MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbspss Structured version   Visualization version   GIF version

Theorem lbspss 21104
Description: No proper subset of a basis spans the space. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsind2.j 𝐽 = (LBasis‘𝑊)
lbsind2.n 𝑁 = (LSpan‘𝑊)
lbsind2.f 𝐹 = (Scalar‘𝑊)
lbsind2.o 1 = (1r𝐹)
lbsind2.z 0 = (0g𝐹)
lbspss.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
lbspss (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → (𝑁𝐶) ≠ 𝑉)

Proof of Theorem lbspss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 4494 . . 3 (𝐶𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐶))
213ad2ant3 1135 . 2 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐶))
3 simpl2 1192 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐵𝐽)
4 lbspss.v . . . . . . 7 𝑉 = (Base‘𝑊)
5 lbsind2.j . . . . . . 7 𝐽 = (LBasis‘𝑊)
64, 5lbsss 21099 . . . . . 6 (𝐵𝐽𝐵𝑉)
73, 6syl 17 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐵𝑉)
8 simprl 770 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑥𝐵)
97, 8sseldd 4009 . . . 4 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑥𝑉)
10 simpl1l 1224 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑊 ∈ LMod)
117ssdifssd 4170 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
12 simpl3 1193 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶𝐵)
1312pssssd 4123 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶𝐵)
1413sseld 4007 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦𝐵))
15 simprr 772 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥𝐶)
16 eleq1w 2827 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐶𝑥𝐶))
1716notbid 318 . . . . . . . . . . 11 (𝑦 = 𝑥 → (¬ 𝑦𝐶 ↔ ¬ 𝑥𝐶))
1815, 17syl5ibrcom 247 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦 = 𝑥 → ¬ 𝑦𝐶))
1918necon2ad 2961 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦𝑥))
2014, 19jcad 512 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶 → (𝑦𝐵𝑦𝑥)))
21 eldifsn 4811 . . . . . . . 8 (𝑦 ∈ (𝐵 ∖ {𝑥}) ↔ (𝑦𝐵𝑦𝑥))
2220, 21imbitrrdi 252 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦 ∈ (𝐵 ∖ {𝑥})))
2322ssrdv 4014 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶 ⊆ (𝐵 ∖ {𝑥}))
24 lbsind2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
254, 24lspss 21005 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉𝐶 ⊆ (𝐵 ∖ {𝑥})) → (𝑁𝐶) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
2610, 11, 23, 25syl3anc 1371 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑁𝐶) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
27 simpl1r 1225 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 10 )
28 lbsind2.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
29 lbsind2.o . . . . . . 7 1 = (1r𝐹)
30 lbsind2.z . . . . . . 7 0 = (0g𝐹)
315, 24, 28, 29, 30lbsind2 21103 . . . . . 6 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
3210, 27, 3, 8, 31syl211anc 1376 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
3326, 32ssneldd 4011 . . . 4 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥 ∈ (𝑁𝐶))
34 nelne1 3045 . . . 4 ((𝑥𝑉 ∧ ¬ 𝑥 ∈ (𝑁𝐶)) → 𝑉 ≠ (𝑁𝐶))
359, 33, 34syl2anc 583 . . 3 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑉 ≠ (𝑁𝐶))
3635necomd 3002 . 2 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑁𝐶) ≠ 𝑉)
372, 36exlimddv 1934 1 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → (𝑁𝐶) ≠ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  cdif 3973  wss 3976  wpss 3977  {csn 4648  cfv 6573  Basecbs 17258  Scalarcsca 17314  0gc0g 17499  1rcur 20208  LModclmod 20880  LSpanclspn 20992  LBasisclbs 21096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-mgp 20162  df-ur 20209  df-ring 20262  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lbs 21097
This theorem is referenced by:  islbs3  21180
  Copyright terms: Public domain W3C validator