| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2737 | . . . 4
⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | 
| 2 | 1 | frrlem1 8311 | . . 3
⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} | 
| 3 |  | fprr.1 | . . 3
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | 
| 4 | 2, 3 | fprlem1 8325 | . . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ∧ ℎ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})) → ((𝑏𝑔𝑢 ∧ 𝑏ℎ𝑣) → 𝑢 = 𝑣)) | 
| 5 | 2, 3, 4 | frrlem9 8319 | . 2
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → Fun 𝐹) | 
| 6 |  | eqid 2737 | . . 3
⊢ ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) ∪ {〈𝑧, (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | 
| 7 |  | simp1 1137 | . . 3
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Fr 𝐴) | 
| 8 |  | ssidd 4007 | . . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ Pred(𝑅, 𝐴, 𝑧)) | 
| 9 |  | fprlem2 8326 | . . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → ∀𝑦 ∈ Pred (𝑅, 𝐴, 𝑧)Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑧)) | 
| 10 |  | setlikespec 6346 | . . . . 5
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V) | 
| 11 | 10 | ancoms 458 | . . . 4
⊢ ((𝑅 Se 𝐴 ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V) | 
| 12 | 11 | 3ad2antl3 1188 | . . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ∈ V) | 
| 13 |  | predss 6329 | . . . 4
⊢
Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴 | 
| 14 | 13 | a1i 11 | . . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) | 
| 15 |  | difssd 4137 | . . . . 5
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → (𝐴 ∖ dom 𝐹) ⊆ 𝐴) | 
| 16 |  | simpr 484 | . . . . 5
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → (𝐴 ∖ dom 𝐹) ≠ ∅) | 
| 17 | 15, 16 | jca 511 | . . . 4
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅)) | 
| 18 |  | frpomin2 6362 | . . . 4
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ ((𝐴 ∖ dom 𝐹) ⊆ 𝐴 ∧ (𝐴 ∖ dom 𝐹) ≠ ∅)) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) | 
| 19 | 17, 18 | syldan 591 | . . 3
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐴 ∖ dom 𝐹) ≠ ∅) → ∃𝑧 ∈ (𝐴 ∖ dom 𝐹)Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) | 
| 20 | 2, 3, 4, 6, 7, 8, 9, 12, 14, 19 | frrlem14 8324 | . 2
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → dom 𝐹 = 𝐴) | 
| 21 |  | df-fn 6564 | . 2
⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | 
| 22 | 5, 20, 21 | sylanbrc 583 | 1
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |