Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frr1 Structured version   Visualization version   GIF version

Theorem frr1 33419
 Description: Law of general founded recursion, part one. This may look like a restatement of the founded partial recursion theorems dropping the partial ordering requirement, but that change mandates that we use the Axiom of Infinity. (Contributed by Scott Fenton, 11-Sep-2023.)
Hypothesis
Ref Expression
frr.1 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frr1 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)

Proof of Theorem frr1
Dummy variables 𝑥 𝑦 𝑧 𝑢 𝑣 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . . 4 {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))}
21frrlem1 33398 . . 3 {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
3 frr.1 . . 3 𝐹 = frecs(𝑅, 𝐴, 𝐺)
42, 3frrlem15 33417 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} ∧ ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))})) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
52, 3, 4frrlem9 33406 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → Fun 𝐹)
6 eqid 2758 . . 3 ((𝐹 ↾ TrPred(𝑅, 𝐴, 𝑧)) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = ((𝐹 ↾ TrPred(𝑅, 𝐴, 𝑧)) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
7 simpl 486 . . 3 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
8 setlikespec 6152 . . . . . 6 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
98ancoms 462 . . . . 5 ((𝑅 Se 𝐴𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
109adantll 713 . . . 4 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
11 trpredpred 33327 . . . 4 (Pred(𝑅, 𝐴, 𝑧) ∈ V → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧))
1210, 11syl 17 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ TrPred(𝑅, 𝐴, 𝑧))
13 frrlem16 33418 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑎 ∈ TrPred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑎) ⊆ TrPred(𝑅, 𝐴, 𝑧))
14 trpredex 33336 . . . 4 TrPred(𝑅, 𝐴, 𝑧) ∈ V
1514a1i 11 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → TrPred(𝑅, 𝐴, 𝑧) ∈ V)
16 trpredss 33328 . . . 4 (Pred(𝑅, 𝐴, 𝑧) ∈ V → TrPred(𝑅, 𝐴, 𝑧) ⊆ 𝐴)
1710, 16syl 17 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → TrPred(𝑅, 𝐴, 𝑧) ⊆ 𝐴)
18 difss 4039 . . . 4 (𝐴 ∖ dom 𝐹) ⊆ 𝐴
19 frmin 33347 . . . 4 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅)) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
2018, 19mpanr1 702 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
212, 3, 4, 6, 7, 12, 13, 15, 17, 20frrlem14 33411 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → dom 𝐹 = 𝐴)
22 df-fn 6343 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
235, 21, 22sylanbrc 586 1 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2111  {cab 2735   ≠ wne 2951  ∀wral 3070  ∃wrex 3071  Vcvv 3409   ∖ cdif 3857   ∪ cun 3858   ⊆ wss 3860  ∅c0 4227  {csn 4525  ⟨cop 4531   Fr wfr 5484   Se wse 5485  dom cdm 5528   ↾ cres 5530  Predcpred 6130  Fun wfun 6334   Fn wfn 6335  ‘cfv 6340  (class class class)co 7156  TrPredctrpred 33316  frecscfrecs 33392 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pr 5302  ax-un 7465  ax-inf2 9150 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-om 7586  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-trpred 33317  df-frecs 33393 This theorem is referenced by:  frr2  33420  frr3  33421
 Copyright terms: Public domain W3C validator