Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prv Structured version   Visualization version   GIF version

Theorem prv 35450
Description: The "proves" relation on a set. A wff encoded as 𝑈 is true in a model 𝑀 iff for every valuation 𝑠 ∈ (𝑀m ω), the interpretation of the wff using the membership relation on 𝑀 is true. (Contributed by AV, 5-Nov-2023.)
Assertion
Ref Expression
prv ((𝑀𝑉𝑈𝑊) → (𝑀𝑈 ↔ (𝑀 Sat 𝑈) = (𝑀m ω)))

Proof of Theorem prv
Dummy variables 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7414 . . 3 ((𝑚 = 𝑀𝑢 = 𝑈) → (𝑚 Sat 𝑢) = (𝑀 Sat 𝑈))
2 simpl 482 . . . 4 ((𝑚 = 𝑀𝑢 = 𝑈) → 𝑚 = 𝑀)
32oveq1d 7420 . . 3 ((𝑚 = 𝑀𝑢 = 𝑈) → (𝑚m ω) = (𝑀m ω))
41, 3eqeq12d 2751 . 2 ((𝑚 = 𝑀𝑢 = 𝑈) → ((𝑚 Sat 𝑢) = (𝑚m ω) ↔ (𝑀 Sat 𝑈) = (𝑀m ω)))
5 df-prv 35368 . 2 ⊧ = {⟨𝑚, 𝑢⟩ ∣ (𝑚 Sat 𝑢) = (𝑚m ω)}
64, 5brabga 5509 1 ((𝑀𝑉𝑈𝑊) → (𝑀𝑈 ↔ (𝑀 Sat 𝑈) = (𝑀m ω)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  (class class class)co 7405  ωcom 7861  m cmap 8840   Sat csate 35360  cprv 35361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-iota 6484  df-fv 6539  df-ov 7408  df-prv 35368
This theorem is referenced by:  elnanelprv  35451  prv0  35452  prv1n  35453
  Copyright terms: Public domain W3C validator