MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvtsr Structured version   Visualization version   GIF version

Theorem cnvtsr 18530
Description: The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
cnvtsr (𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )

Proof of Theorem cnvtsr
StepHypRef Expression
1 tsrps 18529 . . 3 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
2 cnvps 18520 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
31, 2syl 17 . 2 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
4 eqid 2729 . . . . 5 dom 𝑅 = dom 𝑅
54istsr 18525 . . . 4 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅𝑅)))
65simprbi 496 . . 3 (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) ⊆ (𝑅𝑅))
74psrn 18517 . . . . 5 (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅)
81, 7syl 17 . . . 4 (𝑅 ∈ TosetRel → dom 𝑅 = ran 𝑅)
98sqxpeqd 5663 . . 3 (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) = (ran 𝑅 × ran 𝑅))
10 psrel 18511 . . . . . . 7 (𝑅 ∈ PosetRel → Rel 𝑅)
111, 10syl 17 . . . . . 6 (𝑅 ∈ TosetRel → Rel 𝑅)
12 dfrel2 6150 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
1311, 12sylib 218 . . . . 5 (𝑅 ∈ TosetRel → 𝑅 = 𝑅)
1413uneq2d 4127 . . . 4 (𝑅 ∈ TosetRel → (𝑅𝑅) = (𝑅𝑅))
15 uncom 4117 . . . 4 (𝑅𝑅) = (𝑅𝑅)
1614, 15eqtr2di 2781 . . 3 (𝑅 ∈ TosetRel → (𝑅𝑅) = (𝑅𝑅))
176, 9, 163sstr3d 3998 . 2 (𝑅 ∈ TosetRel → (ran 𝑅 × ran 𝑅) ⊆ (𝑅𝑅))
18 df-rn 5642 . . 3 ran 𝑅 = dom 𝑅
1918istsr 18525 . 2 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (ran 𝑅 × ran 𝑅) ⊆ (𝑅𝑅)))
203, 17, 19sylanbrc 583 1 (𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3909  wss 3911   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632  Rel wrel 5636  PosetRelcps 18506   TosetRel ctsr 18507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ps 18508  df-tsr 18509
This theorem is referenced by:  ordtbas2  23112  ordtrest2  23125  cnvordtrestixx  33897
  Copyright terms: Public domain W3C validator