Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaun3lem2 Structured version   Visualization version   GIF version

Theorem oaun3lem2 43399
Description: The class of all ordinal sums of elements from two ordinals is bounded by the sum. Lemma for oaun3 43406. (Contributed by RP, 13-Feb-2025.)
Assertion
Ref Expression
oaun3lem2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∣ ∃𝑎𝐴𝑏𝐵 𝑥 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥   𝐵,𝑎,𝑏,𝑥

Proof of Theorem oaun3lem2
StepHypRef Expression
1 simpr 484 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) ∧ 𝑥 = (𝑎 +o 𝑏)) → 𝑥 = (𝑎 +o 𝑏))
2 onelon 6377 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑎𝐴) → 𝑎 ∈ On)
32ad2ant2r 747 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → 𝑎 ∈ On)
4 onelon 6377 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑏𝐵) → 𝑏 ∈ On)
54ad2ant2l 746 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → 𝑏 ∈ On)
6 oacl 8547 . . . . . . . . 9 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +o 𝑏) ∈ On)
73, 5, 6syl2anc 584 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → (𝑎 +o 𝑏) ∈ On)
8 oacl 8547 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
98adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → (𝐴 +o 𝐵) ∈ On)
107, 9jca 511 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → ((𝑎 +o 𝑏) ∈ On ∧ (𝐴 +o 𝐵) ∈ On))
11 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
1211adantr 480 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → 𝐴 ∈ On)
133, 12, 53jca 1128 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → (𝑎 ∈ On ∧ 𝐴 ∈ On ∧ 𝑏 ∈ On))
14 simpl 482 . . . . . . . . . . . 12 ((𝑎𝐴𝑏𝐵) → 𝑎𝐴)
1514adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → 𝑎𝐴)
16 eloni 6362 . . . . . . . . . . . . . 14 (𝑎 ∈ On → Ord 𝑎)
17 eloni 6362 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Ord 𝐴)
1816, 17anim12i 613 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ 𝐴 ∈ On) → (Ord 𝑎 ∧ Ord 𝐴))
193, 12, 18syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → (Ord 𝑎 ∧ Ord 𝐴))
20 ordelpss 6380 . . . . . . . . . . . 12 ((Ord 𝑎 ∧ Ord 𝐴) → (𝑎𝐴𝑎𝐴))
2119, 20syl 17 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → (𝑎𝐴𝑎𝐴))
2215, 21mpbid 232 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → 𝑎𝐴)
2322pssssd 4075 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → 𝑎𝐴)
24 oawordri 8562 . . . . . . . . 9 ((𝑎 ∈ On ∧ 𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝐴 → (𝑎 +o 𝑏) ⊆ (𝐴 +o 𝑏)))
2513, 23, 24sylc 65 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → (𝑎 +o 𝑏) ⊆ (𝐴 +o 𝑏))
26 pm3.22 459 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ On ∧ 𝐴 ∈ On))
2726adantr 480 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → (𝐵 ∈ On ∧ 𝐴 ∈ On))
28 simpr 484 . . . . . . . . . 10 ((𝑎𝐴𝑏𝐵) → 𝑏𝐵)
2928adantl 481 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → 𝑏𝐵)
30 oaordi 8558 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑏𝐵 → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)))
3127, 29, 30sylc 65 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵))
3225, 31jca 511 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → ((𝑎 +o 𝑏) ⊆ (𝐴 +o 𝑏) ∧ (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)))
33 ontr2 6400 . . . . . . 7 (((𝑎 +o 𝑏) ∈ On ∧ (𝐴 +o 𝐵) ∈ On) → (((𝑎 +o 𝑏) ⊆ (𝐴 +o 𝑏) ∧ (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)) → (𝑎 +o 𝑏) ∈ (𝐴 +o 𝐵)))
3410, 32, 33sylc 65 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) → (𝑎 +o 𝑏) ∈ (𝐴 +o 𝐵))
3534adantr 480 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) ∧ 𝑥 = (𝑎 +o 𝑏)) → (𝑎 +o 𝑏) ∈ (𝐴 +o 𝐵))
361, 35eqeltrd 2834 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎𝐴𝑏𝐵)) ∧ 𝑥 = (𝑎 +o 𝑏)) → 𝑥 ∈ (𝐴 +o 𝐵))
3736exp31 419 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑎𝐴𝑏𝐵) → (𝑥 = (𝑎 +o 𝑏) → 𝑥 ∈ (𝐴 +o 𝐵))))
3837rexlimdvv 3197 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑎𝐴𝑏𝐵 𝑥 = (𝑎 +o 𝑏) → 𝑥 ∈ (𝐴 +o 𝐵)))
3938abssdv 4043 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∣ ∃𝑎𝐴𝑏𝐵 𝑥 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wrex 3060  wss 3926  wpss 3927  Ord word 6351  Oncon0 6352  (class class class)co 7405   +o coa 8477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-oadd 8484
This theorem is referenced by:  oaun3lem3  43400  oaun3lem4  43401  oaun3  43406
  Copyright terms: Public domain W3C validator