Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frr3g Structured version   Visualization version   GIF version

Theorem frr3g 33123
Description: Functions defined by founded recursion are identical up to relation, domain, and characteristic function. General version of frr3. (Contributed by Scott Fenton, 10-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frr3g (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝑦,𝐻   𝑦,𝑅

Proof of Theorem frr3g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ra4v 3870 . . . . . . . . . . 11 (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
2 r19.26 3172 . . . . . . . . . . . . . 14 (∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))
32anbi2i 624 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) ↔ ((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))))
4 fveq2 6672 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
5 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧𝑦 = 𝑧)
6 predeq3 6154 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
76reseq2d 5855 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
85, 7oveq12d 7176 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
94, 8eqeq12d 2839 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
10 fveq2 6672 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
116reseq2d 5855 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
125, 11oveq12d 7176 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
1310, 12eqeq12d 2839 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ((𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))))
149, 13anbi12d 632 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ((𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))))
1514rspcva 3623 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴 ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))))
16 eqtr3 2845 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐹𝑧))
1716eqcomd 2829 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
18 eqtr3 2845 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐺𝑧))
1918ex 415 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → ((𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → (𝐹𝑧) = (𝐺𝑧)))
2017, 19syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ((𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → (𝐹𝑧) = (𝐺𝑧)))
2120expimpd 456 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) → (((𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐺𝑧)))
22 predss 6157 . . . . . . . . . . . . . . . . . . . . . . 23 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴
23 fvreseq 6812 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
2422, 23mpan2 689 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
2524biimpar 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
2625oveq2d 7174 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
2726eqcomd 2829 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
2821, 27syl11 33 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹𝑧) = (𝐺𝑧)))
2928expd 418 . . . . . . . . . . . . . . . . 17 (((𝐹𝑧) = (𝑧𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝑧𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3015, 29syl 17 . . . . . . . . . . . . . . . 16 ((𝑧𝐴 ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3130ex 415 . . . . . . . . . . . . . . 15 (𝑧𝐴 → (∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧)))))
3231com23 86 . . . . . . . . . . . . . 14 (𝑧𝐴 → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧)))))
3332impd 413 . . . . . . . . . . . . 13 (𝑧𝐴 → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
343, 33syl5bir 245 . . . . . . . . . . . 12 (𝑧𝐴 → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3534a2d 29 . . . . . . . . . . 11 (𝑧𝐴 → ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
361, 35syl5 34 . . . . . . . . . 10 (𝑧𝐴 → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
37 fveq2 6672 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
38 fveq2 6672 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐺𝑧) = (𝐺𝑤))
3937, 38eqeq12d 2839 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑤) = (𝐺𝑤)))
4039imbi2d 343 . . . . . . . . . 10 (𝑧 = 𝑤 → ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) ↔ (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤))))
4136, 40frins2g 33093 . . . . . . . . 9 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)))
42 rsp 3207 . . . . . . . . 9 (∀𝑧𝐴 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) → (𝑧𝐴 → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
4341, 42syl 17 . . . . . . . 8 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑧𝐴 → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
4443com3r 87 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑧𝐴 → (𝐹𝑧) = (𝐺𝑧))))
4544an4s 658 . . . . . 6 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑧𝐴 → (𝐹𝑧) = (𝐺𝑧))))
4645com12 32 . . . . 5 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝑧𝐴 → (𝐹𝑧) = (𝐺𝑧))))
47463impib 1112 . . . 4 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝑧𝐴 → (𝐹𝑧) = (𝐺𝑧)))
4847ralrimiv 3183 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))
49 eqid 2823 . . 3 𝐴 = 𝐴
5048, 49jctil 522 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
51 eqfnfv2 6805 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
5251ad2ant2r 745 . . 3 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
53523adant1 1126 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
5450, 53mpbird 259 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝑦𝐻(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝑦𝐻(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wss 3938   Fr wfr 5513   Se wse 5514  cres 5559  Predcpred 6149   Fn wfn 6352  cfv 6357  (class class class)co 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-trpred 33059
This theorem is referenced by:  frrlem15  33144  frr3  33148
  Copyright terms: Public domain W3C validator