Proof of Theorem lsppratlem3
Step | Hyp | Ref
| Expression |
1 | | lspprat.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LVec) |
2 | | lveclmod 20283 |
. . . . . . . 8
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ LMod) |
4 | | lspprat.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
5 | 4 | snssd 4739 |
. . . . . . 7
⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
6 | | lspprat.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
7 | | lspprat.n |
. . . . . . . 8
⊢ 𝑁 = (LSpan‘𝑊) |
8 | 6, 7 | lspssv 20160 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉) |
9 | 3, 5, 8 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉) |
10 | | lsppratlem3.x3 |
. . . . . 6
⊢ (𝜑 → 𝑥 ∈ (𝑁‘{𝑌})) |
11 | 9, 10 | sseldd 3918 |
. . . . 5
⊢ (𝜑 → 𝑥 ∈ 𝑉) |
12 | 11 | snssd 4739 |
. . . 4
⊢ (𝜑 → {𝑥} ⊆ 𝑉) |
13 | | lspprat.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
14 | | lspprat.p |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
15 | 14 | pssssd 4028 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ (𝑁‘{𝑋, 𝑌})) |
16 | 13 | snssd 4739 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
17 | 12, 16 | unssd 4116 |
. . . . . . . . 9
⊢ (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ 𝑉) |
18 | | lspprat.s |
. . . . . . . . . 10
⊢ 𝑆 = (LSubSp‘𝑊) |
19 | 6, 18, 7 | lspcl 20153 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆) |
20 | 3, 17, 19 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆) |
21 | | df-pr 4561 |
. . . . . . . . 9
⊢ {𝑋, 𝑌} = ({𝑋} ∪ {𝑌}) |
22 | 6, 7 | lspssid 20162 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
23 | 3, 17, 22 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
24 | 23 | unssbd 4118 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑋} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
25 | | ssun1 4102 |
. . . . . . . . . . . . . 14
⊢ {𝑥} ⊆ ({𝑥} ∪ {𝑋}) |
26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝑥} ⊆ ({𝑥} ∪ {𝑋})) |
27 | 6, 7 | lspss 20161 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉 ∧ {𝑥} ⊆ ({𝑥} ∪ {𝑋})) → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
28 | 3, 17, 26, 27 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
29 | | 0ss 4327 |
. . . . . . . . . . . . . . 15
⊢ ∅
⊆ 𝑉 |
30 | 29 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∅ ⊆ 𝑉) |
31 | | uncom 4083 |
. . . . . . . . . . . . . . . . . 18
⊢ (∅
∪ {𝑌}) = ({𝑌} ∪
∅) |
32 | | un0 4321 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑌} ∪ ∅) = {𝑌} |
33 | 31, 32 | eqtri 2766 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∪ {𝑌}) = {𝑌} |
34 | 33 | fveq2i 6759 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁‘(∅ ∪ {𝑌})) = (𝑁‘{𝑌}) |
35 | 10, 34 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑥 ∈ (𝑁‘(∅ ∪ {𝑌}))) |
36 | | lsppratlem1.x2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) |
37 | 36 | eldifbd 3896 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝑥 ∈ { 0 }) |
38 | | lsppratlem1.o |
. . . . . . . . . . . . . . . . . 18
⊢ 0 =
(0g‘𝑊) |
39 | 38, 7 | lsp0 20186 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ LMod → (𝑁‘∅) = { 0
}) |
40 | 3, 39 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁‘∅) = { 0 }) |
41 | 37, 40 | neleqtrrd 2861 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ 𝑥 ∈ (𝑁‘∅)) |
42 | 35, 41 | eldifd 3894 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅))) |
43 | 6, 18, 7 | lspsolv 20320 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LVec ∧ (∅
⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))) → 𝑌 ∈ (𝑁‘(∅ ∪ {𝑥}))) |
44 | 1, 30, 4, 42, 43 | syl13anc 1370 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ (𝑁‘(∅ ∪ {𝑥}))) |
45 | | uncom 4083 |
. . . . . . . . . . . . . . 15
⊢ (∅
∪ {𝑥}) = ({𝑥} ∪
∅) |
46 | | un0 4321 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥} ∪ ∅) = {𝑥} |
47 | 45, 46 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢ (∅
∪ {𝑥}) = {𝑥} |
48 | 47 | fveq2i 6759 |
. . . . . . . . . . . . 13
⊢ (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥}) |
49 | 44, 48 | eleqtrdi 2849 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥})) |
50 | 28, 49 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑋}))) |
51 | 50 | snssd 4739 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
52 | 24, 51 | unssd 4116 |
. . . . . . . . 9
⊢ (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
53 | 21, 52 | eqsstrid 3965 |
. . . . . . . 8
⊢ (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
54 | 18, 7 | lspssp 20165 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
55 | 3, 20, 53, 54 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
56 | 15, 55 | sstrd 3927 |
. . . . . 6
⊢ (𝜑 → 𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
57 | 56 | ssdifd 4071 |
. . . . 5
⊢ (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥}))) |
58 | | lsppratlem1.y2 |
. . . . 5
⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
59 | 57, 58 | sseldd 3918 |
. . . 4
⊢ (𝜑 → 𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥}))) |
60 | 6, 18, 7 | lspsolv 20320 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))) → 𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦}))) |
61 | 1, 12, 13, 59, 60 | syl13anc 1370 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦}))) |
62 | | df-pr 4561 |
. . . 4
⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) |
63 | 62 | fveq2i 6759 |
. . 3
⊢ (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦})) |
64 | 61, 63 | eleqtrrdi 2850 |
. 2
⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) |
65 | | lspprat.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ 𝑆) |
66 | 6, 18 | lssss 20113 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
67 | 65, 66 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
68 | 67 | ssdifssd 4073 |
. . . . . 6
⊢ (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉) |
69 | 68, 58 | sseldd 3918 |
. . . . 5
⊢ (𝜑 → 𝑦 ∈ 𝑉) |
70 | 11, 69 | prssd 4752 |
. . . 4
⊢ (𝜑 → {𝑥, 𝑦} ⊆ 𝑉) |
71 | | snsspr1 4744 |
. . . . 5
⊢ {𝑥} ⊆ {𝑥, 𝑦} |
72 | 71 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝑥} ⊆ {𝑥, 𝑦}) |
73 | 6, 7 | lspss 20161 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉 ∧ {𝑥} ⊆ {𝑥, 𝑦}) → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦})) |
74 | 3, 70, 72, 73 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦})) |
75 | 74, 49 | sseldd 3918 |
. 2
⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) |
76 | 64, 75 | jca 511 |
1
⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |