Proof of Theorem wsuclem
| Step | Hyp | Ref
| Expression |
| 1 | | wsuclem.1 |
. . 3
⊢ (𝜑 → 𝑅 We 𝐴) |
| 2 | | wsuclem.2 |
. . 3
⊢ (𝜑 → 𝑅 Se 𝐴) |
| 3 | | predss 6329 |
. . . 4
⊢
Pred(◡𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
| 4 | 3 | a1i 11 |
. . 3
⊢ (𝜑 → Pred(◡𝑅, 𝐴, 𝑋) ⊆ 𝐴) |
| 5 | | wsuclem.3 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 6 | | dfpred3g 6333 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → Pred(◡𝑅, 𝐴, 𝑋) = {𝑤 ∈ 𝐴 ∣ 𝑤◡𝑅𝑋}) |
| 7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝜑 → Pred(◡𝑅, 𝐴, 𝑋) = {𝑤 ∈ 𝐴 ∣ 𝑤◡𝑅𝑋}) |
| 8 | 5 | elexd 3504 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ V) |
| 9 | | wsuclem.4 |
. . . . 5
⊢ (𝜑 → ∃𝑤 ∈ 𝐴 𝑋𝑅𝑤) |
| 10 | | rabn0 4389 |
. . . . . . 7
⊢ ({𝑤 ∈ 𝐴 ∣ 𝑤◡𝑅𝑋} ≠ ∅ ↔ ∃𝑤 ∈ 𝐴 𝑤◡𝑅𝑋) |
| 11 | | brcnvg 5890 |
. . . . . . . . 9
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑋 ∈ V) → (𝑤◡𝑅𝑋 ↔ 𝑋𝑅𝑤)) |
| 12 | 11 | ancoms 458 |
. . . . . . . 8
⊢ ((𝑋 ∈ V ∧ 𝑤 ∈ 𝐴) → (𝑤◡𝑅𝑋 ↔ 𝑋𝑅𝑤)) |
| 13 | 12 | rexbidva 3177 |
. . . . . . 7
⊢ (𝑋 ∈ V → (∃𝑤 ∈ 𝐴 𝑤◡𝑅𝑋 ↔ ∃𝑤 ∈ 𝐴 𝑋𝑅𝑤)) |
| 14 | 10, 13 | bitrid 283 |
. . . . . 6
⊢ (𝑋 ∈ V → ({𝑤 ∈ 𝐴 ∣ 𝑤◡𝑅𝑋} ≠ ∅ ↔ ∃𝑤 ∈ 𝐴 𝑋𝑅𝑤)) |
| 15 | 14 | biimpar 477 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ ∃𝑤 ∈ 𝐴 𝑋𝑅𝑤) → {𝑤 ∈ 𝐴 ∣ 𝑤◡𝑅𝑋} ≠ ∅) |
| 16 | 8, 9, 15 | syl2anc 584 |
. . . 4
⊢ (𝜑 → {𝑤 ∈ 𝐴 ∣ 𝑤◡𝑅𝑋} ≠ ∅) |
| 17 | 7, 16 | eqnetrd 3008 |
. . 3
⊢ (𝜑 → Pred(◡𝑅, 𝐴, 𝑋) ≠ ∅) |
| 18 | | tz6.26 6368 |
. . 3
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (Pred(◡𝑅, 𝐴, 𝑋) ⊆ 𝐴 ∧ Pred(◡𝑅, 𝐴, 𝑋) ≠ ∅)) → ∃𝑥 ∈ Pred (◡𝑅, 𝐴, 𝑋)Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅) |
| 19 | 1, 2, 4, 17, 18 | syl22anc 839 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ Pred (◡𝑅, 𝐴, 𝑋)Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅) |
| 20 | | dfpred3g 6333 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → Pred(◡𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦◡𝑅𝑋}) |
| 21 | 5, 20 | syl 17 |
. . . 4
⊢ (𝜑 → Pred(◡𝑅, 𝐴, 𝑋) = {𝑦 ∈ 𝐴 ∣ 𝑦◡𝑅𝑋}) |
| 22 | 21 | rexeqdv 3327 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ Pred (◡𝑅, 𝐴, 𝑋)Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅ ↔ ∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦◡𝑅𝑋}Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅)) |
| 23 | | breq1 5146 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑦◡𝑅𝑋 ↔ 𝑥◡𝑅𝑋)) |
| 24 | 23 | rexrab 3702 |
. . . 4
⊢
(∃𝑥 ∈
{𝑦 ∈ 𝐴 ∣ 𝑦◡𝑅𝑋}Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑥◡𝑅𝑋 ∧ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅)) |
| 25 | | noel 4338 |
. . . . . . . . . . . 12
⊢ ¬
𝑦 ∈
∅ |
| 26 | | simp2r 1201 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅) ∧ 𝑦 ∈ Pred(◡𝑅, 𝐴, 𝑋)) → Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅) |
| 27 | 26 | eleq2d 2827 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅) ∧ 𝑦 ∈ Pred(◡𝑅, 𝐴, 𝑋)) → (𝑦 ∈ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) ↔ 𝑦 ∈ ∅)) |
| 28 | 25, 27 | mtbiri 327 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅) ∧ 𝑦 ∈ Pred(◡𝑅, 𝐴, 𝑋)) → ¬ 𝑦 ∈ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥)) |
| 29 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
| 30 | 29 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅) ∧ 𝑦 ∈ Pred(◡𝑅, 𝐴, 𝑋)) → 𝑥 ∈ V) |
| 31 | | simp3 1139 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅) ∧ 𝑦 ∈ Pred(◡𝑅, 𝐴, 𝑋)) → 𝑦 ∈ Pred(◡𝑅, 𝐴, 𝑋)) |
| 32 | | elpredg 6335 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ Pred(◡𝑅, 𝐴, 𝑋)) → (𝑦 ∈ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) ↔ 𝑦𝑅𝑥)) |
| 33 | 30, 31, 32 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅) ∧ 𝑦 ∈ Pred(◡𝑅, 𝐴, 𝑋)) → (𝑦 ∈ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) ↔ 𝑦𝑅𝑥)) |
| 34 | 28, 33 | mtbid 324 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅) ∧ 𝑦 ∈ Pred(◡𝑅, 𝐴, 𝑋)) → ¬ 𝑦𝑅𝑥) |
| 35 | 34 | 3expa 1119 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅)) ∧ 𝑦 ∈ Pred(◡𝑅, 𝐴, 𝑋)) → ¬ 𝑦𝑅𝑥) |
| 36 | 35 | ralrimiva 3146 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅)) → ∀𝑦 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥) |
| 37 | 36 | expr 456 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅ → ∀𝑦 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥)) |
| 38 | | simp1rl 1239 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥◡𝑅𝑋)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐴) |
| 39 | | simp1rr 1240 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥◡𝑅𝑋)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑥𝑅𝑦) → 𝑥◡𝑅𝑋) |
| 40 | 5 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥◡𝑅𝑋)) → 𝑋 ∈ 𝑉) |
| 41 | 40 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥◡𝑅𝑋)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑥𝑅𝑦) → 𝑋 ∈ 𝑉) |
| 42 | 29 | elpred 6338 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝑉 → (𝑥 ∈ Pred(◡𝑅, 𝐴, 𝑋) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥◡𝑅𝑋))) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥◡𝑅𝑋)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑥𝑅𝑦) → (𝑥 ∈ Pred(◡𝑅, 𝐴, 𝑋) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥◡𝑅𝑋))) |
| 44 | 38, 39, 43 | mpbir2and 713 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥◡𝑅𝑋)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ Pred(◡𝑅, 𝐴, 𝑋)) |
| 45 | | simp3 1139 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥◡𝑅𝑋)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑥𝑅𝑦) → 𝑥𝑅𝑦) |
| 46 | | breq1 5146 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑧𝑅𝑦 ↔ 𝑥𝑅𝑦)) |
| 47 | 46 | rspcev 3622 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ Pred(◡𝑅, 𝐴, 𝑋) ∧ 𝑥𝑅𝑦) → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦) |
| 48 | 44, 45, 47 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥◡𝑅𝑋)) ∧ 𝑦 ∈ 𝐴 ∧ 𝑥𝑅𝑦) → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦) |
| 49 | 48 | 3expia 1122 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥◡𝑅𝑋)) ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦)) |
| 50 | 49 | ralrimiva 3146 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑥◡𝑅𝑋)) → ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦)) |
| 51 | 50 | expr 456 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥◡𝑅𝑋 → ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦))) |
| 52 | 37, 51 | anim12d 609 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅ ∧ 𝑥◡𝑅𝑋) → (∀𝑦 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦)))) |
| 53 | 52 | ancomsd 465 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥◡𝑅𝑋 ∧ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅) → (∀𝑦 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦)))) |
| 54 | 53 | reximdva 3168 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 (𝑥◡𝑅𝑋 ∧ Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦)))) |
| 55 | 24, 54 | biimtrid 242 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝑦◡𝑅𝑋}Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅ → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦)))) |
| 56 | 22, 55 | sylbid 240 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ Pred (◡𝑅, 𝐴, 𝑋)Pred(𝑅, Pred(◡𝑅, 𝐴, 𝑋), 𝑥) = ∅ → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦)))) |
| 57 | 19, 56 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ Pred (◡𝑅, 𝐴, 𝑋) ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ Pred (◡𝑅, 𝐴, 𝑋)𝑧𝑅𝑦))) |