MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclselem1 Structured version   Visualization version   GIF version

Theorem ttrclselem1 9472
Description: Lemma for ttrclse 9474. Show that all finite ordinal function values of 𝐹 are subsets of 𝐴. (Contributed by Scott Fenton, 31-Oct-2024.)
Hypothesis
Ref Expression
ttrclselem.1 𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
Assertion
Ref Expression
ttrclselem1 (𝑁 ∈ ω → (𝐹𝑁) ⊆ 𝐴)
Distinct variable groups:   𝐴,𝑏,𝑤   𝑅,𝑏,𝑤   𝑋,𝑏
Allowed substitution hints:   𝐹(𝑤,𝑏)   𝑁(𝑤,𝑏)   𝑋(𝑤)

Proof of Theorem ttrclselem1
Dummy variables 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 7734 . 2 (𝑁 ∈ ω → (𝑁 = ∅ ∨ ∃𝑛 ∈ ω 𝑁 = suc 𝑛))
2 ttrclselem.1 . . . . . 6 𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
32fveq1i 6769 . . . . 5 (𝐹𝑁) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘𝑁)
4 fveq2 6768 . . . . 5 (𝑁 = ∅ → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘𝑁) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅))
53, 4eqtrid 2790 . . . 4 (𝑁 = ∅ → (𝐹𝑁) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅))
6 rdg0g 8247 . . . . . 6 (Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋))
7 predss 6205 . . . . . 6 Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴
86, 7eqsstrdi 3976 . . . . 5 (Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴)
9 rdg0n 8254 . . . . . 6 (¬ Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = ∅)
10 0ss 4332 . . . . . 6 ∅ ⊆ 𝐴
119, 10eqsstrdi 3976 . . . . 5 (¬ Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴)
128, 11pm2.61i 182 . . . 4 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴
135, 12eqsstrdi 3976 . . 3 (𝑁 = ∅ → (𝐹𝑁) ⊆ 𝐴)
14 nnon 7710 . . . . . . 7 (𝑛 ∈ ω → 𝑛 ∈ On)
15 nfcv 2907 . . . . . . . . 9 𝑏Pred(𝑅, 𝐴, 𝑋)
16 nfcv 2907 . . . . . . . . 9 𝑏𝑛
17 nfmpt1 5183 . . . . . . . . . . . . 13 𝑏(𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤))
1817, 15nfrdg 8234 . . . . . . . . . . . 12 𝑏rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
192, 18nfcxfr 2905 . . . . . . . . . . 11 𝑏𝐹
2019, 16nffv 6778 . . . . . . . . . 10 𝑏(𝐹𝑛)
21 nfcv 2907 . . . . . . . . . 10 𝑏Pred(𝑅, 𝐴, 𝑡)
2220, 21nfiun 4956 . . . . . . . . 9 𝑏 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡)
23 predeq3 6201 . . . . . . . . . . 11 (𝑤 = 𝑡 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑡))
2423cbviunv 4971 . . . . . . . . . 10 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤) = 𝑡𝑏 Pred(𝑅, 𝐴, 𝑡)
25 iuneq1 4942 . . . . . . . . . 10 (𝑏 = (𝐹𝑛) → 𝑡𝑏 Pred(𝑅, 𝐴, 𝑡) = 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡))
2624, 25eqtrid 2790 . . . . . . . . 9 (𝑏 = (𝐹𝑛) → 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤) = 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡))
2715, 16, 22, 2, 26rdgsucmptf 8248 . . . . . . . 8 ((𝑛 ∈ On ∧ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) = 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡))
28 iunss 4976 . . . . . . . . 9 ( 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴 ↔ ∀𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴)
29 predss 6205 . . . . . . . . . 10 Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴
3029a1i 11 . . . . . . . . 9 (𝑡 ∈ (𝐹𝑛) → Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴)
3128, 30mprgbir 3079 . . . . . . . 8 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴
3227, 31eqsstrdi 3976 . . . . . . 7 ((𝑛 ∈ On ∧ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴)
3314, 32sylan 580 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴)
3415, 16, 22, 2, 26rdgsucmptnf 8249 . . . . . . . 8 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V → (𝐹‘suc 𝑛) = ∅)
3534, 10eqsstrdi 3976 . . . . . . 7 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V → (𝐹‘suc 𝑛) ⊆ 𝐴)
3635adantl 482 . . . . . 6 ((𝑛 ∈ ω ∧ ¬ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴)
3733, 36pm2.61dan 810 . . . . 5 (𝑛 ∈ ω → (𝐹‘suc 𝑛) ⊆ 𝐴)
38 fveq2 6768 . . . . . 6 (𝑁 = suc 𝑛 → (𝐹𝑁) = (𝐹‘suc 𝑛))
3938sseq1d 3953 . . . . 5 (𝑁 = suc 𝑛 → ((𝐹𝑁) ⊆ 𝐴 ↔ (𝐹‘suc 𝑛) ⊆ 𝐴))
4037, 39syl5ibrcom 246 . . . 4 (𝑛 ∈ ω → (𝑁 = suc 𝑛 → (𝐹𝑁) ⊆ 𝐴))
4140rexlimiv 3208 . . 3 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → (𝐹𝑁) ⊆ 𝐴)
4213, 41jaoi 854 . 2 ((𝑁 = ∅ ∨ ∃𝑛 ∈ ω 𝑁 = suc 𝑛) → (𝐹𝑁) ⊆ 𝐴)
431, 42syl 17 1 (𝑁 ∈ ω → (𝐹𝑁) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3431  wss 3888  c0 4258   ciun 4926  cmpt 5158  Predcpred 6196  Oncon0 6261  suc csuc 6263  cfv 6428  ωcom 7704  reccrdg 8229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-ov 7272  df-om 7705  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230
This theorem is referenced by:  ttrclselem2  9473
  Copyright terms: Public domain W3C validator