MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr3g Structured version   Visualization version   GIF version

Theorem fpr3g 8218
Description: Functions defined by well-founded recursion over a partial order are identical up to relation, domain, and characteristic function. This version of frr3g 9652 does not require infinity. (Contributed by Scott Fenton, 24-Aug-2022.)
Assertion
Ref Expression
fpr3g (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝑦,𝐻   𝑦,𝑅

Proof of Theorem fpr3g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐴 = 𝐴)
2 r19.21v 3154 . . . . . 6 (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) ↔ (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
3 simprll 778 . . . . . . . . . . . 12 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))) → 𝐹 Fn 𝐴)
4 simprrl 780 . . . . . . . . . . . 12 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))) → 𝐺 Fn 𝐴)
5 predss 6257 . . . . . . . . . . . . 13 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴
6 fvreseq 6974 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
75, 6mpan2 691 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
83, 4, 7syl2anc 584 . . . . . . . . . . 11 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
98biimp3ar 1472 . . . . . . . . . 10 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
109oveq2d 7365 . . . . . . . . 9 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
11 fveq2 6822 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
12 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑧𝑦 = 𝑧)
13 predeq3 6253 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
1413reseq2d 5930 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
1512, 14oveq12d 7367 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
1611, 15eqeq12d 2745 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
17 simp2lr 1242 . . . . . . . . . 10 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
18 simp1 1136 . . . . . . . . . 10 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → 𝑧𝐴)
1916, 17, 18rspcdva 3578 . . . . . . . . 9 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
20 fveq2 6822 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
2113reseq2d 5930 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
2212, 21oveq12d 7367 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
2320, 22eqeq12d 2745 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))))
24 simp2rr 1244 . . . . . . . . . 10 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))
2523, 24, 18rspcdva 3578 . . . . . . . . 9 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
2610, 19, 253eqtr4d 2774 . . . . . . . 8 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹𝑧) = (𝐺𝑧))
27263exp 1119 . . . . . . 7 (𝑧𝐴 → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
2827a2d 29 . . . . . 6 (𝑧𝐴 → ((((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
292, 28biimtrid 242 . . . . 5 (𝑧𝐴 → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
30 fveq2 6822 . . . . . . 7 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
31 fveq2 6822 . . . . . . 7 (𝑧 = 𝑤 → (𝐺𝑧) = (𝐺𝑤))
3230, 31eqeq12d 2745 . . . . . 6 (𝑧 = 𝑤 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑤) = (𝐺𝑤)))
3332imbi2d 340 . . . . 5 (𝑧 = 𝑤 → ((((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) ↔ (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤))))
3429, 33frpoins2g 6293 . . . 4 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)))
35 r19.21v 3154 . . . 4 (∀𝑧𝐴 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) ↔ (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
3634, 35sylib 218 . . 3 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
37363impib 1116 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))
38 simp2l 1200 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 Fn 𝐴)
39 simp3l 1202 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐺 Fn 𝐴)
40 eqfnfv2 6966 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
4138, 39, 40syl2anc 584 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
421, 37, 41mpbir2and 713 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3903   Po wpo 5525   Fr wfr 5569   Se wse 5570  cres 5621  Predcpred 6248   Fn wfn 6477  cfv 6482  (class class class)co 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-fr 5572  df-se 5573  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-ov 7352
This theorem is referenced by:  fprlem1  8233  fpr3  8238
  Copyright terms: Public domain W3C validator