MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr3g Structured version   Visualization version   GIF version

Theorem wfr3g 8303
Description: Functions defined by well-ordered recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011.)
Assertion
Ref Expression
wfr3g (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝑦,𝐻   𝑦,𝑅

Proof of Theorem wfr3g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 3103 . . . . . . 7 (∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2 fveq2 6882 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
3 fveq2 6882 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐺𝑧) = (𝐺𝑤))
42, 3eqeq12d 2740 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑤) = (𝐺𝑤)))
54imbi2d 340 . . . . . . . . . 10 (𝑧 = 𝑤 → ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) ↔ (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤))))
6 ra4v 3872 . . . . . . . . . . 11 (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
7 fveq2 6882 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
8 predeq3 6295 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
98reseq2d 5972 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
109fveq2d 6886 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
117, 10eqeq12d 2740 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
12 fveq2 6882 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
138reseq2d 5972 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
1413fveq2d 6886 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
1512, 14eqeq12d 2740 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))))
1611, 15anbi12d 630 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))))
1716rspcva 3602 . . . . . . . . . . . . . . 15 ((𝑧𝐴 ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))))
18 eqtr3 2750 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
1918ancoms 458 . . . . . . . . . . . . . . . . . . 19 (((𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
20 eqtr3 2750 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐺𝑧))
2120ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → ((𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → (𝐹𝑧) = (𝐺𝑧)))
2219, 21syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ((𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → (𝐹𝑧) = (𝐺𝑧)))
2322expimpd 453 . . . . . . . . . . . . . . . . 17 ((𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) → (((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐺𝑧)))
24 predss 6299 . . . . . . . . . . . . . . . . . . . . 21 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴
25 fvreseq 7032 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
2624, 25mpan2 688 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
2726biimpar 477 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
2827eqcomd 2730 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
2928fveq2d 6886 . . . . . . . . . . . . . . . . 17 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
3023, 29syl11 33 . . . . . . . . . . . . . . . 16 (((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹𝑧) = (𝐺𝑧)))
3130expd 415 . . . . . . . . . . . . . . 15 (((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3217, 31syl 17 . . . . . . . . . . . . . 14 ((𝑧𝐴 ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3332ex 412 . . . . . . . . . . . . 13 (𝑧𝐴 → (∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧)))))
3433impcomd 411 . . . . . . . . . . . 12 (𝑧𝐴 → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3534a2d 29 . . . . . . . . . . 11 (𝑧𝐴 → ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
366, 35syl5 34 . . . . . . . . . 10 (𝑧𝐴 → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
375, 36wfis2g 6351 . . . . . . . . 9 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)))
38 r19.21v 3171 . . . . . . . . 9 (∀𝑧𝐴 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) ↔ (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
3937, 38sylib 217 . . . . . . . 8 ((𝑅 We 𝐴𝑅 Se 𝐴) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
4039com12 32 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
411, 40sylan2br 594 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
4241an4s 657 . . . . 5 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
4342com12 32 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
44433impib 1113 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))
45 eqid 2724 . . 3 𝐴 = 𝐴
4644, 45jctil 519 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
47 eqfnfv2 7024 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
4847ad2ant2r 744 . . 3 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
49483adant1 1127 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
5046, 49mpbird 257 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  wss 3941   Se wse 5620   We wwe 5621  cres 5669  Predcpred 6290   Fn wfn 6529  cfv 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-iota 6486  df-fun 6536  df-fn 6537  df-fv 6542
This theorem is referenced by:  wfrlem5OLD  8309  wfr3  8333  wfr3OLD  8334
  Copyright terms: Public domain W3C validator