MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvtsr Structured version   Visualization version   GIF version

Theorem cnvtsr 18404
Description: The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
cnvtsr (𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )

Proof of Theorem cnvtsr
StepHypRef Expression
1 tsrps 18403 . . 3 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
2 cnvps 18394 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
31, 2syl 17 . 2 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
4 eqid 2736 . . . . 5 dom 𝑅 = dom 𝑅
54istsr 18399 . . . 4 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅𝑅)))
65simprbi 497 . . 3 (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) ⊆ (𝑅𝑅))
74psrn 18391 . . . . 5 (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅)
81, 7syl 17 . . . 4 (𝑅 ∈ TosetRel → dom 𝑅 = ran 𝑅)
98sqxpeqd 5653 . . 3 (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) = (ran 𝑅 × ran 𝑅))
10 psrel 18385 . . . . . . 7 (𝑅 ∈ PosetRel → Rel 𝑅)
111, 10syl 17 . . . . . 6 (𝑅 ∈ TosetRel → Rel 𝑅)
12 dfrel2 6128 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
1311, 12sylib 217 . . . . 5 (𝑅 ∈ TosetRel → 𝑅 = 𝑅)
1413uneq2d 4111 . . . 4 (𝑅 ∈ TosetRel → (𝑅𝑅) = (𝑅𝑅))
15 uncom 4101 . . . 4 (𝑅𝑅) = (𝑅𝑅)
1614, 15eqtr2di 2793 . . 3 (𝑅 ∈ TosetRel → (𝑅𝑅) = (𝑅𝑅))
176, 9, 163sstr3d 3978 . 2 (𝑅 ∈ TosetRel → (ran 𝑅 × ran 𝑅) ⊆ (𝑅𝑅))
18 df-rn 5632 . . 3 ran 𝑅 = dom 𝑅
1918istsr 18399 . 2 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (ran 𝑅 × ran 𝑅) ⊆ (𝑅𝑅)))
203, 17, 19sylanbrc 583 1 (𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cun 3896  wss 3898   × cxp 5619  ccnv 5620  dom cdm 5621  ran crn 5622  Rel wrel 5626  PosetRelcps 18380   TosetRel ctsr 18381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ps 18382  df-tsr 18383
This theorem is referenced by:  ordtbas2  22449  ordtrest2  22462  cnvordtrestixx  32161
  Copyright terms: Public domain W3C validator