![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvtsr | Structured version Visualization version GIF version |
Description: The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
cnvtsr | ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsrps 18544 | . . 3 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) | |
2 | cnvps 18535 | . . 3 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ PosetRel) |
4 | eqid 2732 | . . . . 5 ⊢ dom 𝑅 = dom 𝑅 | |
5 | 4 | istsr 18540 | . . . 4 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
6 | 5 | simprbi 497 | . . 3 ⊢ (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅)) |
7 | 4 | psrn 18532 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ TosetRel → dom 𝑅 = ran 𝑅) |
9 | 8 | sqxpeqd 5708 | . . 3 ⊢ (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) = (ran 𝑅 × ran 𝑅)) |
10 | psrel 18526 | . . . . . . 7 ⊢ (𝑅 ∈ PosetRel → Rel 𝑅) | |
11 | 1, 10 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ TosetRel → Rel 𝑅) |
12 | dfrel2 6188 | . . . . . 6 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
13 | 11, 12 | sylib 217 | . . . . 5 ⊢ (𝑅 ∈ TosetRel → ◡◡𝑅 = 𝑅) |
14 | 13 | uneq2d 4163 | . . . 4 ⊢ (𝑅 ∈ TosetRel → (◡𝑅 ∪ ◡◡𝑅) = (◡𝑅 ∪ 𝑅)) |
15 | uncom 4153 | . . . 4 ⊢ (◡𝑅 ∪ 𝑅) = (𝑅 ∪ ◡𝑅) | |
16 | 14, 15 | eqtr2di 2789 | . . 3 ⊢ (𝑅 ∈ TosetRel → (𝑅 ∪ ◡𝑅) = (◡𝑅 ∪ ◡◡𝑅)) |
17 | 6, 9, 16 | 3sstr3d 4028 | . 2 ⊢ (𝑅 ∈ TosetRel → (ran 𝑅 × ran 𝑅) ⊆ (◡𝑅 ∪ ◡◡𝑅)) |
18 | df-rn 5687 | . . 3 ⊢ ran 𝑅 = dom ◡𝑅 | |
19 | 18 | istsr 18540 | . 2 ⊢ (◡𝑅 ∈ TosetRel ↔ (◡𝑅 ∈ PosetRel ∧ (ran 𝑅 × ran 𝑅) ⊆ (◡𝑅 ∪ ◡◡𝑅))) |
20 | 3, 17, 19 | sylanbrc 583 | 1 ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∪ cun 3946 ⊆ wss 3948 × cxp 5674 ◡ccnv 5675 dom cdm 5676 ran crn 5677 Rel wrel 5681 PosetRelcps 18521 TosetRel ctsr 18522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ps 18523 df-tsr 18524 |
This theorem is referenced by: ordtbas2 22915 ordtrest2 22928 cnvordtrestixx 33179 |
Copyright terms: Public domain | W3C validator |