MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbspss Structured version   Visualization version   GIF version

Theorem lbspss 20543
Description: No proper subset of a basis spans the space. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsind2.j 𝐽 = (LBasis‘𝑊)
lbsind2.n 𝑁 = (LSpan‘𝑊)
lbsind2.f 𝐹 = (Scalar‘𝑊)
lbsind2.o 1 = (1r𝐹)
lbsind2.z 0 = (0g𝐹)
lbspss.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
lbspss (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → (𝑁𝐶) ≠ 𝑉)

Proof of Theorem lbspss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 4430 . . 3 (𝐶𝐵 → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐶))
213ad2ant3 1135 . 2 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → ∃𝑥(𝑥𝐵 ∧ ¬ 𝑥𝐶))
3 simpl2 1192 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐵𝐽)
4 lbspss.v . . . . . . 7 𝑉 = (Base‘𝑊)
5 lbsind2.j . . . . . . 7 𝐽 = (LBasis‘𝑊)
64, 5lbsss 20538 . . . . . 6 (𝐵𝐽𝐵𝑉)
73, 6syl 17 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐵𝑉)
8 simprl 769 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑥𝐵)
97, 8sseldd 3945 . . . 4 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑥𝑉)
10 simpl1l 1224 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑊 ∈ LMod)
117ssdifssd 4102 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝐵 ∖ {𝑥}) ⊆ 𝑉)
12 simpl3 1193 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶𝐵)
1312pssssd 4057 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶𝐵)
1413sseld 3943 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦𝐵))
15 simprr 771 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥𝐶)
16 eleq1w 2820 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐶𝑥𝐶))
1716notbid 317 . . . . . . . . . . 11 (𝑦 = 𝑥 → (¬ 𝑦𝐶 ↔ ¬ 𝑥𝐶))
1815, 17syl5ibrcom 246 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦 = 𝑥 → ¬ 𝑦𝐶))
1918necon2ad 2958 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦𝑥))
2014, 19jcad 513 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶 → (𝑦𝐵𝑦𝑥)))
21 eldifsn 4747 . . . . . . . 8 (𝑦 ∈ (𝐵 ∖ {𝑥}) ↔ (𝑦𝐵𝑦𝑥))
2220, 21syl6ibr 251 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑦𝐶𝑦 ∈ (𝐵 ∖ {𝑥})))
2322ssrdv 3950 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝐶 ⊆ (𝐵 ∖ {𝑥}))
24 lbsind2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
254, 24lspss 20445 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑥}) ⊆ 𝑉𝐶 ⊆ (𝐵 ∖ {𝑥})) → (𝑁𝐶) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
2610, 11, 23, 25syl3anc 1371 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑁𝐶) ⊆ (𝑁‘(𝐵 ∖ {𝑥})))
27 simpl1r 1225 . . . . . 6 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 10 )
28 lbsind2.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
29 lbsind2.o . . . . . . 7 1 = (1r𝐹)
30 lbsind2.z . . . . . . 7 0 = (0g𝐹)
315, 24, 28, 29, 30lbsind2 20542 . . . . . 6 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
3210, 27, 3, 8, 31syl211anc 1376 . . . . 5 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
3326, 32ssneldd 3947 . . . 4 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → ¬ 𝑥 ∈ (𝑁𝐶))
34 nelne1 3041 . . . 4 ((𝑥𝑉 ∧ ¬ 𝑥 ∈ (𝑁𝐶)) → 𝑉 ≠ (𝑁𝐶))
359, 33, 34syl2anc 584 . . 3 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → 𝑉 ≠ (𝑁𝐶))
3635necomd 2999 . 2 ((((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) ∧ (𝑥𝐵 ∧ ¬ 𝑥𝐶)) → (𝑁𝐶) ≠ 𝑉)
372, 36exlimddv 1938 1 (((𝑊 ∈ LMod ∧ 10 ) ∧ 𝐵𝐽𝐶𝐵) → (𝑁𝐶) ≠ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  cdif 3907  wss 3910  wpss 3911  {csn 4586  cfv 6496  Basecbs 17083  Scalarcsca 17136  0gc0g 17321  1rcur 19913  LModclmod 20322  LSpanclspn 20432  LBasisclbs 20535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lbs 20536
This theorem is referenced by:  islbs3  20616
  Copyright terms: Public domain W3C validator