Proof of Theorem lsppratlem3
| Step | Hyp | Ref
| Expression |
| 1 | | lspprat.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LVec) |
| 2 | | lveclmod 21069 |
. . . . . . . 8
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
| 3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 4 | | lspprat.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 5 | 4 | snssd 4790 |
. . . . . . 7
⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
| 6 | | lspprat.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
| 7 | | lspprat.n |
. . . . . . . 8
⊢ 𝑁 = (LSpan‘𝑊) |
| 8 | 6, 7 | lspssv 20945 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉) |
| 9 | 3, 5, 8 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉) |
| 10 | | lsppratlem3.x3 |
. . . . . 6
⊢ (𝜑 → 𝑥 ∈ (𝑁‘{𝑌})) |
| 11 | 9, 10 | sseldd 3964 |
. . . . 5
⊢ (𝜑 → 𝑥 ∈ 𝑉) |
| 12 | 11 | snssd 4790 |
. . . 4
⊢ (𝜑 → {𝑥} ⊆ 𝑉) |
| 13 | | lspprat.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 14 | | lspprat.p |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| 15 | 14 | pssssd 4080 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ (𝑁‘{𝑋, 𝑌})) |
| 16 | 13 | snssd 4790 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
| 17 | 12, 16 | unssd 4172 |
. . . . . . . . 9
⊢ (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ 𝑉) |
| 18 | | lspprat.s |
. . . . . . . . . 10
⊢ 𝑆 = (LSubSp‘𝑊) |
| 19 | 6, 18, 7 | lspcl 20938 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆) |
| 20 | 3, 17, 19 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆) |
| 21 | | df-pr 4609 |
. . . . . . . . 9
⊢ {𝑋, 𝑌} = ({𝑋} ∪ {𝑌}) |
| 22 | 6, 7 | lspssid 20947 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
| 23 | 3, 17, 22 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
| 24 | 23 | unssbd 4174 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑋} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
| 25 | | ssun1 4158 |
. . . . . . . . . . . . . 14
⊢ {𝑥} ⊆ ({𝑥} ∪ {𝑋}) |
| 26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝑥} ⊆ ({𝑥} ∪ {𝑋})) |
| 27 | 6, 7 | lspss 20946 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉 ∧ {𝑥} ⊆ ({𝑥} ∪ {𝑋})) → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
| 28 | 3, 17, 26, 27 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
| 29 | | 0ss 4380 |
. . . . . . . . . . . . . . 15
⊢ ∅
⊆ 𝑉 |
| 30 | 29 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∅ ⊆ 𝑉) |
| 31 | | uncom 4138 |
. . . . . . . . . . . . . . . . . 18
⊢ (∅
∪ {𝑌}) = ({𝑌} ∪
∅) |
| 32 | | un0 4374 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑌} ∪ ∅) = {𝑌} |
| 33 | 31, 32 | eqtri 2759 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∪ {𝑌}) = {𝑌} |
| 34 | 33 | fveq2i 6884 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁‘(∅ ∪ {𝑌})) = (𝑁‘{𝑌}) |
| 35 | 10, 34 | eleqtrrdi 2846 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑥 ∈ (𝑁‘(∅ ∪ {𝑌}))) |
| 36 | | lsppratlem1.x2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) |
| 37 | 36 | eldifbd 3944 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝑥 ∈ { 0 }) |
| 38 | | lsppratlem1.o |
. . . . . . . . . . . . . . . . . 18
⊢ 0 =
(0g‘𝑊) |
| 39 | 38, 7 | lsp0 20971 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ LMod → (𝑁‘∅) = { 0
}) |
| 40 | 3, 39 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁‘∅) = { 0 }) |
| 41 | 37, 40 | neleqtrrd 2858 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ 𝑥 ∈ (𝑁‘∅)) |
| 42 | 35, 41 | eldifd 3942 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅))) |
| 43 | 6, 18, 7 | lspsolv 21109 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LVec ∧ (∅
⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))) → 𝑌 ∈ (𝑁‘(∅ ∪ {𝑥}))) |
| 44 | 1, 30, 4, 42, 43 | syl13anc 1374 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ (𝑁‘(∅ ∪ {𝑥}))) |
| 45 | | uncom 4138 |
. . . . . . . . . . . . . . 15
⊢ (∅
∪ {𝑥}) = ({𝑥} ∪
∅) |
| 46 | | un0 4374 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥} ∪ ∅) = {𝑥} |
| 47 | 45, 46 | eqtri 2759 |
. . . . . . . . . . . . . 14
⊢ (∅
∪ {𝑥}) = {𝑥} |
| 48 | 47 | fveq2i 6884 |
. . . . . . . . . . . . 13
⊢ (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥}) |
| 49 | 44, 48 | eleqtrdi 2845 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥})) |
| 50 | 28, 49 | sseldd 3964 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑋}))) |
| 51 | 50 | snssd 4790 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
| 52 | 24, 51 | unssd 4172 |
. . . . . . . . 9
⊢ (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
| 53 | 21, 52 | eqsstrid 4002 |
. . . . . . . 8
⊢ (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
| 54 | 18, 7 | lspssp 20950 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
| 55 | 3, 20, 53, 54 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
| 56 | 15, 55 | sstrd 3974 |
. . . . . 6
⊢ (𝜑 → 𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) |
| 57 | 56 | ssdifd 4125 |
. . . . 5
⊢ (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥}))) |
| 58 | | lsppratlem1.y2 |
. . . . 5
⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| 59 | 57, 58 | sseldd 3964 |
. . . 4
⊢ (𝜑 → 𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥}))) |
| 60 | 6, 18, 7 | lspsolv 21109 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))) → 𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦}))) |
| 61 | 1, 12, 13, 59, 60 | syl13anc 1374 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦}))) |
| 62 | | df-pr 4609 |
. . . 4
⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) |
| 63 | 62 | fveq2i 6884 |
. . 3
⊢ (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦})) |
| 64 | 61, 63 | eleqtrrdi 2846 |
. 2
⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) |
| 65 | | lspprat.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| 66 | 6, 18 | lssss 20898 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 67 | 65, 66 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
| 68 | 67 | ssdifssd 4127 |
. . . . . 6
⊢ (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉) |
| 69 | 68, 58 | sseldd 3964 |
. . . . 5
⊢ (𝜑 → 𝑦 ∈ 𝑉) |
| 70 | 11, 69 | prssd 4803 |
. . . 4
⊢ (𝜑 → {𝑥, 𝑦} ⊆ 𝑉) |
| 71 | | snsspr1 4795 |
. . . . 5
⊢ {𝑥} ⊆ {𝑥, 𝑦} |
| 72 | 71 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝑥} ⊆ {𝑥, 𝑦}) |
| 73 | 6, 7 | lspss 20946 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉 ∧ {𝑥} ⊆ {𝑥, 𝑦}) → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦})) |
| 74 | 3, 70, 72, 73 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦})) |
| 75 | 74, 49 | sseldd 3964 |
. 2
⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) |
| 76 | 64, 75 | jca 511 |
1
⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |