MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclselem1 Structured version   Visualization version   GIF version

Theorem ttrclselem1 9685
Description: Lemma for ttrclse 9687. Show that all finite ordinal function values of 𝐹 are subsets of 𝐴. (Contributed by Scott Fenton, 31-Oct-2024.)
Hypothesis
Ref Expression
ttrclselem.1 𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
Assertion
Ref Expression
ttrclselem1 (𝑁 ∈ ω → (𝐹𝑁) ⊆ 𝐴)
Distinct variable groups:   𝐴,𝑏,𝑤   𝑅,𝑏,𝑤   𝑋,𝑏
Allowed substitution hints:   𝐹(𝑤,𝑏)   𝑁(𝑤,𝑏)   𝑋(𝑤)

Proof of Theorem ttrclselem1
Dummy variables 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 7873 . 2 (𝑁 ∈ ω → (𝑁 = ∅ ∨ ∃𝑛 ∈ ω 𝑁 = suc 𝑛))
2 ttrclselem.1 . . . . . 6 𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
32fveq1i 6862 . . . . 5 (𝐹𝑁) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘𝑁)
4 fveq2 6861 . . . . 5 (𝑁 = ∅ → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘𝑁) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅))
53, 4eqtrid 2777 . . . 4 (𝑁 = ∅ → (𝐹𝑁) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅))
6 rdg0g 8398 . . . . . 6 (Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋))
7 predss 6285 . . . . . 6 Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴
86, 7eqsstrdi 3994 . . . . 5 (Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴)
9 rdg0n 8405 . . . . . 6 (¬ Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = ∅)
10 0ss 4366 . . . . . 6 ∅ ⊆ 𝐴
119, 10eqsstrdi 3994 . . . . 5 (¬ Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴)
128, 11pm2.61i 182 . . . 4 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴
135, 12eqsstrdi 3994 . . 3 (𝑁 = ∅ → (𝐹𝑁) ⊆ 𝐴)
14 nnon 7851 . . . . . . 7 (𝑛 ∈ ω → 𝑛 ∈ On)
15 nfcv 2892 . . . . . . . . 9 𝑏Pred(𝑅, 𝐴, 𝑋)
16 nfcv 2892 . . . . . . . . 9 𝑏𝑛
17 nfmpt1 5209 . . . . . . . . . . . . 13 𝑏(𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤))
1817, 15nfrdg 8385 . . . . . . . . . . . 12 𝑏rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
192, 18nfcxfr 2890 . . . . . . . . . . 11 𝑏𝐹
2019, 16nffv 6871 . . . . . . . . . 10 𝑏(𝐹𝑛)
21 nfcv 2892 . . . . . . . . . 10 𝑏Pred(𝑅, 𝐴, 𝑡)
2220, 21nfiun 4990 . . . . . . . . 9 𝑏 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡)
23 predeq3 6281 . . . . . . . . . . 11 (𝑤 = 𝑡 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑡))
2423cbviunv 5007 . . . . . . . . . 10 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤) = 𝑡𝑏 Pred(𝑅, 𝐴, 𝑡)
25 iuneq1 4975 . . . . . . . . . 10 (𝑏 = (𝐹𝑛) → 𝑡𝑏 Pred(𝑅, 𝐴, 𝑡) = 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡))
2624, 25eqtrid 2777 . . . . . . . . 9 (𝑏 = (𝐹𝑛) → 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤) = 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡))
2715, 16, 22, 2, 26rdgsucmptf 8399 . . . . . . . 8 ((𝑛 ∈ On ∧ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) = 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡))
28 iunss 5012 . . . . . . . . 9 ( 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴 ↔ ∀𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴)
29 predss 6285 . . . . . . . . . 10 Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴
3029a1i 11 . . . . . . . . 9 (𝑡 ∈ (𝐹𝑛) → Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴)
3128, 30mprgbir 3052 . . . . . . . 8 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴
3227, 31eqsstrdi 3994 . . . . . . 7 ((𝑛 ∈ On ∧ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴)
3314, 32sylan 580 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴)
3415, 16, 22, 2, 26rdgsucmptnf 8400 . . . . . . . 8 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V → (𝐹‘suc 𝑛) = ∅)
3534, 10eqsstrdi 3994 . . . . . . 7 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V → (𝐹‘suc 𝑛) ⊆ 𝐴)
3635adantl 481 . . . . . 6 ((𝑛 ∈ ω ∧ ¬ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴)
3733, 36pm2.61dan 812 . . . . 5 (𝑛 ∈ ω → (𝐹‘suc 𝑛) ⊆ 𝐴)
38 fveq2 6861 . . . . . 6 (𝑁 = suc 𝑛 → (𝐹𝑁) = (𝐹‘suc 𝑛))
3938sseq1d 3981 . . . . 5 (𝑁 = suc 𝑛 → ((𝐹𝑁) ⊆ 𝐴 ↔ (𝐹‘suc 𝑛) ⊆ 𝐴))
4037, 39syl5ibrcom 247 . . . 4 (𝑛 ∈ ω → (𝑁 = suc 𝑛 → (𝐹𝑁) ⊆ 𝐴))
4140rexlimiv 3128 . . 3 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → (𝐹𝑁) ⊆ 𝐴)
4213, 41jaoi 857 . 2 ((𝑁 = ∅ ∨ ∃𝑛 ∈ ω 𝑁 = suc 𝑛) → (𝐹𝑁) ⊆ 𝐴)
431, 42syl 17 1 (𝑁 ∈ ω → (𝐹𝑁) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  wss 3917  c0 4299   ciun 4958  cmpt 5191  Predcpred 6276  Oncon0 6335  suc csuc 6337  cfv 6514  ωcom 7845  reccrdg 8380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381
This theorem is referenced by:  ttrclselem2  9686
  Copyright terms: Public domain W3C validator