Step | Hyp | Ref
| Expression |
1 | | nn0suc 7713 |
. 2
⊢ (𝑁 ∈ ω → (𝑁 = ∅ ∨ ∃𝑛 ∈ ω 𝑁 = suc 𝑛)) |
2 | | ttrclselem.1 |
. . . . . 6
⊢ 𝐹 = rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋)) |
3 | 2 | fveq1i 6754 |
. . . . 5
⊢ (𝐹‘𝑁) = (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘𝑁) |
4 | | fveq2 6753 |
. . . . 5
⊢ (𝑁 = ∅ → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘𝑁) = (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅)) |
5 | 3, 4 | eqtrid 2791 |
. . . 4
⊢ (𝑁 = ∅ → (𝐹‘𝑁) = (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅)) |
6 | | rdg0g 8205 |
. . . . . 6
⊢
(Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋)) |
7 | | predss 6196 |
. . . . . 6
⊢
Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴 |
8 | 6, 7 | eqsstrdi 3972 |
. . . . 5
⊢
(Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴) |
9 | | rdg0n 33573 |
. . . . . 6
⊢ (¬
Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) =
∅) |
10 | | 0ss 4328 |
. . . . . 6
⊢ ∅
⊆ 𝐴 |
11 | 9, 10 | eqsstrdi 3972 |
. . . . 5
⊢ (¬
Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴) |
12 | 8, 11 | pm2.61i 185 |
. . . 4
⊢
(rec((𝑏 ∈ V
↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴 |
13 | 5, 12 | eqsstrdi 3972 |
. . 3
⊢ (𝑁 = ∅ → (𝐹‘𝑁) ⊆ 𝐴) |
14 | | nnon 7690 |
. . . . . . 7
⊢ (𝑛 ∈ ω → 𝑛 ∈ On) |
15 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑏Pred(𝑅, 𝐴, 𝑋) |
16 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑏𝑛 |
17 | | nfmpt1 5177 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏(𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)) |
18 | 17, 15 | nfrdg 8192 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋)) |
19 | 2, 18 | nfcxfr 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏𝐹 |
20 | 19, 16 | nffv 6763 |
. . . . . . . . . 10
⊢
Ⅎ𝑏(𝐹‘𝑛) |
21 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑏Pred(𝑅, 𝐴, 𝑡) |
22 | 20, 21 | nfiun 4951 |
. . . . . . . . 9
⊢
Ⅎ𝑏∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) |
23 | | predeq3 6193 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑡 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑡)) |
24 | 23 | cbviunv 4966 |
. . . . . . . . . 10
⊢ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤) = ∪ 𝑡 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑡) |
25 | | iuneq1 4937 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑛) → ∪
𝑡 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑡) = ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡)) |
26 | 24, 25 | eqtrid 2791 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑛) → ∪
𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤) = ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡)) |
27 | 15, 16, 22, 2, 26 | rdgsucmptf 8206 |
. . . . . . . 8
⊢ ((𝑛 ∈ On ∧ ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) = ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡)) |
28 | | iunss 4971 |
. . . . . . . . 9
⊢ (∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴 ↔ ∀𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴) |
29 | | predss 6196 |
. . . . . . . . . 10
⊢
Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴 |
30 | 29 | a1i 11 |
. . . . . . . . 9
⊢ (𝑡 ∈ (𝐹‘𝑛) → Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴) |
31 | 28, 30 | mprgbir 3079 |
. . . . . . . 8
⊢ ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴 |
32 | 27, 31 | eqsstrdi 3972 |
. . . . . . 7
⊢ ((𝑛 ∈ On ∧ ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴) |
33 | 14, 32 | sylan 583 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ ∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴) |
34 | 15, 16, 22, 2, 26 | rdgsucmptnf 8207 |
. . . . . . . 8
⊢ (¬
∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V → (𝐹‘suc 𝑛) = ∅) |
35 | 34, 10 | eqsstrdi 3972 |
. . . . . . 7
⊢ (¬
∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V → (𝐹‘suc 𝑛) ⊆ 𝐴) |
36 | 35 | adantl 485 |
. . . . . 6
⊢ ((𝑛 ∈ ω ∧ ¬
∪ 𝑡 ∈ (𝐹‘𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴) |
37 | 33, 36 | pm2.61dan 813 |
. . . . 5
⊢ (𝑛 ∈ ω → (𝐹‘suc 𝑛) ⊆ 𝐴) |
38 | | fveq2 6753 |
. . . . . 6
⊢ (𝑁 = suc 𝑛 → (𝐹‘𝑁) = (𝐹‘suc 𝑛)) |
39 | 38 | sseq1d 3949 |
. . . . 5
⊢ (𝑁 = suc 𝑛 → ((𝐹‘𝑁) ⊆ 𝐴 ↔ (𝐹‘suc 𝑛) ⊆ 𝐴)) |
40 | 37, 39 | syl5ibrcom 250 |
. . . 4
⊢ (𝑛 ∈ ω → (𝑁 = suc 𝑛 → (𝐹‘𝑁) ⊆ 𝐴)) |
41 | 40 | rexlimiv 3209 |
. . 3
⊢
(∃𝑛 ∈
ω 𝑁 = suc 𝑛 → (𝐹‘𝑁) ⊆ 𝐴) |
42 | 13, 41 | jaoi 857 |
. 2
⊢ ((𝑁 = ∅ ∨ ∃𝑛 ∈ ω 𝑁 = suc 𝑛) → (𝐹‘𝑁) ⊆ 𝐴) |
43 | 1, 42 | syl 17 |
1
⊢ (𝑁 ∈ ω → (𝐹‘𝑁) ⊆ 𝐴) |