MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem3 Structured version   Visualization version   GIF version

Theorem lsppratlem3 19517
Description: Lemma for lspprat 19521. In the first case of lsppratlem1 19515, since 𝑥 ∉ (𝑁‘∅), also 𝑌 ∈ (𝑁‘{𝑥}), and since 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑥}) and 𝑦 ∉ (𝑁‘{𝑥}), we have 𝑋 ∈ (𝑁‘{𝑥, 𝑦}) as desired. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem3.x3 (𝜑𝑥 ∈ (𝑁‘{𝑌}))
Assertion
Ref Expression
lsppratlem3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))

Proof of Theorem lsppratlem3
StepHypRef Expression
1 lspprat.w . . . 4 (𝜑𝑊 ∈ LVec)
2 lveclmod 19472 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
4 lspprat.y . . . . . . . 8 (𝜑𝑌𝑉)
54snssd 4560 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
6 lspprat.v . . . . . . . 8 𝑉 = (Base‘𝑊)
7 lspprat.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
86, 7lspssv 19349 . . . . . . 7 ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉)
93, 5, 8syl2anc 579 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉)
10 lsppratlem3.x3 . . . . . 6 (𝜑𝑥 ∈ (𝑁‘{𝑌}))
119, 10sseldd 3828 . . . . 5 (𝜑𝑥𝑉)
1211snssd 4560 . . . 4 (𝜑 → {𝑥} ⊆ 𝑉)
13 lspprat.x . . . 4 (𝜑𝑋𝑉)
14 lspprat.p . . . . . . . 8 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
1514pssssd 3932 . . . . . . 7 (𝜑𝑈 ⊆ (𝑁‘{𝑋, 𝑌}))
1613snssd 4560 . . . . . . . . . 10 (𝜑 → {𝑋} ⊆ 𝑉)
1712, 16unssd 4018 . . . . . . . . 9 (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ 𝑉)
18 lspprat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
196, 18, 7lspcl 19342 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆)
203, 17, 19syl2anc 579 . . . . . . . 8 (𝜑 → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆)
21 df-pr 4402 . . . . . . . . 9 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
226, 7lspssid 19351 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
233, 17, 22syl2anc 579 . . . . . . . . . . 11 (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
2423unssbd 4020 . . . . . . . . . 10 (𝜑 → {𝑋} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
25 ssun1 4005 . . . . . . . . . . . . . 14 {𝑥} ⊆ ({𝑥} ∪ {𝑋})
2625a1i 11 . . . . . . . . . . . . 13 (𝜑 → {𝑥} ⊆ ({𝑥} ∪ {𝑋}))
276, 7lspss 19350 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉 ∧ {𝑥} ⊆ ({𝑥} ∪ {𝑋})) → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
283, 17, 26, 27syl3anc 1494 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
29 0ss 4199 . . . . . . . . . . . . . . 15 ∅ ⊆ 𝑉
3029a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ∅ ⊆ 𝑉)
31 uncom 3986 . . . . . . . . . . . . . . . . . 18 (∅ ∪ {𝑌}) = ({𝑌} ∪ ∅)
32 un0 4194 . . . . . . . . . . . . . . . . . 18 ({𝑌} ∪ ∅) = {𝑌}
3331, 32eqtri 2849 . . . . . . . . . . . . . . . . 17 (∅ ∪ {𝑌}) = {𝑌}
3433fveq2i 6440 . . . . . . . . . . . . . . . 16 (𝑁‘(∅ ∪ {𝑌})) = (𝑁‘{𝑌})
3510, 34syl6eleqr 2917 . . . . . . . . . . . . . . 15 (𝜑𝑥 ∈ (𝑁‘(∅ ∪ {𝑌})))
36 lsppratlem1.x2 . . . . . . . . . . . . . . . . 17 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
3736eldifbd 3811 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑥 ∈ { 0 })
38 lsppratlem1.o . . . . . . . . . . . . . . . . . 18 0 = (0g𝑊)
3938, 7lsp0 19375 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })
403, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁‘∅) = { 0 })
4137, 40neleqtrrd 2928 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑥 ∈ (𝑁‘∅))
4235, 41eldifd 3809 . . . . . . . . . . . . . 14 (𝜑𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))
436, 18, 7lspsolv 19510 . . . . . . . . . . . . . 14 ((𝑊 ∈ LVec ∧ (∅ ⊆ 𝑉𝑌𝑉𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))) → 𝑌 ∈ (𝑁‘(∅ ∪ {𝑥})))
441, 30, 4, 42, 43syl13anc 1495 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝑁‘(∅ ∪ {𝑥})))
45 uncom 3986 . . . . . . . . . . . . . . 15 (∅ ∪ {𝑥}) = ({𝑥} ∪ ∅)
46 un0 4194 . . . . . . . . . . . . . . 15 ({𝑥} ∪ ∅) = {𝑥}
4745, 46eqtri 2849 . . . . . . . . . . . . . 14 (∅ ∪ {𝑥}) = {𝑥}
4847fveq2i 6440 . . . . . . . . . . . . 13 (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥})
4944, 48syl6eleq 2916 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝑁‘{𝑥}))
5028, 49sseldd 3828 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑋})))
5150snssd 4560 . . . . . . . . . 10 (𝜑 → {𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5224, 51unssd 4018 . . . . . . . . 9 (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5321, 52syl5eqss 3874 . . . . . . . 8 (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5418, 7lspssp 19354 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
553, 20, 53, 54syl3anc 1494 . . . . . . 7 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5615, 55sstrd 3837 . . . . . 6 (𝜑𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5756ssdifd 3975 . . . . 5 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))
58 lsppratlem1.y2 . . . . 5 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
5957, 58sseldd 3828 . . . 4 (𝜑𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))
606, 18, 7lspsolv 19510 . . . 4 ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉𝑋𝑉𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))) → 𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
611, 12, 13, 59, 60syl13anc 1495 . . 3 (𝜑𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
62 df-pr 4402 . . . 4 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
6362fveq2i 6440 . . 3 (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦}))
6461, 63syl6eleqr 2917 . 2 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
65 lspprat.u . . . . . . . . . 10 (𝜑𝑈𝑆)
666, 18lssss 19300 . . . . . . . . . 10 (𝑈𝑆𝑈𝑉)
6765, 66syl 17 . . . . . . . . 9 (𝜑𝑈𝑉)
6867ssdifssd 3977 . . . . . . . 8 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉)
6968, 58sseldd 3828 . . . . . . 7 (𝜑𝑦𝑉)
7069snssd 4560 . . . . . 6 (𝜑 → {𝑦} ⊆ 𝑉)
7112, 70unssd 4018 . . . . 5 (𝜑 → ({𝑥} ∪ {𝑦}) ⊆ 𝑉)
7262, 71syl5eqss 3874 . . . 4 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
73 snsspr1 4565 . . . . 5 {𝑥} ⊆ {𝑥, 𝑦}
7473a1i 11 . . . 4 (𝜑 → {𝑥} ⊆ {𝑥, 𝑦})
756, 7lspss 19350 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉 ∧ {𝑥} ⊆ {𝑥, 𝑦}) → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦}))
763, 72, 74, 75syl3anc 1494 . . 3 (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦}))
7776, 49sseldd 3828 . 2 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
7864, 77jca 507 1 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  cdif 3795  cun 3796  wss 3798  wpss 3799  c0 4146  {csn 4399  {cpr 4401  cfv 6127  Basecbs 16229  0gc0g 16460  LModclmod 19226  LSubSpclss 19295  LSpanclspn 19337  LVecclvec 19468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-sbg 17788  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-drng 19112  df-lmod 19228  df-lss 19296  df-lsp 19338  df-lvec 19469
This theorem is referenced by:  lsppratlem5  19519
  Copyright terms: Public domain W3C validator