Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} |
2 | 1 | frrlem1 8102 |
. . 3
⊢ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
3 | | frr.1 |
. . 3
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
4 | 2, 3 | frrlem15 9515 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} ∧ ℎ ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))})) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
5 | 2, 3, 4 | frrlem9 8110 |
. 2
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) |
6 | | eqid 2738 |
. . 3
⊢ ((𝐹 ↾ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = ((𝐹 ↾ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
7 | | simpl 483 |
. . 3
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Fr 𝐴) |
8 | | predres 6242 |
. . . . 5
⊢
Pred(𝑅, 𝐴, 𝑧) = Pred((𝑅 ↾ 𝐴), 𝐴, 𝑧) |
9 | | relres 5920 |
. . . . . 6
⊢ Rel
(𝑅 ↾ 𝐴) |
10 | | ssttrcl 9473 |
. . . . . 6
⊢ (Rel
(𝑅 ↾ 𝐴) → (𝑅 ↾ 𝐴) ⊆ t++(𝑅 ↾ 𝐴)) |
11 | | predrelss 6240 |
. . . . . 6
⊢ ((𝑅 ↾ 𝐴) ⊆ t++(𝑅 ↾ 𝐴) → Pred((𝑅 ↾ 𝐴), 𝐴, 𝑧) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
12 | 9, 10, 11 | mp2b 10 |
. . . . 5
⊢
Pred((𝑅 ↾
𝐴), 𝐴, 𝑧) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) |
13 | 8, 12 | eqsstri 3955 |
. . . 4
⊢
Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) |
14 | 13 | a1i 11 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
15 | | frrlem16 9516 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑎 ∈ Pred (t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑎) ⊆ Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧)) |
16 | | ttrclse 9485 |
. . . . 5
⊢ (𝑅 Se 𝐴 → t++(𝑅 ↾ 𝐴) Se 𝐴) |
17 | | setlikespec 6228 |
. . . . . 6
⊢ ((𝑧 ∈ 𝐴 ∧ t++(𝑅 ↾ 𝐴) Se 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∈ V) |
18 | 17 | ancoms 459 |
. . . . 5
⊢
((t++(𝑅 ↾
𝐴) Se 𝐴 ∧ 𝑧 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∈ V) |
19 | 16, 18 | sylan 580 |
. . . 4
⊢ ((𝑅 Se 𝐴 ∧ 𝑧 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∈ V) |
20 | 19 | adantll 711 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ∈ V) |
21 | | predss 6210 |
. . . 4
⊢
Pred(t++(𝑅 ↾
𝐴), 𝐴, 𝑧) ⊆ 𝐴 |
22 | 21 | a1i 11 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → Pred(t++(𝑅 ↾ 𝐴), 𝐴, 𝑧) ⊆ 𝐴) |
23 | | difss 4066 |
. . . 4
⊢ (𝐴 ∖ dom 𝐹) ⊆ 𝐴 |
24 | | frmin 9507 |
. . . 4
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ ((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅)) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) |
25 | 23, 24 | mpanr1 700 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) |
26 | 2, 3, 4, 6, 7, 14,
15, 20, 22, 25 | frrlem14 8115 |
. 2
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → dom 𝐹 = 𝐴) |
27 | | df-fn 6436 |
. 2
⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) |
28 | 5, 26, 27 | sylanbrc 583 |
1
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |