Proof of Theorem lsppratlem3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lspprat.w | . . . 4
⊢ (𝜑 → 𝑊 ∈ LVec) | 
| 2 |  | lveclmod 21106 | . . . . . . . 8
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | 
| 3 | 1, 2 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝑊 ∈ LMod) | 
| 4 |  | lspprat.y | . . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝑉) | 
| 5 | 4 | snssd 4808 | . . . . . . 7
⊢ (𝜑 → {𝑌} ⊆ 𝑉) | 
| 6 |  | lspprat.v | . . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) | 
| 7 |  | lspprat.n | . . . . . . . 8
⊢ 𝑁 = (LSpan‘𝑊) | 
| 8 | 6, 7 | lspssv 20982 | . . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉) | 
| 9 | 3, 5, 8 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉) | 
| 10 |  | lsppratlem3.x3 | . . . . . 6
⊢ (𝜑 → 𝑥 ∈ (𝑁‘{𝑌})) | 
| 11 | 9, 10 | sseldd 3983 | . . . . 5
⊢ (𝜑 → 𝑥 ∈ 𝑉) | 
| 12 | 11 | snssd 4808 | . . . 4
⊢ (𝜑 → {𝑥} ⊆ 𝑉) | 
| 13 |  | lspprat.x | . . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 14 |  | lspprat.p | . . . . . . . 8
⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | 
| 15 | 14 | pssssd 4099 | . . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ (𝑁‘{𝑋, 𝑌})) | 
| 16 | 13 | snssd 4808 | . . . . . . . . . 10
⊢ (𝜑 → {𝑋} ⊆ 𝑉) | 
| 17 | 12, 16 | unssd 4191 | . . . . . . . . 9
⊢ (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ 𝑉) | 
| 18 |  | lspprat.s | . . . . . . . . . 10
⊢ 𝑆 = (LSubSp‘𝑊) | 
| 19 | 6, 18, 7 | lspcl 20975 | . . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆) | 
| 20 | 3, 17, 19 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆) | 
| 21 |  | df-pr 4628 | . . . . . . . . 9
⊢ {𝑋, 𝑌} = ({𝑋} ∪ {𝑌}) | 
| 22 | 6, 7 | lspssid 20984 | . . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) | 
| 23 | 3, 17, 22 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) | 
| 24 | 23 | unssbd 4193 | . . . . . . . . . 10
⊢ (𝜑 → {𝑋} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) | 
| 25 |  | ssun1 4177 | . . . . . . . . . . . . . 14
⊢ {𝑥} ⊆ ({𝑥} ∪ {𝑋}) | 
| 26 | 25 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → {𝑥} ⊆ ({𝑥} ∪ {𝑋})) | 
| 27 | 6, 7 | lspss 20983 | . . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉 ∧ {𝑥} ⊆ ({𝑥} ∪ {𝑋})) → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) | 
| 28 | 3, 17, 26, 27 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) | 
| 29 |  | 0ss 4399 | . . . . . . . . . . . . . . 15
⊢ ∅
⊆ 𝑉 | 
| 30 | 29 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ∅ ⊆ 𝑉) | 
| 31 |  | uncom 4157 | . . . . . . . . . . . . . . . . . 18
⊢ (∅
∪ {𝑌}) = ({𝑌} ∪
∅) | 
| 32 |  | un0 4393 | . . . . . . . . . . . . . . . . . 18
⊢ ({𝑌} ∪ ∅) = {𝑌} | 
| 33 | 31, 32 | eqtri 2764 | . . . . . . . . . . . . . . . . 17
⊢ (∅
∪ {𝑌}) = {𝑌} | 
| 34 | 33 | fveq2i 6908 | . . . . . . . . . . . . . . . 16
⊢ (𝑁‘(∅ ∪ {𝑌})) = (𝑁‘{𝑌}) | 
| 35 | 10, 34 | eleqtrrdi 2851 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑥 ∈ (𝑁‘(∅ ∪ {𝑌}))) | 
| 36 |  | lsppratlem1.x2 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) | 
| 37 | 36 | eldifbd 3963 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝑥 ∈ { 0 }) | 
| 38 |  | lsppratlem1.o | . . . . . . . . . . . . . . . . . 18
⊢  0 =
(0g‘𝑊) | 
| 39 | 38, 7 | lsp0 21008 | . . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ LMod → (𝑁‘∅) = { 0
}) | 
| 40 | 3, 39 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁‘∅) = { 0 }) | 
| 41 | 37, 40 | neleqtrrd 2863 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ 𝑥 ∈ (𝑁‘∅)) | 
| 42 | 35, 41 | eldifd 3961 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅))) | 
| 43 | 6, 18, 7 | lspsolv 21146 | . . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LVec ∧ (∅
⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))) → 𝑌 ∈ (𝑁‘(∅ ∪ {𝑥}))) | 
| 44 | 1, 30, 4, 42, 43 | syl13anc 1373 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ (𝑁‘(∅ ∪ {𝑥}))) | 
| 45 |  | uncom 4157 | . . . . . . . . . . . . . . 15
⊢ (∅
∪ {𝑥}) = ({𝑥} ∪
∅) | 
| 46 |  | un0 4393 | . . . . . . . . . . . . . . 15
⊢ ({𝑥} ∪ ∅) = {𝑥} | 
| 47 | 45, 46 | eqtri 2764 | . . . . . . . . . . . . . 14
⊢ (∅
∪ {𝑥}) = {𝑥} | 
| 48 | 47 | fveq2i 6908 | . . . . . . . . . . . . 13
⊢ (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥}) | 
| 49 | 44, 48 | eleqtrdi 2850 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥})) | 
| 50 | 28, 49 | sseldd 3983 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑋}))) | 
| 51 | 50 | snssd 4808 | . . . . . . . . . 10
⊢ (𝜑 → {𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) | 
| 52 | 24, 51 | unssd 4191 | . . . . . . . . 9
⊢ (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) | 
| 53 | 21, 52 | eqsstrid 4021 | . . . . . . . 8
⊢ (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) | 
| 54 | 18, 7 | lspssp 20987 | . . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) | 
| 55 | 3, 20, 53, 54 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) | 
| 56 | 15, 55 | sstrd 3993 | . . . . . 6
⊢ (𝜑 → 𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) | 
| 57 | 56 | ssdifd 4144 | . . . . 5
⊢ (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥}))) | 
| 58 |  | lsppratlem1.y2 | . . . . 5
⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) | 
| 59 | 57, 58 | sseldd 3983 | . . . 4
⊢ (𝜑 → 𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥}))) | 
| 60 | 6, 18, 7 | lspsolv 21146 | . . . 4
⊢ ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))) → 𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦}))) | 
| 61 | 1, 12, 13, 59, 60 | syl13anc 1373 | . . 3
⊢ (𝜑 → 𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦}))) | 
| 62 |  | df-pr 4628 | . . . 4
⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) | 
| 63 | 62 | fveq2i 6908 | . . 3
⊢ (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦})) | 
| 64 | 61, 63 | eleqtrrdi 2851 | . 2
⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) | 
| 65 |  | lspprat.u | . . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ 𝑆) | 
| 66 | 6, 18 | lssss 20935 | . . . . . . . 8
⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) | 
| 67 | 65, 66 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ 𝑉) | 
| 68 | 67 | ssdifssd 4146 | . . . . . 6
⊢ (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉) | 
| 69 | 68, 58 | sseldd 3983 | . . . . 5
⊢ (𝜑 → 𝑦 ∈ 𝑉) | 
| 70 | 11, 69 | prssd 4821 | . . . 4
⊢ (𝜑 → {𝑥, 𝑦} ⊆ 𝑉) | 
| 71 |  | snsspr1 4813 | . . . . 5
⊢ {𝑥} ⊆ {𝑥, 𝑦} | 
| 72 | 71 | a1i 11 | . . . 4
⊢ (𝜑 → {𝑥} ⊆ {𝑥, 𝑦}) | 
| 73 | 6, 7 | lspss 20983 | . . . 4
⊢ ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉 ∧ {𝑥} ⊆ {𝑥, 𝑦}) → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦})) | 
| 74 | 3, 70, 72, 73 | syl3anc 1372 | . . 3
⊢ (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦})) | 
| 75 | 74, 49 | sseldd 3983 | . 2
⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) | 
| 76 | 64, 75 | jca 511 | 1
⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |