
---|---|
frr.1 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
frr1 | ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . . 4 ⊢ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} | |
2 | 1 | frrlem1 33398 | . . 3 ⊢ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
3 | frr.1 | . . 3 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
4 | 2, 3 | frrlem15 33417 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} ∧ ℎ ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))})) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
5 | 2, 3, 4 | frrlem9 33406 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) |
6 | eqid 2758 | . . 3 ⊢ ((𝐹 ↾ TrPred(𝑅, 𝐴, 𝑧)) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = ((𝐹 ↾ TrPred(𝑅, 𝐴, 𝑧)) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
7 | simpl 486 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Fr 𝐴) | |
8 | setlikespec 6152 | . . . . . 6 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V) | |
9 | 8 | ancoms 462 | . . . . 5 ⊢ ((𝑅 Se 𝐴 ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V) |
10 | 9 | adantll 713 | . . . 4 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V) |
11 | trpredpred 33327 | . . . 4 ⊢ (Pred(𝑅, 𝐴, 𝑧) ∈ V → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧)) |
13 | frrlem16 33418 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑎 ∈ TrPred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑎) ⊆ TrPred(𝑅, 𝐴, 𝑧)) | |
14 | trpredex 33336 | . . . 4 ⊢ TrPred(𝑅, 𝐴, 𝑧) ∈ V | |
15 | 14 | a1i 11 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → TrPred(𝑅, 𝐴, 𝑧) ∈ V) |
16 | trpredss 33328 | . . . 4 ⊢ (Pred(𝑅, 𝐴, 𝑧) ∈ V → TrPred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) | |
17 | 10, 16 | syl 17 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → TrPred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) |
18 | difss 4039 | . . . 4 ⊢ (𝐴 ∖ dom 𝐹) ⊆ 𝐴 | |
19 | frmin 33347 | . . . 4 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ ((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅)) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) | |
20 | 18, 19 | mpanr1 702 | . . 3 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) |
21 | 2, 3, 4, 6, 7, 12, 13, 15, 17, 20 | frrlem14 33411 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → dom 𝐹 = 𝐴) |
22 | df-fn 6343 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
23 | 5, 21, 22 | sylanbrc 586 | 1 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∃wex 1781 ∈ wcel 2111 {cab 2735 ≠ wne 2951 ∀wral 3070 ∃wrex 3071 Vcvv 3409 ∖ cdif 3857 ∪ cun 3858 ⊆ wss 3860 ∅c0 4227 {csn 4525 〈cop 4531 Fr wfr 5484 Se wse 5485 dom cdm 5528 ↾ cres 5530 Predcpred 6130 Fun wfun 6334 Fn wfn 6335 ‘cfv 6340 (class class class)co 7156 TrPredctrpred 33316 frecscfrecs 33392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 ax-inf2 9150 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-trpred 33317 df-frecs 33393 |
This theorem is referenced by: frr2 33420 frr3 33421 |
Copyright terms: Public domain | W3C validator |