| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prv | Structured version Visualization version GIF version | ||
| Description: The "proves" relation on a set. A wff encoded as 𝑈 is true in a model 𝑀 iff for every valuation 𝑠 ∈ (𝑀 ↑m ω), the interpretation of the wff using the membership relation on 𝑀 is true. (Contributed by AV, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| prv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀⊧𝑈 ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 7399 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → (𝑚 Sat∈ 𝑢) = (𝑀 Sat∈ 𝑈)) | |
| 2 | simpl 482 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → 𝑚 = 𝑀) | |
| 3 | 2 | oveq1d 7405 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → (𝑚 ↑m ω) = (𝑀 ↑m ω)) |
| 4 | 1, 3 | eqeq12d 2746 | . 2 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → ((𝑚 Sat∈ 𝑢) = (𝑚 ↑m ω) ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) |
| 5 | df-prv 35340 | . 2 ⊢ ⊧ = {〈𝑚, 𝑢〉 ∣ (𝑚 Sat∈ 𝑢) = (𝑚 ↑m ω)} | |
| 6 | 4, 5 | brabga 5497 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀⊧𝑈 ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ωcom 7845 ↑m cmap 8802 Sat∈ csate 35332 ⊧cprv 35333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-iota 6467 df-fv 6522 df-ov 7393 df-prv 35340 |
| This theorem is referenced by: elnanelprv 35423 prv0 35424 prv1n 35425 |
| Copyright terms: Public domain | W3C validator |