MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr3g Structured version   Visualization version   GIF version

Theorem wfr3g 8328
Description: Functions defined by well-ordered recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011.)
Assertion
Ref Expression
wfr3g (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝑦,𝐻   𝑦,𝑅

Proof of Theorem wfr3g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 3108 . . . . . . 7 (∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2 fveq2 6897 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
3 fveq2 6897 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐺𝑧) = (𝐺𝑤))
42, 3eqeq12d 2744 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑤) = (𝐺𝑤)))
54imbi2d 340 . . . . . . . . . 10 (𝑧 = 𝑤 → ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) ↔ (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤))))
6 ra4v 3878 . . . . . . . . . . 11 (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
7 fveq2 6897 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
8 predeq3 6309 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
98reseq2d 5985 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
109fveq2d 6901 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
117, 10eqeq12d 2744 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
12 fveq2 6897 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
138reseq2d 5985 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
1413fveq2d 6901 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
1512, 14eqeq12d 2744 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))))
1611, 15anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))))
1716rspcva 3607 . . . . . . . . . . . . . . 15 ((𝑧𝐴 ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))))
18 eqtr3 2754 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
1918ancoms 458 . . . . . . . . . . . . . . . . . . 19 (((𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
20 eqtr3 2754 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐺𝑧))
2120ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → ((𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → (𝐹𝑧) = (𝐺𝑧)))
2219, 21syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ((𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → (𝐹𝑧) = (𝐺𝑧)))
2322expimpd 453 . . . . . . . . . . . . . . . . 17 ((𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) → (((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐺𝑧)))
24 predss 6313 . . . . . . . . . . . . . . . . . . . . 21 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴
25 fvreseq 7049 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
2624, 25mpan2 690 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
2726biimpar 477 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
2827eqcomd 2734 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
2928fveq2d 6901 . . . . . . . . . . . . . . . . 17 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
3023, 29syl11 33 . . . . . . . . . . . . . . . 16 (((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹𝑧) = (𝐺𝑧)))
3130expd 415 . . . . . . . . . . . . . . 15 (((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3217, 31syl 17 . . . . . . . . . . . . . 14 ((𝑧𝐴 ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3332ex 412 . . . . . . . . . . . . 13 (𝑧𝐴 → (∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧)))))
3433impcomd 411 . . . . . . . . . . . 12 (𝑧𝐴 → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3534a2d 29 . . . . . . . . . . 11 (𝑧𝐴 → ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
366, 35syl5 34 . . . . . . . . . 10 (𝑧𝐴 → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
375, 36wfis2g 6365 . . . . . . . . 9 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)))
38 r19.21v 3176 . . . . . . . . 9 (∀𝑧𝐴 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) ↔ (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
3937, 38sylib 217 . . . . . . . 8 ((𝑅 We 𝐴𝑅 Se 𝐴) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
4039com12 32 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
411, 40sylan2br 594 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
4241an4s 659 . . . . 5 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
4342com12 32 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
44433impib 1114 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))
45 eqid 2728 . . 3 𝐴 = 𝐴
4644, 45jctil 519 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
47 eqfnfv2 7041 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
4847ad2ant2r 746 . . 3 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
49483adant1 1128 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
5046, 49mpbird 257 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3058  wss 3947   Se wse 5631   We wwe 5632  cres 5680  Predcpred 6304   Fn wfn 6543  cfv 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-iota 6500  df-fun 6550  df-fn 6551  df-fv 6556
This theorem is referenced by:  wfrlem5OLD  8334  wfr3  8358  wfr3OLD  8359
  Copyright terms: Public domain W3C validator