MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem3 Structured version   Visualization version   GIF version

Theorem lsppratlem3 21066
Description: Lemma for lspprat 21070. In the first case of lsppratlem1 21064, since 𝑥 ∉ (𝑁‘∅), also 𝑌 ∈ (𝑁‘{𝑥}), and since 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑥}) and 𝑦 ∉ (𝑁‘{𝑥}), we have 𝑋 ∈ (𝑁‘{𝑥, 𝑦}) as desired. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem3.x3 (𝜑𝑥 ∈ (𝑁‘{𝑌}))
Assertion
Ref Expression
lsppratlem3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))

Proof of Theorem lsppratlem3
StepHypRef Expression
1 lspprat.w . . . 4 (𝜑𝑊 ∈ LVec)
2 lveclmod 21020 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
4 lspprat.y . . . . . . . 8 (𝜑𝑌𝑉)
54snssd 4776 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
6 lspprat.v . . . . . . . 8 𝑉 = (Base‘𝑊)
7 lspprat.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
86, 7lspssv 20896 . . . . . . 7 ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉)
93, 5, 8syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉)
10 lsppratlem3.x3 . . . . . 6 (𝜑𝑥 ∈ (𝑁‘{𝑌}))
119, 10sseldd 3950 . . . . 5 (𝜑𝑥𝑉)
1211snssd 4776 . . . 4 (𝜑 → {𝑥} ⊆ 𝑉)
13 lspprat.x . . . 4 (𝜑𝑋𝑉)
14 lspprat.p . . . . . . . 8 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
1514pssssd 4066 . . . . . . 7 (𝜑𝑈 ⊆ (𝑁‘{𝑋, 𝑌}))
1613snssd 4776 . . . . . . . . . 10 (𝜑 → {𝑋} ⊆ 𝑉)
1712, 16unssd 4158 . . . . . . . . 9 (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ 𝑉)
18 lspprat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
196, 18, 7lspcl 20889 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆)
203, 17, 19syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆)
21 df-pr 4595 . . . . . . . . 9 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
226, 7lspssid 20898 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
233, 17, 22syl2anc 584 . . . . . . . . . . 11 (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
2423unssbd 4160 . . . . . . . . . 10 (𝜑 → {𝑋} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
25 ssun1 4144 . . . . . . . . . . . . . 14 {𝑥} ⊆ ({𝑥} ∪ {𝑋})
2625a1i 11 . . . . . . . . . . . . 13 (𝜑 → {𝑥} ⊆ ({𝑥} ∪ {𝑋}))
276, 7lspss 20897 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉 ∧ {𝑥} ⊆ ({𝑥} ∪ {𝑋})) → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
283, 17, 26, 27syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
29 0ss 4366 . . . . . . . . . . . . . . 15 ∅ ⊆ 𝑉
3029a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ∅ ⊆ 𝑉)
31 uncom 4124 . . . . . . . . . . . . . . . . . 18 (∅ ∪ {𝑌}) = ({𝑌} ∪ ∅)
32 un0 4360 . . . . . . . . . . . . . . . . . 18 ({𝑌} ∪ ∅) = {𝑌}
3331, 32eqtri 2753 . . . . . . . . . . . . . . . . 17 (∅ ∪ {𝑌}) = {𝑌}
3433fveq2i 6864 . . . . . . . . . . . . . . . 16 (𝑁‘(∅ ∪ {𝑌})) = (𝑁‘{𝑌})
3510, 34eleqtrrdi 2840 . . . . . . . . . . . . . . 15 (𝜑𝑥 ∈ (𝑁‘(∅ ∪ {𝑌})))
36 lsppratlem1.x2 . . . . . . . . . . . . . . . . 17 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
3736eldifbd 3930 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑥 ∈ { 0 })
38 lsppratlem1.o . . . . . . . . . . . . . . . . . 18 0 = (0g𝑊)
3938, 7lsp0 20922 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })
403, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁‘∅) = { 0 })
4137, 40neleqtrrd 2852 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑥 ∈ (𝑁‘∅))
4235, 41eldifd 3928 . . . . . . . . . . . . . 14 (𝜑𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))
436, 18, 7lspsolv 21060 . . . . . . . . . . . . . 14 ((𝑊 ∈ LVec ∧ (∅ ⊆ 𝑉𝑌𝑉𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))) → 𝑌 ∈ (𝑁‘(∅ ∪ {𝑥})))
441, 30, 4, 42, 43syl13anc 1374 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝑁‘(∅ ∪ {𝑥})))
45 uncom 4124 . . . . . . . . . . . . . . 15 (∅ ∪ {𝑥}) = ({𝑥} ∪ ∅)
46 un0 4360 . . . . . . . . . . . . . . 15 ({𝑥} ∪ ∅) = {𝑥}
4745, 46eqtri 2753 . . . . . . . . . . . . . 14 (∅ ∪ {𝑥}) = {𝑥}
4847fveq2i 6864 . . . . . . . . . . . . 13 (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥})
4944, 48eleqtrdi 2839 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝑁‘{𝑥}))
5028, 49sseldd 3950 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑋})))
5150snssd 4776 . . . . . . . . . 10 (𝜑 → {𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5224, 51unssd 4158 . . . . . . . . 9 (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5321, 52eqsstrid 3988 . . . . . . . 8 (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5418, 7lspssp 20901 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
553, 20, 53, 54syl3anc 1373 . . . . . . 7 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5615, 55sstrd 3960 . . . . . 6 (𝜑𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5756ssdifd 4111 . . . . 5 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))
58 lsppratlem1.y2 . . . . 5 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
5957, 58sseldd 3950 . . . 4 (𝜑𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))
606, 18, 7lspsolv 21060 . . . 4 ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉𝑋𝑉𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))) → 𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
611, 12, 13, 59, 60syl13anc 1374 . . 3 (𝜑𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
62 df-pr 4595 . . . 4 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
6362fveq2i 6864 . . 3 (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦}))
6461, 63eleqtrrdi 2840 . 2 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
65 lspprat.u . . . . . . . 8 (𝜑𝑈𝑆)
666, 18lssss 20849 . . . . . . . 8 (𝑈𝑆𝑈𝑉)
6765, 66syl 17 . . . . . . 7 (𝜑𝑈𝑉)
6867ssdifssd 4113 . . . . . 6 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉)
6968, 58sseldd 3950 . . . . 5 (𝜑𝑦𝑉)
7011, 69prssd 4789 . . . 4 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
71 snsspr1 4781 . . . . 5 {𝑥} ⊆ {𝑥, 𝑦}
7271a1i 11 . . . 4 (𝜑 → {𝑥} ⊆ {𝑥, 𝑦})
736, 7lspss 20897 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉 ∧ {𝑥} ⊆ {𝑥, 𝑦}) → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦}))
743, 70, 72, 73syl3anc 1373 . . 3 (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦}))
7574, 49sseldd 3950 . 2 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
7664, 75jca 511 1 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3914  cun 3915  wss 3917  wpss 3918  c0 4299  {csn 4592  {cpr 4594  cfv 6514  Basecbs 17186  0gc0g 17409  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884  LVecclvec 21016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017
This theorem is referenced by:  lsppratlem5  21068
  Copyright terms: Public domain W3C validator