| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqidd 2738 | . 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐴 = 𝐴) | 
| 2 |  | r19.21v 3180 | . . . . . 6
⊢
(∀𝑤 ∈
Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹‘𝑤) = (𝐺‘𝑤)) ↔ (((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤))) | 
| 3 |  | simprll 779 | . . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))) → 𝐹 Fn 𝐴) | 
| 4 |  | simprrl 781 | . . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))) → 𝐺 Fn 𝐴) | 
| 5 |  | predss 6329 | . . . . . . . . . . . . 13
⊢
Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴 | 
| 6 |  | fvreseq 7060 | . . . . . . . . . . . . 13
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤))) | 
| 7 | 5, 6 | mpan2 691 | . . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤))) | 
| 8 | 3, 4, 7 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤))) | 
| 9 | 8 | biimp3ar 1472 | . . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) | 
| 10 | 9 | oveq2d 7447 | . . . . . . . . 9
⊢ ((𝑧 ∈ 𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤)) → (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) | 
| 11 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝐹‘𝑦) = (𝐹‘𝑧)) | 
| 12 |  | id 22 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) | 
| 13 |  | predeq3 6325 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧)) | 
| 14 | 13 | reseq2d 5997 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) | 
| 15 | 12, 14 | oveq12d 7449 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) | 
| 16 | 11, 15 | eqeq12d 2753 | . . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹‘𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))) | 
| 17 |  | simp2lr 1242 | . . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤)) → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) | 
| 18 |  | simp1 1137 | . . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤)) → 𝑧 ∈ 𝐴) | 
| 19 | 16, 17, 18 | rspcdva 3623 | . . . . . . . . 9
⊢ ((𝑧 ∈ 𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤)) → (𝐹‘𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) | 
| 20 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝐺‘𝑦) = (𝐺‘𝑧)) | 
| 21 | 13 | reseq2d 5997 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) | 
| 22 | 12, 21 | oveq12d 7449 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) | 
| 23 | 20, 22 | eqeq12d 2753 | . . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐺‘𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))) | 
| 24 |  | simp2rr 1244 | . . . . . . . . . 10
⊢ ((𝑧 ∈ 𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤)) → ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) | 
| 25 | 23, 24, 18 | rspcdva 3623 | . . . . . . . . 9
⊢ ((𝑧 ∈ 𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤)) → (𝐺‘𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) | 
| 26 | 10, 19, 25 | 3eqtr4d 2787 | . . . . . . . 8
⊢ ((𝑧 ∈ 𝐴 ∧ ((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤)) → (𝐹‘𝑧) = (𝐺‘𝑧)) | 
| 27 | 26 | 3exp 1120 | . . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤) → (𝐹‘𝑧) = (𝐺‘𝑧)))) | 
| 28 | 27 | a2d 29 | . . . . . 6
⊢ (𝑧 ∈ 𝐴 → ((((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹‘𝑤) = (𝐺‘𝑤)) → (((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹‘𝑧) = (𝐺‘𝑧)))) | 
| 29 | 2, 28 | biimtrid 242 | . . . . 5
⊢ (𝑧 ∈ 𝐴 → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹‘𝑤) = (𝐺‘𝑤)) → (((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹‘𝑧) = (𝐺‘𝑧)))) | 
| 30 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) | 
| 31 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑧 = 𝑤 → (𝐺‘𝑧) = (𝐺‘𝑤)) | 
| 32 | 30, 31 | eqeq12d 2753 | . . . . . 6
⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘𝑤) = (𝐺‘𝑤))) | 
| 33 | 32 | imbi2d 340 | . . . . 5
⊢ (𝑧 = 𝑤 → ((((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹‘𝑧) = (𝐺‘𝑧)) ↔ (((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹‘𝑤) = (𝐺‘𝑤)))) | 
| 34 | 29, 33 | frpoins2g 6366 | . . . 4
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑧 ∈ 𝐴 (((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹‘𝑧) = (𝐺‘𝑧))) | 
| 35 |  | r19.21v 3180 | . . . 4
⊢
(∀𝑧 ∈
𝐴 (((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹‘𝑧) = (𝐺‘𝑧)) ↔ (((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧))) | 
| 36 | 34, 35 | sylib 218 | . . 3
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → (((𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧))) | 
| 37 | 36 | 3impib 1117 | . 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧)) | 
| 38 |  | simp2l 1200 | . . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 Fn 𝐴) | 
| 39 |  | simp3l 1202 | . . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐺 Fn 𝐴) | 
| 40 |  | eqfnfv2 7052 | . . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧)))) | 
| 41 | 38, 39, 40 | syl2anc 584 | . 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘𝑧)))) | 
| 42 | 1, 37, 41 | mpbir2and 713 | 1
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺) |