Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prv Structured version   Visualization version   GIF version

Theorem prv 35396
Description: The "proves" relation on a set. A wff encoded as 𝑈 is true in a model 𝑀 iff for every valuation 𝑠 ∈ (𝑀m ω), the interpretation of the wff using the membership relation on 𝑀 is true. (Contributed by AV, 5-Nov-2023.)
Assertion
Ref Expression
prv ((𝑀𝑉𝑈𝑊) → (𝑀𝑈 ↔ (𝑀 Sat 𝑈) = (𝑀m ω)))

Proof of Theorem prv
Dummy variables 𝑚 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7457 . . 3 ((𝑚 = 𝑀𝑢 = 𝑈) → (𝑚 Sat 𝑢) = (𝑀 Sat 𝑈))
2 simpl 482 . . . 4 ((𝑚 = 𝑀𝑢 = 𝑈) → 𝑚 = 𝑀)
32oveq1d 7463 . . 3 ((𝑚 = 𝑀𝑢 = 𝑈) → (𝑚m ω) = (𝑀m ω))
41, 3eqeq12d 2756 . 2 ((𝑚 = 𝑀𝑢 = 𝑈) → ((𝑚 Sat 𝑢) = (𝑚m ω) ↔ (𝑀 Sat 𝑈) = (𝑀m ω)))
5 df-prv 35314 . 2 ⊧ = {⟨𝑚, 𝑢⟩ ∣ (𝑚 Sat 𝑢) = (𝑚m ω)}
64, 5brabga 5553 1 ((𝑀𝑉𝑈𝑊) → (𝑀𝑈 ↔ (𝑀 Sat 𝑈) = (𝑀m ω)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  ωcom 7903  m cmap 8884   Sat csate 35306  cprv 35307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-iota 6525  df-fv 6581  df-ov 7451  df-prv 35314
This theorem is referenced by:  elnanelprv  35397  prv0  35398  prv1n  35399
  Copyright terms: Public domain W3C validator