![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvtsr | Structured version Visualization version GIF version |
Description: The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
cnvtsr | ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsrps 17581 | . . 3 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) | |
2 | cnvps 17572 | . . 3 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ PosetRel) |
4 | eqid 2825 | . . . . 5 ⊢ dom 𝑅 = dom 𝑅 | |
5 | 4 | istsr 17577 | . . . 4 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
6 | 5 | simprbi 492 | . . 3 ⊢ (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅)) |
7 | 4 | psrn 17569 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ TosetRel → dom 𝑅 = ran 𝑅) |
9 | 8 | sqxpeqd 5378 | . . 3 ⊢ (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) = (ran 𝑅 × ran 𝑅)) |
10 | psrel 17563 | . . . . . . 7 ⊢ (𝑅 ∈ PosetRel → Rel 𝑅) | |
11 | 1, 10 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ TosetRel → Rel 𝑅) |
12 | dfrel2 5828 | . . . . . 6 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
13 | 11, 12 | sylib 210 | . . . . 5 ⊢ (𝑅 ∈ TosetRel → ◡◡𝑅 = 𝑅) |
14 | 13 | uneq2d 3996 | . . . 4 ⊢ (𝑅 ∈ TosetRel → (◡𝑅 ∪ ◡◡𝑅) = (◡𝑅 ∪ 𝑅)) |
15 | uncom 3986 | . . . 4 ⊢ (◡𝑅 ∪ 𝑅) = (𝑅 ∪ ◡𝑅) | |
16 | 14, 15 | syl6req 2878 | . . 3 ⊢ (𝑅 ∈ TosetRel → (𝑅 ∪ ◡𝑅) = (◡𝑅 ∪ ◡◡𝑅)) |
17 | 6, 9, 16 | 3sstr3d 3872 | . 2 ⊢ (𝑅 ∈ TosetRel → (ran 𝑅 × ran 𝑅) ⊆ (◡𝑅 ∪ ◡◡𝑅)) |
18 | df-rn 5357 | . . 3 ⊢ ran 𝑅 = dom ◡𝑅 | |
19 | 18 | istsr 17577 | . 2 ⊢ (◡𝑅 ∈ TosetRel ↔ (◡𝑅 ∈ PosetRel ∧ (ran 𝑅 × ran 𝑅) ⊆ (◡𝑅 ∪ ◡◡𝑅))) |
20 | 3, 17, 19 | sylanbrc 578 | 1 ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 ∪ cun 3796 ⊆ wss 3798 × cxp 5344 ◡ccnv 5345 dom cdm 5346 ran crn 5347 Rel wrel 5351 PosetRelcps 17558 TosetRel ctsr 17559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ps 17560 df-tsr 17561 |
This theorem is referenced by: ordtbas2 21373 ordtrest2 21386 cnvordtrestixx 30500 |
Copyright terms: Public domain | W3C validator |