MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclselem1 Structured version   Visualization version   GIF version

Theorem ttrclselem1 9719
Description: Lemma for ttrclse 9721. Show that all finite ordinal function values of 𝐹 are subsets of 𝐴. (Contributed by Scott Fenton, 31-Oct-2024.)
Hypothesis
Ref Expression
ttrclselem.1 𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
Assertion
Ref Expression
ttrclselem1 (𝑁 ∈ ω → (𝐹𝑁) ⊆ 𝐴)
Distinct variable groups:   𝐴,𝑏,𝑤   𝑅,𝑏,𝑤   𝑋,𝑏
Allowed substitution hints:   𝐹(𝑤,𝑏)   𝑁(𝑤,𝑏)   𝑋(𝑤)

Proof of Theorem ttrclselem1
Dummy variables 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 7885 . 2 (𝑁 ∈ ω → (𝑁 = ∅ ∨ ∃𝑛 ∈ ω 𝑁 = suc 𝑛))
2 ttrclselem.1 . . . . . 6 𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
32fveq1i 6892 . . . . 5 (𝐹𝑁) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘𝑁)
4 fveq2 6891 . . . . 5 (𝑁 = ∅ → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘𝑁) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅))
53, 4eqtrid 2784 . . . 4 (𝑁 = ∅ → (𝐹𝑁) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅))
6 rdg0g 8426 . . . . . 6 (Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋))
7 predss 6308 . . . . . 6 Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴
86, 7eqsstrdi 4036 . . . . 5 (Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴)
9 rdg0n 8433 . . . . . 6 (¬ Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = ∅)
10 0ss 4396 . . . . . 6 ∅ ⊆ 𝐴
119, 10eqsstrdi 4036 . . . . 5 (¬ Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴)
128, 11pm2.61i 182 . . . 4 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴
135, 12eqsstrdi 4036 . . 3 (𝑁 = ∅ → (𝐹𝑁) ⊆ 𝐴)
14 nnon 7860 . . . . . . 7 (𝑛 ∈ ω → 𝑛 ∈ On)
15 nfcv 2903 . . . . . . . . 9 𝑏Pred(𝑅, 𝐴, 𝑋)
16 nfcv 2903 . . . . . . . . 9 𝑏𝑛
17 nfmpt1 5256 . . . . . . . . . . . . 13 𝑏(𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤))
1817, 15nfrdg 8413 . . . . . . . . . . . 12 𝑏rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
192, 18nfcxfr 2901 . . . . . . . . . . 11 𝑏𝐹
2019, 16nffv 6901 . . . . . . . . . 10 𝑏(𝐹𝑛)
21 nfcv 2903 . . . . . . . . . 10 𝑏Pred(𝑅, 𝐴, 𝑡)
2220, 21nfiun 5027 . . . . . . . . 9 𝑏 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡)
23 predeq3 6304 . . . . . . . . . . 11 (𝑤 = 𝑡 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑡))
2423cbviunv 5043 . . . . . . . . . 10 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤) = 𝑡𝑏 Pred(𝑅, 𝐴, 𝑡)
25 iuneq1 5013 . . . . . . . . . 10 (𝑏 = (𝐹𝑛) → 𝑡𝑏 Pred(𝑅, 𝐴, 𝑡) = 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡))
2624, 25eqtrid 2784 . . . . . . . . 9 (𝑏 = (𝐹𝑛) → 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤) = 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡))
2715, 16, 22, 2, 26rdgsucmptf 8427 . . . . . . . 8 ((𝑛 ∈ On ∧ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) = 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡))
28 iunss 5048 . . . . . . . . 9 ( 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴 ↔ ∀𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴)
29 predss 6308 . . . . . . . . . 10 Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴
3029a1i 11 . . . . . . . . 9 (𝑡 ∈ (𝐹𝑛) → Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴)
3128, 30mprgbir 3068 . . . . . . . 8 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴
3227, 31eqsstrdi 4036 . . . . . . 7 ((𝑛 ∈ On ∧ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴)
3314, 32sylan 580 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴)
3415, 16, 22, 2, 26rdgsucmptnf 8428 . . . . . . . 8 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V → (𝐹‘suc 𝑛) = ∅)
3534, 10eqsstrdi 4036 . . . . . . 7 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V → (𝐹‘suc 𝑛) ⊆ 𝐴)
3635adantl 482 . . . . . 6 ((𝑛 ∈ ω ∧ ¬ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴)
3733, 36pm2.61dan 811 . . . . 5 (𝑛 ∈ ω → (𝐹‘suc 𝑛) ⊆ 𝐴)
38 fveq2 6891 . . . . . 6 (𝑁 = suc 𝑛 → (𝐹𝑁) = (𝐹‘suc 𝑛))
3938sseq1d 4013 . . . . 5 (𝑁 = suc 𝑛 → ((𝐹𝑁) ⊆ 𝐴 ↔ (𝐹‘suc 𝑛) ⊆ 𝐴))
4037, 39syl5ibrcom 246 . . . 4 (𝑛 ∈ ω → (𝑁 = suc 𝑛 → (𝐹𝑁) ⊆ 𝐴))
4140rexlimiv 3148 . . 3 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → (𝐹𝑁) ⊆ 𝐴)
4213, 41jaoi 855 . 2 ((𝑁 = ∅ ∨ ∃𝑛 ∈ ω 𝑁 = suc 𝑛) → (𝐹𝑁) ⊆ 𝐴)
431, 42syl 17 1 (𝑁 ∈ ω → (𝐹𝑁) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  wss 3948  c0 4322   ciun 4997  cmpt 5231  Predcpred 6299  Oncon0 6364  suc csuc 6366  cfv 6543  ωcom 7854  reccrdg 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409
This theorem is referenced by:  ttrclselem2  9720
  Copyright terms: Public domain W3C validator