Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑥 = (𝑎 +o 𝑏)) → 𝑥 = (𝑎 +o 𝑏)) |
2 | | onelon 6389 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ On) |
3 | 2 | ad2ant2r 745 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ On) |
4 | | onelon 6389 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ On) |
5 | 4 | ad2ant2l 744 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ On) |
6 | | oacl 8534 |
. . . . . . . . 9
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +o 𝑏) ∈ On) |
7 | 3, 5, 6 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑎 +o 𝑏) ∈ On) |
8 | | oacl 8534 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
9 | 8 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝐴 +o 𝐵) ∈ On) |
10 | 7, 9 | jca 512 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → ((𝑎 +o 𝑏) ∈ On ∧ (𝐴 +o 𝐵) ∈ On)) |
11 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On) |
12 | 11 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝐴 ∈ On) |
13 | 3, 12, 5 | 3jca 1128 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑎 ∈ On ∧ 𝐴 ∈ On ∧ 𝑏 ∈ On)) |
14 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → 𝑎 ∈ 𝐴) |
15 | 14 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐴) |
16 | | eloni 6374 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ On → Ord 𝑎) |
17 | | eloni 6374 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ On → Ord 𝐴) |
18 | 16, 17 | anim12i 613 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ On ∧ 𝐴 ∈ On) → (Ord 𝑎 ∧ Ord 𝐴)) |
19 | 3, 12, 18 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (Ord 𝑎 ∧ Ord 𝐴)) |
20 | | ordelpss 6392 |
. . . . . . . . . . . 12
⊢ ((Ord
𝑎 ∧ Ord 𝐴) → (𝑎 ∈ 𝐴 ↔ 𝑎 ⊊ 𝐴)) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑎 ∈ 𝐴 ↔ 𝑎 ⊊ 𝐴)) |
22 | 15, 21 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ⊊ 𝐴) |
23 | 22 | pssssd 4097 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ⊆ 𝐴) |
24 | | oawordri 8549 |
. . . . . . . . 9
⊢ ((𝑎 ∈ On ∧ 𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ⊆ 𝐴 → (𝑎 +o 𝑏) ⊆ (𝐴 +o 𝑏))) |
25 | 13, 23, 24 | sylc 65 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑎 +o 𝑏) ⊆ (𝐴 +o 𝑏)) |
26 | | pm3.22 460 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ On ∧ 𝐴 ∈ On)) |
27 | 26 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝐵 ∈ On ∧ 𝐴 ∈ On)) |
28 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
29 | 28 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
30 | | oaordi 8545 |
. . . . . . . . 9
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝑏 ∈ 𝐵 → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵))) |
31 | 27, 29, 30 | sylc 65 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)) |
32 | 25, 31 | jca 512 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → ((𝑎 +o 𝑏) ⊆ (𝐴 +o 𝑏) ∧ (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵))) |
33 | | ontr2 6411 |
. . . . . . 7
⊢ (((𝑎 +o 𝑏) ∈ On ∧ (𝐴 +o 𝐵) ∈ On) → (((𝑎 +o 𝑏) ⊆ (𝐴 +o 𝑏) ∧ (𝐴 +o 𝑏) ∈ (𝐴 +o 𝐵)) → (𝑎 +o 𝑏) ∈ (𝐴 +o 𝐵))) |
34 | 10, 32, 33 | sylc 65 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (𝑎 +o 𝑏) ∈ (𝐴 +o 𝐵)) |
35 | 34 | adantr 481 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑥 = (𝑎 +o 𝑏)) → (𝑎 +o 𝑏) ∈ (𝐴 +o 𝐵)) |
36 | 1, 35 | eqeltrd 2833 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑥 = (𝑎 +o 𝑏)) → 𝑥 ∈ (𝐴 +o 𝐵)) |
37 | 36 | exp31 420 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → (𝑥 = (𝑎 +o 𝑏) → 𝑥 ∈ (𝐴 +o 𝐵)))) |
38 | 37 | rexlimdvv 3210 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏) → 𝑥 ∈ (𝐴 +o 𝐵))) |
39 | 38 | abssdv 4065 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵)) |