Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvtsr | Structured version Visualization version GIF version |
Description: The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
cnvtsr | ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsrps 18403 | . . 3 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) | |
2 | cnvps 18394 | . . 3 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ PosetRel) |
4 | eqid 2736 | . . . . 5 ⊢ dom 𝑅 = dom 𝑅 | |
5 | 4 | istsr 18399 | . . . 4 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
6 | 5 | simprbi 497 | . . 3 ⊢ (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅)) |
7 | 4 | psrn 18391 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ TosetRel → dom 𝑅 = ran 𝑅) |
9 | 8 | sqxpeqd 5653 | . . 3 ⊢ (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) = (ran 𝑅 × ran 𝑅)) |
10 | psrel 18385 | . . . . . . 7 ⊢ (𝑅 ∈ PosetRel → Rel 𝑅) | |
11 | 1, 10 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ TosetRel → Rel 𝑅) |
12 | dfrel2 6128 | . . . . . 6 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
13 | 11, 12 | sylib 217 | . . . . 5 ⊢ (𝑅 ∈ TosetRel → ◡◡𝑅 = 𝑅) |
14 | 13 | uneq2d 4111 | . . . 4 ⊢ (𝑅 ∈ TosetRel → (◡𝑅 ∪ ◡◡𝑅) = (◡𝑅 ∪ 𝑅)) |
15 | uncom 4101 | . . . 4 ⊢ (◡𝑅 ∪ 𝑅) = (𝑅 ∪ ◡𝑅) | |
16 | 14, 15 | eqtr2di 2793 | . . 3 ⊢ (𝑅 ∈ TosetRel → (𝑅 ∪ ◡𝑅) = (◡𝑅 ∪ ◡◡𝑅)) |
17 | 6, 9, 16 | 3sstr3d 3978 | . 2 ⊢ (𝑅 ∈ TosetRel → (ran 𝑅 × ran 𝑅) ⊆ (◡𝑅 ∪ ◡◡𝑅)) |
18 | df-rn 5632 | . . 3 ⊢ ran 𝑅 = dom ◡𝑅 | |
19 | 18 | istsr 18399 | . 2 ⊢ (◡𝑅 ∈ TosetRel ↔ (◡𝑅 ∈ PosetRel ∧ (ran 𝑅 × ran 𝑅) ⊆ (◡𝑅 ∪ ◡◡𝑅))) |
20 | 3, 17, 19 | sylanbrc 583 | 1 ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∪ cun 3896 ⊆ wss 3898 × cxp 5619 ◡ccnv 5620 dom cdm 5621 ran crn 5622 Rel wrel 5626 PosetRelcps 18380 TosetRel ctsr 18381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ps 18382 df-tsr 18383 |
This theorem is referenced by: ordtbas2 22449 ordtrest2 22462 cnvordtrestixx 32161 |
Copyright terms: Public domain | W3C validator |