Step | Hyp | Ref
| Expression |
1 | | lspprat.w |
. . . 4
β’ (π β π β LVec) |
2 | | lveclmod 20861 |
. . . . . . . 8
β’ (π β LVec β π β LMod) |
3 | 1, 2 | syl 17 |
. . . . . . 7
β’ (π β π β LMod) |
4 | | lspprat.y |
. . . . . . . 8
β’ (π β π β π) |
5 | 4 | snssd 4811 |
. . . . . . 7
β’ (π β {π} β π) |
6 | | lspprat.v |
. . . . . . . 8
β’ π = (Baseβπ) |
7 | | lspprat.n |
. . . . . . . 8
β’ π = (LSpanβπ) |
8 | 6, 7 | lspssv 20738 |
. . . . . . 7
β’ ((π β LMod β§ {π} β π) β (πβ{π}) β π) |
9 | 3, 5, 8 | syl2anc 582 |
. . . . . 6
β’ (π β (πβ{π}) β π) |
10 | | lsppratlem3.x3 |
. . . . . 6
β’ (π β π₯ β (πβ{π})) |
11 | 9, 10 | sseldd 3982 |
. . . . 5
β’ (π β π₯ β π) |
12 | 11 | snssd 4811 |
. . . 4
β’ (π β {π₯} β π) |
13 | | lspprat.x |
. . . 4
β’ (π β π β π) |
14 | | lspprat.p |
. . . . . . . 8
β’ (π β π β (πβ{π, π})) |
15 | 14 | pssssd 4096 |
. . . . . . 7
β’ (π β π β (πβ{π, π})) |
16 | 13 | snssd 4811 |
. . . . . . . . . 10
β’ (π β {π} β π) |
17 | 12, 16 | unssd 4185 |
. . . . . . . . 9
β’ (π β ({π₯} βͺ {π}) β π) |
18 | | lspprat.s |
. . . . . . . . . 10
β’ π = (LSubSpβπ) |
19 | 6, 18, 7 | lspcl 20731 |
. . . . . . . . 9
β’ ((π β LMod β§ ({π₯} βͺ {π}) β π) β (πβ({π₯} βͺ {π})) β π) |
20 | 3, 17, 19 | syl2anc 582 |
. . . . . . . 8
β’ (π β (πβ({π₯} βͺ {π})) β π) |
21 | | df-pr 4630 |
. . . . . . . . 9
β’ {π, π} = ({π} βͺ {π}) |
22 | 6, 7 | lspssid 20740 |
. . . . . . . . . . . 12
β’ ((π β LMod β§ ({π₯} βͺ {π}) β π) β ({π₯} βͺ {π}) β (πβ({π₯} βͺ {π}))) |
23 | 3, 17, 22 | syl2anc 582 |
. . . . . . . . . . 11
β’ (π β ({π₯} βͺ {π}) β (πβ({π₯} βͺ {π}))) |
24 | 23 | unssbd 4187 |
. . . . . . . . . 10
β’ (π β {π} β (πβ({π₯} βͺ {π}))) |
25 | | ssun1 4171 |
. . . . . . . . . . . . . 14
β’ {π₯} β ({π₯} βͺ {π}) |
26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
β’ (π β {π₯} β ({π₯} βͺ {π})) |
27 | 6, 7 | lspss 20739 |
. . . . . . . . . . . . 13
β’ ((π β LMod β§ ({π₯} βͺ {π}) β π β§ {π₯} β ({π₯} βͺ {π})) β (πβ{π₯}) β (πβ({π₯} βͺ {π}))) |
28 | 3, 17, 26, 27 | syl3anc 1369 |
. . . . . . . . . . . 12
β’ (π β (πβ{π₯}) β (πβ({π₯} βͺ {π}))) |
29 | | 0ss 4395 |
. . . . . . . . . . . . . . 15
β’ β
β π |
30 | 29 | a1i 11 |
. . . . . . . . . . . . . 14
β’ (π β β
β π) |
31 | | uncom 4152 |
. . . . . . . . . . . . . . . . . 18
β’ (β
βͺ {π}) = ({π} βͺ
β
) |
32 | | un0 4389 |
. . . . . . . . . . . . . . . . . 18
β’ ({π} βͺ β
) = {π} |
33 | 31, 32 | eqtri 2758 |
. . . . . . . . . . . . . . . . 17
β’ (β
βͺ {π}) = {π} |
34 | 33 | fveq2i 6893 |
. . . . . . . . . . . . . . . 16
β’ (πβ(β
βͺ {π})) = (πβ{π}) |
35 | 10, 34 | eleqtrrdi 2842 |
. . . . . . . . . . . . . . 15
β’ (π β π₯ β (πβ(β
βͺ {π}))) |
36 | | lsppratlem1.x2 |
. . . . . . . . . . . . . . . . 17
β’ (π β π₯ β (π β { 0 })) |
37 | 36 | eldifbd 3960 |
. . . . . . . . . . . . . . . 16
β’ (π β Β¬ π₯ β { 0 }) |
38 | | lsppratlem1.o |
. . . . . . . . . . . . . . . . . 18
β’ 0 =
(0gβπ) |
39 | 38, 7 | lsp0 20764 |
. . . . . . . . . . . . . . . . 17
β’ (π β LMod β (πββ
) = { 0
}) |
40 | 3, 39 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β (πββ
) = { 0 }) |
41 | 37, 40 | neleqtrrd 2854 |
. . . . . . . . . . . . . . 15
β’ (π β Β¬ π₯ β (πββ
)) |
42 | 35, 41 | eldifd 3958 |
. . . . . . . . . . . . . 14
β’ (π β π₯ β ((πβ(β
βͺ {π})) β (πββ
))) |
43 | 6, 18, 7 | lspsolv 20901 |
. . . . . . . . . . . . . 14
β’ ((π β LVec β§ (β
β π β§ π β π β§ π₯ β ((πβ(β
βͺ {π})) β (πββ
)))) β π β (πβ(β
βͺ {π₯}))) |
44 | 1, 30, 4, 42, 43 | syl13anc 1370 |
. . . . . . . . . . . . 13
β’ (π β π β (πβ(β
βͺ {π₯}))) |
45 | | uncom 4152 |
. . . . . . . . . . . . . . 15
β’ (β
βͺ {π₯}) = ({π₯} βͺ
β
) |
46 | | un0 4389 |
. . . . . . . . . . . . . . 15
β’ ({π₯} βͺ β
) = {π₯} |
47 | 45, 46 | eqtri 2758 |
. . . . . . . . . . . . . 14
β’ (β
βͺ {π₯}) = {π₯} |
48 | 47 | fveq2i 6893 |
. . . . . . . . . . . . 13
β’ (πβ(β
βͺ {π₯})) = (πβ{π₯}) |
49 | 44, 48 | eleqtrdi 2841 |
. . . . . . . . . . . 12
β’ (π β π β (πβ{π₯})) |
50 | 28, 49 | sseldd 3982 |
. . . . . . . . . . 11
β’ (π β π β (πβ({π₯} βͺ {π}))) |
51 | 50 | snssd 4811 |
. . . . . . . . . 10
β’ (π β {π} β (πβ({π₯} βͺ {π}))) |
52 | 24, 51 | unssd 4185 |
. . . . . . . . 9
β’ (π β ({π} βͺ {π}) β (πβ({π₯} βͺ {π}))) |
53 | 21, 52 | eqsstrid 4029 |
. . . . . . . 8
β’ (π β {π, π} β (πβ({π₯} βͺ {π}))) |
54 | 18, 7 | lspssp 20743 |
. . . . . . . 8
β’ ((π β LMod β§ (πβ({π₯} βͺ {π})) β π β§ {π, π} β (πβ({π₯} βͺ {π}))) β (πβ{π, π}) β (πβ({π₯} βͺ {π}))) |
55 | 3, 20, 53, 54 | syl3anc 1369 |
. . . . . . 7
β’ (π β (πβ{π, π}) β (πβ({π₯} βͺ {π}))) |
56 | 15, 55 | sstrd 3991 |
. . . . . 6
β’ (π β π β (πβ({π₯} βͺ {π}))) |
57 | 56 | ssdifd 4139 |
. . . . 5
β’ (π β (π β (πβ{π₯})) β ((πβ({π₯} βͺ {π})) β (πβ{π₯}))) |
58 | | lsppratlem1.y2 |
. . . . 5
β’ (π β π¦ β (π β (πβ{π₯}))) |
59 | 57, 58 | sseldd 3982 |
. . . 4
β’ (π β π¦ β ((πβ({π₯} βͺ {π})) β (πβ{π₯}))) |
60 | 6, 18, 7 | lspsolv 20901 |
. . . 4
β’ ((π β LVec β§ ({π₯} β π β§ π β π β§ π¦ β ((πβ({π₯} βͺ {π})) β (πβ{π₯})))) β π β (πβ({π₯} βͺ {π¦}))) |
61 | 1, 12, 13, 59, 60 | syl13anc 1370 |
. . 3
β’ (π β π β (πβ({π₯} βͺ {π¦}))) |
62 | | df-pr 4630 |
. . . 4
β’ {π₯, π¦} = ({π₯} βͺ {π¦}) |
63 | 62 | fveq2i 6893 |
. . 3
β’ (πβ{π₯, π¦}) = (πβ({π₯} βͺ {π¦})) |
64 | 61, 63 | eleqtrrdi 2842 |
. 2
β’ (π β π β (πβ{π₯, π¦})) |
65 | | lspprat.u |
. . . . . . . 8
β’ (π β π β π) |
66 | 6, 18 | lssss 20691 |
. . . . . . . 8
β’ (π β π β π β π) |
67 | 65, 66 | syl 17 |
. . . . . . 7
β’ (π β π β π) |
68 | 67 | ssdifssd 4141 |
. . . . . 6
β’ (π β (π β (πβ{π₯})) β π) |
69 | 68, 58 | sseldd 3982 |
. . . . 5
β’ (π β π¦ β π) |
70 | 11, 69 | prssd 4824 |
. . . 4
β’ (π β {π₯, π¦} β π) |
71 | | snsspr1 4816 |
. . . . 5
β’ {π₯} β {π₯, π¦} |
72 | 71 | a1i 11 |
. . . 4
β’ (π β {π₯} β {π₯, π¦}) |
73 | 6, 7 | lspss 20739 |
. . . 4
β’ ((π β LMod β§ {π₯, π¦} β π β§ {π₯} β {π₯, π¦}) β (πβ{π₯}) β (πβ{π₯, π¦})) |
74 | 3, 70, 72, 73 | syl3anc 1369 |
. . 3
β’ (π β (πβ{π₯}) β (πβ{π₯, π¦})) |
75 | 74, 49 | sseldd 3982 |
. 2
β’ (π β π β (πβ{π₯, π¦})) |
76 | 64, 75 | jca 510 |
1
β’ (π β (π β (πβ{π₯, π¦}) β§ π β (πβ{π₯, π¦}))) |