Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prv Structured version   Visualization version   GIF version

Theorem prv 35460
Description: The "proves" relation on a set. A wff encoded as 𝑈 is true in a model 𝑀 iff for every valuation 𝑠 ∈ (𝑀m ω), the interpretation of the wff using the membership relation on 𝑀 is true. (Contributed by AV, 5-Nov-2023.)
Assertion
Ref Expression
prv ((𝑀𝑉𝑈𝑊) → (𝑀𝑈 ↔ (𝑀 Sat 𝑈) = (𝑀m ω)))

Proof of Theorem prv
Dummy variables 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7355 . . 3 ((𝑚 = 𝑀𝑢 = 𝑈) → (𝑚 Sat 𝑢) = (𝑀 Sat 𝑈))
2 simpl 482 . . . 4 ((𝑚 = 𝑀𝑢 = 𝑈) → 𝑚 = 𝑀)
32oveq1d 7361 . . 3 ((𝑚 = 𝑀𝑢 = 𝑈) → (𝑚m ω) = (𝑀m ω))
41, 3eqeq12d 2747 . 2 ((𝑚 = 𝑀𝑢 = 𝑈) → ((𝑚 Sat 𝑢) = (𝑚m ω) ↔ (𝑀 Sat 𝑈) = (𝑀m ω)))
5 df-prv 35378 . 2 ⊧ = {⟨𝑚, 𝑢⟩ ∣ (𝑚 Sat 𝑢) = (𝑚m ω)}
64, 5brabga 5474 1 ((𝑀𝑉𝑈𝑊) → (𝑀𝑈 ↔ (𝑀 Sat 𝑈) = (𝑀m ω)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  (class class class)co 7346  ωcom 7796  m cmap 8750   Sat csate 35370  cprv 35371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-iota 6437  df-fv 6489  df-ov 7349  df-prv 35378
This theorem is referenced by:  elnanelprv  35461  prv0  35462  prv1n  35463
  Copyright terms: Public domain W3C validator