| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvtsr | Structured version Visualization version GIF version | ||
| Description: The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| cnvtsr | ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsrps 18553 | . . 3 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) | |
| 2 | cnvps 18544 | . . 3 ⊢ (𝑅 ∈ PosetRel → ◡𝑅 ∈ PosetRel) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ PosetRel) |
| 4 | eqid 2730 | . . . . 5 ⊢ dom 𝑅 = dom 𝑅 | |
| 5 | 4 | istsr 18549 | . . . 4 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
| 6 | 5 | simprbi 496 | . . 3 ⊢ (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅)) |
| 7 | 4 | psrn 18541 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅) |
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝑅 ∈ TosetRel → dom 𝑅 = ran 𝑅) |
| 9 | 8 | sqxpeqd 5673 | . . 3 ⊢ (𝑅 ∈ TosetRel → (dom 𝑅 × dom 𝑅) = (ran 𝑅 × ran 𝑅)) |
| 10 | psrel 18535 | . . . . . . 7 ⊢ (𝑅 ∈ PosetRel → Rel 𝑅) | |
| 11 | 1, 10 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ TosetRel → Rel 𝑅) |
| 12 | dfrel2 6165 | . . . . . 6 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
| 13 | 11, 12 | sylib 218 | . . . . 5 ⊢ (𝑅 ∈ TosetRel → ◡◡𝑅 = 𝑅) |
| 14 | 13 | uneq2d 4134 | . . . 4 ⊢ (𝑅 ∈ TosetRel → (◡𝑅 ∪ ◡◡𝑅) = (◡𝑅 ∪ 𝑅)) |
| 15 | uncom 4124 | . . . 4 ⊢ (◡𝑅 ∪ 𝑅) = (𝑅 ∪ ◡𝑅) | |
| 16 | 14, 15 | eqtr2di 2782 | . . 3 ⊢ (𝑅 ∈ TosetRel → (𝑅 ∪ ◡𝑅) = (◡𝑅 ∪ ◡◡𝑅)) |
| 17 | 6, 9, 16 | 3sstr3d 4004 | . 2 ⊢ (𝑅 ∈ TosetRel → (ran 𝑅 × ran 𝑅) ⊆ (◡𝑅 ∪ ◡◡𝑅)) |
| 18 | df-rn 5652 | . . 3 ⊢ ran 𝑅 = dom ◡𝑅 | |
| 19 | 18 | istsr 18549 | . 2 ⊢ (◡𝑅 ∈ TosetRel ↔ (◡𝑅 ∈ PosetRel ∧ (ran 𝑅 × ran 𝑅) ⊆ (◡𝑅 ∪ ◡◡𝑅))) |
| 20 | 3, 17, 19 | sylanbrc 583 | 1 ⊢ (𝑅 ∈ TosetRel → ◡𝑅 ∈ TosetRel ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 × cxp 5639 ◡ccnv 5640 dom cdm 5641 ran crn 5642 Rel wrel 5646 PosetRelcps 18530 TosetRel ctsr 18531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ps 18532 df-tsr 18533 |
| This theorem is referenced by: ordtbas2 23085 ordtrest2 23098 cnvordtrestixx 33910 |
| Copyright terms: Public domain | W3C validator |