MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbspss Structured version   Visualization version   GIF version

Theorem lbspss 21081
Description: No proper subset of a basis spans the space. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsind2.j 𝐽 = (LBasis‘𝑊)
lbsind2.n 𝑁 = (LSpan‘𝑊)
lbsind2.f 𝐹 = (Scalar‘𝑊)
lbsind2.o 1 = (1r𝐹)
lbsind2.z 0 = (0g𝐹)
lbspss.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
lbspss (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → (𝑁𝐶) ≠ 𝑉)

Proof of Theorem lbspss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 4471 . . 3 (𝐶𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐶))
213ad2ant3 1136 . 2 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐶))
3 simpl2 1193 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐵𝐽)
4 lbspss.v . . . . . . 7 𝑉 = (Base‘𝑊)
5 lbsind2.j . . . . . . 7 𝐽 = (LBasis‘𝑊)
64, 5lbsss 21076 . . . . . 6 (𝐵𝐽𝐵𝑉)
73, 6syl 17 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐵𝑉)
8 simprl 771 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑥𝐵)
97, 8sseldd 3984 . . . 4 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑥𝑉)
10 simpl1l 1225 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑊 ∈ LMod)
117ssdifssd 4147 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
12 simpl3 1194 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶𝐵)
1312pssssd 4100 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶𝐵)
1413sseld 3982 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦𝐵))
15 simprr 773 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥𝐶)
16 eleq1w 2824 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐶𝑥𝐶))
1716notbid 318 . . . . . . . . . . 11 (𝑦 = 𝑥 → (¬ 𝑦𝐶 ↔ ¬ 𝑥𝐶))
1815, 17syl5ibrcom 247 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦 = 𝑥 → ¬ 𝑦𝐶))
1918necon2ad 2955 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦𝑥))
2014, 19jcad 512 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶 → (𝑦𝐵𝑦𝑥)))
21 eldifsn 4786 . . . . . . . 8 (𝑦 ∈ (𝐵 ∖ {𝑥}) ↔ (𝑦𝐵𝑦𝑥))
2220, 21imbitrrdi 252 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦 ∈ (𝐵 ∖ {𝑥})))
2322ssrdv 3989 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶 ⊆ (𝐵 ∖ {𝑥}))
24 lbsind2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
254, 24lspss 20982 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉𝐶 ⊆ (𝐵 ∖ {𝑥})) → (𝑁𝐶) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
2610, 11, 23, 25syl3anc 1373 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑁𝐶) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
27 simpl1r 1226 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 10 )
28 lbsind2.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
29 lbsind2.o . . . . . . 7 1 = (1r𝐹)
30 lbsind2.z . . . . . . 7 0 = (0g𝐹)
315, 24, 28, 29, 30lbsind2 21080 . . . . . 6 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
3210, 27, 3, 8, 31syl211anc 1378 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
3326, 32ssneldd 3986 . . . 4 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥 ∈ (𝑁𝐶))
34 nelne1 3039 . . . 4 ((𝑥𝑉 ∧ ¬ 𝑥 ∈ (𝑁𝐶)) → 𝑉 ≠ (𝑁𝐶))
359, 33, 34syl2anc 584 . . 3 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑉 ≠ (𝑁𝐶))
3635necomd 2996 . 2 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑁𝐶) ≠ 𝑉)
372, 36exlimddv 1935 1 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → (𝑁𝐶) ≠ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  cdif 3948  wss 3951  wpss 3952  {csn 4626  cfv 6561  Basecbs 17247  Scalarcsca 17300  0gc0g 17484  1rcur 20178  LModclmod 20858  LSpanclspn 20969  LBasisclbs 21073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lbs 21074
This theorem is referenced by:  islbs3  21157
  Copyright terms: Public domain W3C validator