Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsppratlem1 | Structured version Visualization version GIF version |
Description: Lemma for lspprat 19993. Let 𝑥 ∈ (𝑈 ∖ {0}) (if there is no such 𝑥 then 𝑈 is the zero subspace), and let 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})) (assuming the conclusion is false). The goal is to write 𝑋, 𝑌 in terms of 𝑥, 𝑦, which would normally be done by solving the system of linear equations. The span equivalent of this process is lspsolv 19983 (hence the name), which we use extensively below. In this lemma, we show that since 𝑥 ∈ (𝑁‘{𝑋, 𝑌}), either 𝑥 ∈ (𝑁‘{𝑌}) or 𝑋 ∈ (𝑁‘{𝑥, 𝑌}). (Contributed by NM, 29-Aug-2014.) |
Ref | Expression |
---|---|
lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
lsppratlem1.o | ⊢ 0 = (0g‘𝑊) |
lsppratlem1.x2 | ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) |
lsppratlem1.y2 | ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
Ref | Expression |
---|---|
lsppratlem1 | ⊢ (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
2 | 1 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec) |
3 | lspprat.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
4 | 3 | snssd 4699 | . . . . . 6 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
5 | 4 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → {𝑌} ⊆ 𝑉) |
6 | lspprat.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
7 | 6 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ 𝑉) |
8 | lspprat.p | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
9 | 8 | pssssd 4003 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ⊆ (𝑁‘{𝑋, 𝑌})) |
10 | lsppratlem1.x2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) | |
11 | 10 | eldifad 3870 | . . . . . . . . 9 ⊢ (𝜑 → 𝑥 ∈ 𝑈) |
12 | 9, 11 | sseldd 3893 | . . . . . . . 8 ⊢ (𝜑 → 𝑥 ∈ (𝑁‘{𝑋, 𝑌})) |
13 | prcom 4625 | . . . . . . . . . 10 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
14 | df-pr 4525 | . . . . . . . . . 10 ⊢ {𝑌, 𝑋} = ({𝑌} ∪ {𝑋}) | |
15 | 13, 14 | eqtri 2781 | . . . . . . . . 9 ⊢ {𝑋, 𝑌} = ({𝑌} ∪ {𝑋}) |
16 | 15 | fveq2i 6661 | . . . . . . . 8 ⊢ (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑌} ∪ {𝑋})) |
17 | 12, 16 | eleqtrdi 2862 | . . . . . . 7 ⊢ (𝜑 → 𝑥 ∈ (𝑁‘({𝑌} ∪ {𝑋}))) |
18 | 17 | anim1i 617 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → (𝑥 ∈ (𝑁‘({𝑌} ∪ {𝑋})) ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌}))) |
19 | eldif 3868 | . . . . . 6 ⊢ (𝑥 ∈ ((𝑁‘({𝑌} ∪ {𝑋})) ∖ (𝑁‘{𝑌})) ↔ (𝑥 ∈ (𝑁‘({𝑌} ∪ {𝑋})) ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌}))) | |
20 | 18, 19 | sylibr 237 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ ((𝑁‘({𝑌} ∪ {𝑋})) ∖ (𝑁‘{𝑌}))) |
21 | lspprat.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
22 | lspprat.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
23 | lspprat.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
24 | 21, 22, 23 | lspsolv 19983 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ ({𝑌} ⊆ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ ((𝑁‘({𝑌} ∪ {𝑋})) ∖ (𝑁‘{𝑌})))) → 𝑋 ∈ (𝑁‘({𝑌} ∪ {𝑥}))) |
25 | 2, 5, 7, 20, 24 | syl13anc 1369 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘({𝑌} ∪ {𝑥}))) |
26 | df-pr 4525 | . . . . . 6 ⊢ {𝑌, 𝑥} = ({𝑌} ∪ {𝑥}) | |
27 | prcom 4625 | . . . . . 6 ⊢ {𝑌, 𝑥} = {𝑥, 𝑌} | |
28 | 26, 27 | eqtr3i 2783 | . . . . 5 ⊢ ({𝑌} ∪ {𝑥}) = {𝑥, 𝑌} |
29 | 28 | fveq2i 6661 | . . . 4 ⊢ (𝑁‘({𝑌} ∪ {𝑥})) = (𝑁‘{𝑥, 𝑌}) |
30 | 25, 29 | eleqtrdi 2862 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) |
31 | 30 | ex 416 | . 2 ⊢ (𝜑 → (¬ 𝑥 ∈ (𝑁‘{𝑌}) → 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))) |
32 | 31 | orrd 860 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∨ wo 844 = wceq 1538 ∈ wcel 2111 ∖ cdif 3855 ∪ cun 3856 ⊆ wss 3858 ⊊ wpss 3859 {csn 4522 {cpr 4524 ‘cfv 6335 Basecbs 16541 0gc0g 16771 LSubSpclss 19771 LSpanclspn 19811 LVecclvec 19942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-tpos 7902 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-sbg 18174 df-cmn 18975 df-abl 18976 df-mgp 19308 df-ur 19320 df-ring 19367 df-oppr 19444 df-dvdsr 19462 df-unit 19463 df-invr 19493 df-drng 19572 df-lmod 19704 df-lss 19772 df-lsp 19812 df-lvec 19943 |
This theorem is referenced by: lsppratlem5 19991 |
Copyright terms: Public domain | W3C validator |