Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prv | Structured version Visualization version GIF version |
Description: The "proves" relation on a set. A wff encoded as 𝑈 is true in a model 𝑀 iff for every valuation 𝑠 ∈ (𝑀 ↑m ω), the interpretation of the wff using the membership relation on 𝑀 is true. (Contributed by AV, 5-Nov-2023.) |
Ref | Expression |
---|---|
prv | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀⊧𝑈 ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7264 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → (𝑚 Sat∈ 𝑢) = (𝑀 Sat∈ 𝑈)) | |
2 | simpl 482 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → 𝑚 = 𝑀) | |
3 | 2 | oveq1d 7270 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → (𝑚 ↑m ω) = (𝑀 ↑m ω)) |
4 | 1, 3 | eqeq12d 2754 | . 2 ⊢ ((𝑚 = 𝑀 ∧ 𝑢 = 𝑈) → ((𝑚 Sat∈ 𝑢) = (𝑚 ↑m ω) ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) |
5 | df-prv 33208 | . 2 ⊢ ⊧ = {〈𝑚, 𝑢〉 ∣ (𝑚 Sat∈ 𝑢) = (𝑚 ↑m ω)} | |
6 | 4, 5 | brabga 5440 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊) → (𝑀⊧𝑈 ↔ (𝑀 Sat∈ 𝑈) = (𝑀 ↑m ω))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ωcom 7687 ↑m cmap 8573 Sat∈ csate 33200 ⊧cprv 33201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-iota 6376 df-fv 6426 df-ov 7258 df-prv 33208 |
This theorem is referenced by: elnanelprv 33291 prv0 33292 prv1n 33293 |
Copyright terms: Public domain | W3C validator |