MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclselem1 Structured version   Visualization version   GIF version

Theorem ttrclselem1 9765
Description: Lemma for ttrclse 9767. Show that all finite ordinal function values of 𝐹 are subsets of 𝐴. (Contributed by Scott Fenton, 31-Oct-2024.)
Hypothesis
Ref Expression
ttrclselem.1 𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
Assertion
Ref Expression
ttrclselem1 (𝑁 ∈ ω → (𝐹𝑁) ⊆ 𝐴)
Distinct variable groups:   𝐴,𝑏,𝑤   𝑅,𝑏,𝑤   𝑋,𝑏
Allowed substitution hints:   𝐹(𝑤,𝑏)   𝑁(𝑤,𝑏)   𝑋(𝑤)

Proof of Theorem ttrclselem1
Dummy variables 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 7916 . 2 (𝑁 ∈ ω → (𝑁 = ∅ ∨ ∃𝑛 ∈ ω 𝑁 = suc 𝑛))
2 ttrclselem.1 . . . . . 6 𝐹 = rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
32fveq1i 6907 . . . . 5 (𝐹𝑁) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘𝑁)
4 fveq2 6906 . . . . 5 (𝑁 = ∅ → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘𝑁) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅))
53, 4eqtrid 2789 . . . 4 (𝑁 = ∅ → (𝐹𝑁) = (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅))
6 rdg0g 8467 . . . . . 6 (Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = Pred(𝑅, 𝐴, 𝑋))
7 predss 6329 . . . . . 6 Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐴
86, 7eqsstrdi 4028 . . . . 5 (Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴)
9 rdg0n 8474 . . . . . 6 (¬ Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) = ∅)
10 0ss 4400 . . . . . 6 ∅ ⊆ 𝐴
119, 10eqsstrdi 4028 . . . . 5 (¬ Pred(𝑅, 𝐴, 𝑋) ∈ V → (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴)
128, 11pm2.61i 182 . . . 4 (rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))‘∅) ⊆ 𝐴
135, 12eqsstrdi 4028 . . 3 (𝑁 = ∅ → (𝐹𝑁) ⊆ 𝐴)
14 nnon 7893 . . . . . . 7 (𝑛 ∈ ω → 𝑛 ∈ On)
15 nfcv 2905 . . . . . . . . 9 𝑏Pred(𝑅, 𝐴, 𝑋)
16 nfcv 2905 . . . . . . . . 9 𝑏𝑛
17 nfmpt1 5250 . . . . . . . . . . . . 13 𝑏(𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤))
1817, 15nfrdg 8454 . . . . . . . . . . . 12 𝑏rec((𝑏 ∈ V ↦ 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋))
192, 18nfcxfr 2903 . . . . . . . . . . 11 𝑏𝐹
2019, 16nffv 6916 . . . . . . . . . 10 𝑏(𝐹𝑛)
21 nfcv 2905 . . . . . . . . . 10 𝑏Pred(𝑅, 𝐴, 𝑡)
2220, 21nfiun 5023 . . . . . . . . 9 𝑏 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡)
23 predeq3 6325 . . . . . . . . . . 11 (𝑤 = 𝑡 → Pred(𝑅, 𝐴, 𝑤) = Pred(𝑅, 𝐴, 𝑡))
2423cbviunv 5040 . . . . . . . . . 10 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤) = 𝑡𝑏 Pred(𝑅, 𝐴, 𝑡)
25 iuneq1 5008 . . . . . . . . . 10 (𝑏 = (𝐹𝑛) → 𝑡𝑏 Pred(𝑅, 𝐴, 𝑡) = 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡))
2624, 25eqtrid 2789 . . . . . . . . 9 (𝑏 = (𝐹𝑛) → 𝑤𝑏 Pred(𝑅, 𝐴, 𝑤) = 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡))
2715, 16, 22, 2, 26rdgsucmptf 8468 . . . . . . . 8 ((𝑛 ∈ On ∧ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) = 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡))
28 iunss 5045 . . . . . . . . 9 ( 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴 ↔ ∀𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴)
29 predss 6329 . . . . . . . . . 10 Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴
3029a1i 11 . . . . . . . . 9 (𝑡 ∈ (𝐹𝑛) → Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴)
3128, 30mprgbir 3068 . . . . . . . 8 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ⊆ 𝐴
3227, 31eqsstrdi 4028 . . . . . . 7 ((𝑛 ∈ On ∧ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴)
3314, 32sylan 580 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴)
3415, 16, 22, 2, 26rdgsucmptnf 8469 . . . . . . . 8 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V → (𝐹‘suc 𝑛) = ∅)
3534, 10eqsstrdi 4028 . . . . . . 7 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V → (𝐹‘suc 𝑛) ⊆ 𝐴)
3635adantl 481 . . . . . 6 ((𝑛 ∈ ω ∧ ¬ 𝑡 ∈ (𝐹𝑛)Pred(𝑅, 𝐴, 𝑡) ∈ V) → (𝐹‘suc 𝑛) ⊆ 𝐴)
3733, 36pm2.61dan 813 . . . . 5 (𝑛 ∈ ω → (𝐹‘suc 𝑛) ⊆ 𝐴)
38 fveq2 6906 . . . . . 6 (𝑁 = suc 𝑛 → (𝐹𝑁) = (𝐹‘suc 𝑛))
3938sseq1d 4015 . . . . 5 (𝑁 = suc 𝑛 → ((𝐹𝑁) ⊆ 𝐴 ↔ (𝐹‘suc 𝑛) ⊆ 𝐴))
4037, 39syl5ibrcom 247 . . . 4 (𝑛 ∈ ω → (𝑁 = suc 𝑛 → (𝐹𝑁) ⊆ 𝐴))
4140rexlimiv 3148 . . 3 (∃𝑛 ∈ ω 𝑁 = suc 𝑛 → (𝐹𝑁) ⊆ 𝐴)
4213, 41jaoi 858 . 2 ((𝑁 = ∅ ∨ ∃𝑛 ∈ ω 𝑁 = suc 𝑛) → (𝐹𝑁) ⊆ 𝐴)
431, 42syl 17 1 (𝑁 ∈ ω → (𝐹𝑁) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480  wss 3951  c0 4333   ciun 4991  cmpt 5225  Predcpred 6320  Oncon0 6384  suc csuc 6386  cfv 6561  ωcom 7887  reccrdg 8449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450
This theorem is referenced by:  ttrclselem2  9766
  Copyright terms: Public domain W3C validator