MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpr1 Structured version   Visualization version   GIF version

Theorem fpr1 8285
Description: Law of well-founded recursion over a partial order, part one. Establish the functionality and domain of the recursive function generator. Note that by requiring a partial order we can avoid using the axiom of infinity. (Contributed by Scott Fenton, 11-Sep-2023.)
Hypothesis
Ref Expression
fprr.1 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
fpr1 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)

Proof of Theorem fpr1
Dummy variables 𝑥 𝑦 𝑧 𝑢 𝑣 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
21frrlem1 8268 . . 3 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))}
3 fprr.1 . . 3 𝐹 = frecs(𝑅, 𝐴, 𝐺)
42, 3fprlem1 8282 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ∧ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → ((𝑏𝑔𝑢𝑏𝑣) → 𝑢 = 𝑣))
52, 3, 4frrlem9 8276 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → Fun 𝐹)
6 eqid 2730 . . 3 ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ {⟨𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
7 simp1 1136 . . 3 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
8 ssidd 3973 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(𝑅, 𝐴, 𝑧))
9 fprlem2 8283 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → ∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑧))
10 setlikespec 6301 . . . . 5 ((𝑧𝐴𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
1110ancoms 458 . . . 4 ((𝑅 Se 𝐴𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
12113ad2antl3 1188 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V)
13 predss 6285 . . . 4 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴
1413a1i 11 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴)
15 difssd 4103 . . . . 5 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → (𝐴 ∖ dom 𝐹) ⊆ 𝐴)
16 simpr 484 . . . . 5 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → (𝐴 ∖ dom 𝐹) ≠ ∅)
1715, 16jca 511 . . . 4 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅))
18 frpomin2 6317 . . . 4 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ ((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅)) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
1917, 18syldan 591 . . 3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅)
202, 3, 4, 6, 7, 8, 9, 12, 14, 19frrlem14 8281 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → dom 𝐹 = 𝐴)
21 df-fn 6517 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
225, 20, 21sylanbrc 583 1 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  cun 3915  wss 3917  c0 4299  {csn 4592  cop 4598   Po wpo 5547   Fr wfr 5591   Se wse 5592  dom cdm 5641  cres 5643  Predcpred 6276  Fun wfun 6508   Fn wfn 6509  cfv 6514  (class class class)co 7390  frecscfrecs 8262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-fr 5594  df-se 5595  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-frecs 8263
This theorem is referenced by:  fpr2  8286  fpr3  8287  wfr1  8308  on2recsfn  8634  norecfn  27860  norec2fn  27870
  Copyright terms: Public domain W3C validator