MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbspss Structured version   Visualization version   GIF version

Theorem lbspss 21004
Description: No proper subset of a basis spans the space. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsind2.j 𝐽 = (LBasis‘𝑊)
lbsind2.n 𝑁 = (LSpan‘𝑊)
lbsind2.f 𝐹 = (Scalar‘𝑊)
lbsind2.o 1 = (1r𝐹)
lbsind2.z 0 = (0g𝐹)
lbspss.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
lbspss (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → (𝑁𝐶) ≠ 𝑉)

Proof of Theorem lbspss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 4424 . . 3 (𝐶𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐶))
213ad2ant3 1135 . 2 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐶))
3 simpl2 1193 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐵𝐽)
4 lbspss.v . . . . . . 7 𝑉 = (Base‘𝑊)
5 lbsind2.j . . . . . . 7 𝐽 = (LBasis‘𝑊)
64, 5lbsss 20999 . . . . . 6 (𝐵𝐽𝐵𝑉)
73, 6syl 17 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐵𝑉)
8 simprl 770 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑥𝐵)
97, 8sseldd 3938 . . . 4 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑥𝑉)
10 simpl1l 1225 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑊 ∈ LMod)
117ssdifssd 4100 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
12 simpl3 1194 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶𝐵)
1312pssssd 4053 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶𝐵)
1413sseld 3936 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦𝐵))
15 simprr 772 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥𝐶)
16 eleq1w 2811 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐶𝑥𝐶))
1716notbid 318 . . . . . . . . . . 11 (𝑦 = 𝑥 → (¬ 𝑦𝐶 ↔ ¬ 𝑥𝐶))
1815, 17syl5ibrcom 247 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦 = 𝑥 → ¬ 𝑦𝐶))
1918necon2ad 2940 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦𝑥))
2014, 19jcad 512 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶 → (𝑦𝐵𝑦𝑥)))
21 eldifsn 4740 . . . . . . . 8 (𝑦 ∈ (𝐵 ∖ {𝑥}) ↔ (𝑦𝐵𝑦𝑥))
2220, 21imbitrrdi 252 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦 ∈ (𝐵 ∖ {𝑥})))
2322ssrdv 3943 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶 ⊆ (𝐵 ∖ {𝑥}))
24 lbsind2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
254, 24lspss 20905 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉𝐶 ⊆ (𝐵 ∖ {𝑥})) → (𝑁𝐶) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
2610, 11, 23, 25syl3anc 1373 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑁𝐶) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
27 simpl1r 1226 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 10 )
28 lbsind2.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
29 lbsind2.o . . . . . . 7 1 = (1r𝐹)
30 lbsind2.z . . . . . . 7 0 = (0g𝐹)
315, 24, 28, 29, 30lbsind2 21003 . . . . . 6 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
3210, 27, 3, 8, 31syl211anc 1378 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
3326, 32ssneldd 3940 . . . 4 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥 ∈ (𝑁𝐶))
34 nelne1 3022 . . . 4 ((𝑥𝑉 ∧ ¬ 𝑥 ∈ (𝑁𝐶)) → 𝑉 ≠ (𝑁𝐶))
359, 33, 34syl2anc 584 . . 3 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑉 ≠ (𝑁𝐶))
3635necomd 2980 . 2 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑁𝐶) ≠ 𝑉)
372, 36exlimddv 1935 1 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → (𝑁𝐶) ≠ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  cdif 3902  wss 3905  wpss 3906  {csn 4579  cfv 6486  Basecbs 17138  Scalarcsca 17182  0gc0g 17361  1rcur 20084  LModclmod 20781  LSpanclspn 20892  LBasisclbs 20996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-mgp 20044  df-ur 20085  df-ring 20138  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lbs 20997
This theorem is referenced by:  islbs3  21080
  Copyright terms: Public domain W3C validator