![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prv | Structured version Visualization version GIF version |
Description: The "proves" relation on a set. A wff encoded as 𝑈 is true in a model 𝑀 iff for every valuation 𝑠 ∈ (𝑀 ↑m ω), the interpretation of the wff using the membership relation on 𝑀 is true. (Contributed by AV, 5-Nov-2023.) |
Ref | Expression |
---|---|
prv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀⊧𝑈 ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7439 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → (𝑚 Sat∈ 𝑢) = (𝑀 Sat∈ 𝑈)) | |
2 | simpl 482 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → 𝑚 = 𝑀) | |
3 | 2 | oveq1d 7445 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → (𝑚 ↑m ω) = (𝑀 ↑m ω)) |
4 | 1, 3 | eqeq12d 2750 | . 2 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → ((𝑚 Sat∈ 𝑢) = (𝑚 ↑m ω) ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) |
5 | df-prv 35330 | . 2 ⊢ ⊧ = {〈𝑚, 𝑢〉 ∣ (𝑚 Sat∈ 𝑢) = (𝑚 ↑m ω)} | |
6 | 4, 5 | brabga 5543 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀⊧𝑈 ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 class class class wbr 5147 (class class class)co 7430 ωcom 7886 ↑m cmap 8864 Sat∈ csate 35322 ⊧cprv 35323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-iota 6515 df-fv 6570 df-ov 7433 df-prv 35330 |
This theorem is referenced by: elnanelprv 35413 prv0 35414 prv1n 35415 |
Copyright terms: Public domain | W3C validator |