| Step | Hyp | Ref
| Expression |
| 1 | | nn0suc 7916 |
. 2
⊢ (𝑁 ∈ ω → (𝑁 = ∅ ∨ ∃𝑛 ∈ ω 𝑁 = suc 𝑛)) |
| 2 | | ttrclselem.1 |
. . . . . 6
⊢ 𝐹 = rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋)) |
| 3 | 2 | fveq1i 6907 |
. . . . 5
⊢ (𝐹‘𝑁) = (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘𝑁) |
| 4 | | fveq2 6906 |
. . . . 5
⊢ (𝑁 = ∅ → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘𝑁) = (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅)) |
| 5 | 3, 4 | eqtrid 2789 |
. . . 4
⊢ (𝑁 = ∅ → (𝐹‘𝑁) = (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅)) |
| 6 | | rdg0g 8467 |
. . . . . 6
⊢
(Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋)) |
| 7 | | predss 6329 |
. . . . . 6
⊢
Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
| 8 | 6, 7 | eqsstrdi 4028 |
. . . . 5
⊢
(Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴) |
| 9 | | rdg0n 8474 |
. . . . . 6
⊢ (¬
Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) =
∅) |
| 10 | | 0ss 4400 |
. . . . . 6
⊢ ∅
⊆ 𝐴 |
| 11 | 9, 10 | eqsstrdi 4028 |
. . . . 5
⊢ (¬
Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴) |
| 12 | 8, 11 | pm2.61i 182 |
. . . 4
⊢
(rec((𝑏 ∈ V
↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴 |
| 13 | 5, 12 | eqsstrdi 4028 |
. . 3
⊢ (𝑁 = ∅ → (𝐹‘𝑁) ⊆ 𝐴) |
| 14 | | nnon 7893 |
. . . . . . 7
⊢ (𝑛 ∈ ω → 𝑛 ∈ On) |
| 15 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑏Pred(𝑅, 𝐴, 𝑋) |
| 16 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑏𝑛 |
| 17 | | nfmpt1 5250 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)) |
| 18 | 17, 15 | nfrdg 8454 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋)) |
| 19 | 2, 18 | nfcxfr 2903 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏𝐹 |
| 20 | 19, 16 | nffv 6916 |
. . . . . . . . . 10
⊢
Ⅎ𝑏(𝐹‘𝑛) |
| 21 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑏Pred(𝑅, 𝐴, 𝑡) |
| 22 | 20, 21 | nfiun 5023 |
. . . . . . . . 9
⊢
Ⅎ𝑏∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) |
| 23 | | predeq3 6325 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑡 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑡)) |
| 24 | 23 | cbviunv 5040 |
. . . . . . . . . 10
⊢ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤) = ∪ 𝑡 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑡) |
| 25 | | iuneq1 5008 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑛) → ∪
𝑡 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑡) = ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡)) |
| 26 | 24, 25 | eqtrid 2789 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑛) → ∪
𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤) = ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡)) |
| 27 | 15, 16, 22, 2, 26 | rdgsucmptf 8468 |
. . . . . . . 8
⊢ ((𝑛 ∈ On ∧ ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) = ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡)) |
| 28 | | iunss 5045 |
. . . . . . . . 9
⊢ (∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴 ↔ ∀𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴) |
| 29 | | predss 6329 |
. . . . . . . . . 10
⊢
Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴 |
| 30 | 29 | a1i 11 |
. . . . . . . . 9
⊢ (𝑡 ∈ (𝐹‘𝑛) → Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴) |
| 31 | 28, 30 | mprgbir 3068 |
. . . . . . . 8
⊢ ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴 |
| 32 | 27, 31 | eqsstrdi 4028 |
. . . . . . 7
⊢ ((𝑛 ∈ On ∧ ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴) |
| 33 | 14, 32 | sylan 580 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴) |
| 34 | 15, 16, 22, 2, 26 | rdgsucmptnf 8469 |
. . . . . . . 8
⊢ (¬
∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V → (𝐹‘suc 𝑛) = ∅) |
| 35 | 34, 10 | eqsstrdi 4028 |
. . . . . . 7
⊢ (¬
∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V → (𝐹‘suc 𝑛) ⊆ 𝐴) |
| 36 | 35 | adantl 481 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ ¬
∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴) |
| 37 | 33, 36 | pm2.61dan 813 |
. . . . 5
⊢ (𝑛 ∈ ω → (𝐹‘suc 𝑛) ⊆ 𝐴) |
| 38 | | fveq2 6906 |
. . . . . 6
⊢ (𝑁 = suc 𝑛 → (𝐹‘𝑁) = (𝐹‘suc 𝑛)) |
| 39 | 38 | sseq1d 4015 |
. . . . 5
⊢ (𝑁 = suc 𝑛 → ((𝐹‘𝑁) ⊆ 𝐴 ↔ (𝐹‘suc 𝑛) ⊆ 𝐴)) |
| 40 | 37, 39 | syl5ibrcom 247 |
. . . 4
⊢ (𝑛 ∈ ω → (𝑁 = suc 𝑛 → (𝐹‘𝑁) ⊆ 𝐴)) |
| 41 | 40 | rexlimiv 3148 |
. . 3
⊢
(∃𝑛 ∈
ω 𝑁 = suc 𝑛 → (𝐹‘𝑁) ⊆ 𝐴) |
| 42 | 13, 41 | jaoi 858 |
. 2
⊢ ((𝑁 = ∅ ∨ ∃𝑛 ∈ ω 𝑁 = suc 𝑛) → (𝐹‘𝑁) ⊆ 𝐴) |
| 43 | 1, 42 | syl 17 |
1
⊢ (𝑁 ∈ ω → (𝐹‘𝑁) ⊆ 𝐴) |