MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr3g Structured version   Visualization version   GIF version

Theorem fpr3g 8284
Description: Functions defined by well-founded recursion over a partial order are identical up to relation, domain, and characteristic function. This version of frr3g 9771 does not require infinity. (Contributed by Scott Fenton, 24-Aug-2022.)
Assertion
Ref Expression
fpr3g (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝑦,𝐻   𝑦,𝑅

Proof of Theorem fpr3g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2728 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐴 = 𝐴)
2 r19.21v 3174 . . . . . 6 (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) ↔ (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
3 simprll 778 . . . . . . . . . . . 12 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))) → 𝐹 Fn 𝐴)
4 simprrl 780 . . . . . . . . . . . 12 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))) → 𝐺 Fn 𝐴)
5 predss 6307 . . . . . . . . . . . . 13 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴
6 fvreseq 7043 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
75, 6mpan2 690 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
83, 4, 7syl2anc 583 . . . . . . . . . . 11 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
98biimp3ar 1467 . . . . . . . . . 10 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
109oveq2d 7430 . . . . . . . . 9 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
11 fveq2 6891 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
12 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑧𝑦 = 𝑧)
13 predeq3 6303 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
1413reseq2d 5979 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
1512, 14oveq12d 7432 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
1611, 15eqeq12d 2743 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
17 simp2lr 1239 . . . . . . . . . 10 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
18 simp1 1134 . . . . . . . . . 10 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → 𝑧𝐴)
1916, 17, 18rspcdva 3608 . . . . . . . . 9 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
20 fveq2 6891 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
2113reseq2d 5979 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
2212, 21oveq12d 7432 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
2320, 22eqeq12d 2743 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))))
24 simp2rr 1241 . . . . . . . . . 10 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))
2523, 24, 18rspcdva 3608 . . . . . . . . 9 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
2610, 19, 253eqtr4d 2777 . . . . . . . 8 ((𝑧𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹𝑧) = (𝐺𝑧))
27263exp 1117 . . . . . . 7 (𝑧𝐴 → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
2827a2d 29 . . . . . 6 (𝑧𝐴 → ((((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
292, 28biimtrid 241 . . . . 5 (𝑧𝐴 → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
30 fveq2 6891 . . . . . . 7 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
31 fveq2 6891 . . . . . . 7 (𝑧 = 𝑤 → (𝐺𝑧) = (𝐺𝑤))
3230, 31eqeq12d 2743 . . . . . 6 (𝑧 = 𝑤 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑤) = (𝐺𝑤)))
3332imbi2d 340 . . . . 5 (𝑧 = 𝑤 → ((((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) ↔ (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤))))
3429, 33frpoins2g 6345 . . . 4 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)))
35 r19.21v 3174 . . . 4 (∀𝑧𝐴 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) ↔ (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
3634, 35sylib 217 . . 3 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
37363impib 1114 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))
38 simp2l 1197 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 Fn 𝐴)
39 simp3l 1199 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐺 Fn 𝐴)
40 eqfnfv2 7035 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
4138, 39, 40syl2anc 583 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
421, 37, 41mpbir2and 712 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  wss 3944   Po wpo 5582   Fr wfr 5624   Se wse 5625  cres 5674  Predcpred 6298   Fn wfn 6537  cfv 6542  (class class class)co 7414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-fr 5627  df-se 5628  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-iota 6494  df-fun 6544  df-fn 6545  df-fv 6550  df-ov 7417
This theorem is referenced by:  fprlem1  8299  fpr3  8304
  Copyright terms: Public domain W3C validator