MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem3 Structured version   Visualization version   GIF version

Theorem lsppratlem3 21075
Description: Lemma for lspprat 21079. In the first case of lsppratlem1 21073, since 𝑥 ∉ (𝑁‘∅), also 𝑌 ∈ (𝑁‘{𝑥}), and since 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑥}) and 𝑦 ∉ (𝑁‘{𝑥}), we have 𝑋 ∈ (𝑁‘{𝑥, 𝑦}) as desired. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem3.x3 (𝜑𝑥 ∈ (𝑁‘{𝑌}))
Assertion
Ref Expression
lsppratlem3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))

Proof of Theorem lsppratlem3
StepHypRef Expression
1 lspprat.w . . . 4 (𝜑𝑊 ∈ LVec)
2 lveclmod 21029 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
4 lspprat.y . . . . . . . 8 (𝜑𝑌𝑉)
54snssd 4763 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
6 lspprat.v . . . . . . . 8 𝑉 = (Base‘𝑊)
7 lspprat.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
86, 7lspssv 20905 . . . . . . 7 ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉)
93, 5, 8syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉)
10 lsppratlem3.x3 . . . . . 6 (𝜑𝑥 ∈ (𝑁‘{𝑌}))
119, 10sseldd 3938 . . . . 5 (𝜑𝑥𝑉)
1211snssd 4763 . . . 4 (𝜑 → {𝑥} ⊆ 𝑉)
13 lspprat.x . . . 4 (𝜑𝑋𝑉)
14 lspprat.p . . . . . . . 8 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
1514pssssd 4053 . . . . . . 7 (𝜑𝑈 ⊆ (𝑁‘{𝑋, 𝑌}))
1613snssd 4763 . . . . . . . . . 10 (𝜑 → {𝑋} ⊆ 𝑉)
1712, 16unssd 4145 . . . . . . . . 9 (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ 𝑉)
18 lspprat.s . . . . . . . . . 10 𝑆 = (LSubSp‘𝑊)
196, 18, 7lspcl 20898 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆)
203, 17, 19syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆)
21 df-pr 4582 . . . . . . . . 9 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
226, 7lspssid 20907 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉) → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
233, 17, 22syl2anc 584 . . . . . . . . . . 11 (𝜑 → ({𝑥} ∪ {𝑋}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
2423unssbd 4147 . . . . . . . . . 10 (𝜑 → {𝑋} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
25 ssun1 4131 . . . . . . . . . . . . . 14 {𝑥} ⊆ ({𝑥} ∪ {𝑋})
2625a1i 11 . . . . . . . . . . . . 13 (𝜑 → {𝑥} ⊆ ({𝑥} ∪ {𝑋}))
276, 7lspss 20906 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ ({𝑥} ∪ {𝑋}) ⊆ 𝑉 ∧ {𝑥} ⊆ ({𝑥} ∪ {𝑋})) → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
283, 17, 26, 27syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
29 0ss 4353 . . . . . . . . . . . . . . 15 ∅ ⊆ 𝑉
3029a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ∅ ⊆ 𝑉)
31 uncom 4111 . . . . . . . . . . . . . . . . . 18 (∅ ∪ {𝑌}) = ({𝑌} ∪ ∅)
32 un0 4347 . . . . . . . . . . . . . . . . . 18 ({𝑌} ∪ ∅) = {𝑌}
3331, 32eqtri 2752 . . . . . . . . . . . . . . . . 17 (∅ ∪ {𝑌}) = {𝑌}
3433fveq2i 6829 . . . . . . . . . . . . . . . 16 (𝑁‘(∅ ∪ {𝑌})) = (𝑁‘{𝑌})
3510, 34eleqtrrdi 2839 . . . . . . . . . . . . . . 15 (𝜑𝑥 ∈ (𝑁‘(∅ ∪ {𝑌})))
36 lsppratlem1.x2 . . . . . . . . . . . . . . . . 17 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
3736eldifbd 3918 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑥 ∈ { 0 })
38 lsppratlem1.o . . . . . . . . . . . . . . . . . 18 0 = (0g𝑊)
3938, 7lsp0 20931 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })
403, 39syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁‘∅) = { 0 })
4137, 40neleqtrrd 2851 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑥 ∈ (𝑁‘∅))
4235, 41eldifd 3916 . . . . . . . . . . . . . 14 (𝜑𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))
436, 18, 7lspsolv 21069 . . . . . . . . . . . . . 14 ((𝑊 ∈ LVec ∧ (∅ ⊆ 𝑉𝑌𝑉𝑥 ∈ ((𝑁‘(∅ ∪ {𝑌})) ∖ (𝑁‘∅)))) → 𝑌 ∈ (𝑁‘(∅ ∪ {𝑥})))
441, 30, 4, 42, 43syl13anc 1374 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (𝑁‘(∅ ∪ {𝑥})))
45 uncom 4111 . . . . . . . . . . . . . . 15 (∅ ∪ {𝑥}) = ({𝑥} ∪ ∅)
46 un0 4347 . . . . . . . . . . . . . . 15 ({𝑥} ∪ ∅) = {𝑥}
4745, 46eqtri 2752 . . . . . . . . . . . . . 14 (∅ ∪ {𝑥}) = {𝑥}
4847fveq2i 6829 . . . . . . . . . . . . 13 (𝑁‘(∅ ∪ {𝑥})) = (𝑁‘{𝑥})
4944, 48eleqtrdi 2838 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝑁‘{𝑥}))
5028, 49sseldd 3938 . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑋})))
5150snssd 4763 . . . . . . . . . 10 (𝜑 → {𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5224, 51unssd 4145 . . . . . . . . 9 (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5321, 52eqsstrid 3976 . . . . . . . 8 (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5418, 7lspssp 20910 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘({𝑥} ∪ {𝑋})) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘({𝑥} ∪ {𝑋}))) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
553, 20, 53, 54syl3anc 1373 . . . . . . 7 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5615, 55sstrd 3948 . . . . . 6 (𝜑𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑋})))
5756ssdifd 4098 . . . . 5 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))
58 lsppratlem1.y2 . . . . 5 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
5957, 58sseldd 3938 . . . 4 (𝜑𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))
606, 18, 7lspsolv 21069 . . . 4 ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉𝑋𝑉𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑋})) ∖ (𝑁‘{𝑥})))) → 𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
611, 12, 13, 59, 60syl13anc 1374 . . 3 (𝜑𝑋 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
62 df-pr 4582 . . . 4 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
6362fveq2i 6829 . . 3 (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦}))
6461, 63eleqtrrdi 2839 . 2 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
65 lspprat.u . . . . . . . 8 (𝜑𝑈𝑆)
666, 18lssss 20858 . . . . . . . 8 (𝑈𝑆𝑈𝑉)
6765, 66syl 17 . . . . . . 7 (𝜑𝑈𝑉)
6867ssdifssd 4100 . . . . . 6 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉)
6968, 58sseldd 3938 . . . . 5 (𝜑𝑦𝑉)
7011, 69prssd 4776 . . . 4 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
71 snsspr1 4768 . . . . 5 {𝑥} ⊆ {𝑥, 𝑦}
7271a1i 11 . . . 4 (𝜑 → {𝑥} ⊆ {𝑥, 𝑦})
736, 7lspss 20906 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉 ∧ {𝑥} ⊆ {𝑥, 𝑦}) → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦}))
743, 70, 72, 73syl3anc 1373 . . 3 (𝜑 → (𝑁‘{𝑥}) ⊆ (𝑁‘{𝑥, 𝑦}))
7574, 49sseldd 3938 . 2 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
7664, 75jca 511 1 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3902  cun 3903  wss 3905  wpss 3906  c0 4286  {csn 4579  {cpr 4581  cfv 6486  Basecbs 17139  0gc0g 17362  LModclmod 20782  LSubSpclss 20853  LSpanclspn 20893  LVecclvec 21025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-sbg 18836  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-drng 20635  df-lmod 20784  df-lss 20854  df-lsp 20894  df-lvec 21026
This theorem is referenced by:  lsppratlem5  21077
  Copyright terms: Public domain W3C validator