| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsppratlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for lspprat 21112. Let 𝑥 ∈ (𝑈 ∖ {0}) (if there is no such 𝑥 then 𝑈 is the zero subspace), and let 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})) (assuming the conclusion is false). The goal is to write 𝑋, 𝑌 in terms of 𝑥, 𝑦, which would normally be done by solving the system of linear equations. The span equivalent of this process is lspsolv 21102 (hence the name), which we use extensively below. In this lemma, we show that since 𝑥 ∈ (𝑁‘{𝑋, 𝑌}), either 𝑥 ∈ (𝑁‘{𝑌}) or 𝑋 ∈ (𝑁‘{𝑥, 𝑌}). (Contributed by NM, 29-Aug-2014.) |
| Ref | Expression |
|---|---|
| lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| lsppratlem1.o | ⊢ 0 = (0g‘𝑊) |
| lsppratlem1.x2 | ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) |
| lsppratlem1.y2 | ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| Ref | Expression |
|---|---|
| lsppratlem1 | ⊢ (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec) |
| 3 | lspprat.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 4 | 3 | snssd 4785 | . . . . . 6 ⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → {𝑌} ⊆ 𝑉) |
| 6 | lspprat.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ 𝑉) |
| 8 | lspprat.p | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) | |
| 9 | 8 | pssssd 4075 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ⊆ (𝑁‘{𝑋, 𝑌})) |
| 10 | lsppratlem1.x2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) | |
| 11 | 10 | eldifad 3938 | . . . . . . . . 9 ⊢ (𝜑 → 𝑥 ∈ 𝑈) |
| 12 | 9, 11 | sseldd 3959 | . . . . . . . 8 ⊢ (𝜑 → 𝑥 ∈ (𝑁‘{𝑋, 𝑌})) |
| 13 | prcom 4708 | . . . . . . . . . 10 ⊢ {𝑋, 𝑌} = {𝑌, 𝑋} | |
| 14 | df-pr 4604 | . . . . . . . . . 10 ⊢ {𝑌, 𝑋} = ({𝑌} ∪ {𝑋}) | |
| 15 | 13, 14 | eqtri 2758 | . . . . . . . . 9 ⊢ {𝑋, 𝑌} = ({𝑌} ∪ {𝑋}) |
| 16 | 15 | fveq2i 6878 | . . . . . . . 8 ⊢ (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑌} ∪ {𝑋})) |
| 17 | 12, 16 | eleqtrdi 2844 | . . . . . . 7 ⊢ (𝜑 → 𝑥 ∈ (𝑁‘({𝑌} ∪ {𝑋}))) |
| 18 | 17 | anim1i 615 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → (𝑥 ∈ (𝑁‘({𝑌} ∪ {𝑋})) ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌}))) |
| 19 | eldif 3936 | . . . . . 6 ⊢ (𝑥 ∈ ((𝑁‘({𝑌} ∪ {𝑋})) ∖ (𝑁‘{𝑌})) ↔ (𝑥 ∈ (𝑁‘({𝑌} ∪ {𝑋})) ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌}))) | |
| 20 | 18, 19 | sylibr 234 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑥 ∈ ((𝑁‘({𝑌} ∪ {𝑋})) ∖ (𝑁‘{𝑌}))) |
| 21 | lspprat.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 22 | lspprat.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 23 | lspprat.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 24 | 21, 22, 23 | lspsolv 21102 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ ({𝑌} ⊆ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑥 ∈ ((𝑁‘({𝑌} ∪ {𝑋})) ∖ (𝑁‘{𝑌})))) → 𝑋 ∈ (𝑁‘({𝑌} ∪ {𝑥}))) |
| 25 | 2, 5, 7, 20, 24 | syl13anc 1374 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘({𝑌} ∪ {𝑥}))) |
| 26 | df-pr 4604 | . . . . . 6 ⊢ {𝑌, 𝑥} = ({𝑌} ∪ {𝑥}) | |
| 27 | prcom 4708 | . . . . . 6 ⊢ {𝑌, 𝑥} = {𝑥, 𝑌} | |
| 28 | 26, 27 | eqtr3i 2760 | . . . . 5 ⊢ ({𝑌} ∪ {𝑥}) = {𝑥, 𝑌} |
| 29 | 28 | fveq2i 6878 | . . . 4 ⊢ (𝑁‘({𝑌} ∪ {𝑥})) = (𝑁‘{𝑥, 𝑌}) |
| 30 | 25, 29 | eleqtrdi 2844 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) |
| 31 | 30 | ex 412 | . 2 ⊢ (𝜑 → (¬ 𝑥 ∈ (𝑁‘{𝑌}) → 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))) |
| 32 | 31 | orrd 863 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ∪ cun 3924 ⊆ wss 3926 ⊊ wpss 3927 {csn 4601 {cpr 4603 ‘cfv 6530 Basecbs 17226 0gc0g 17451 LSubSpclss 20886 LSpanclspn 20926 LVecclvec 21058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-sbg 18919 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-drng 20689 df-lmod 20817 df-lss 20887 df-lsp 20927 df-lvec 21059 |
| This theorem is referenced by: lsppratlem5 21110 |
| Copyright terms: Public domain | W3C validator |