MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem36 Structured version   Visualization version   GIF version

Theorem fin23lem36 10301
Description: Lemma for fin23 10342. Weak order property of 𝑌. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem33.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.f (𝜑:ω–1-1→V)
fin23lem.g (𝜑 ran 𝐺)
fin23lem.h (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
fin23lem.i 𝑌 = (rec(𝑖, ) ↾ ω)
Assertion
Ref Expression
fin23lem36 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → ran (𝑌𝐴) ⊆ ran (𝑌𝐵))
Distinct variable groups:   𝑔,𝑎,𝑖,𝑗,𝑥   𝐴,𝑎,𝑗   ,𝑎,𝐺,𝑔,𝑖,𝑗,𝑥   𝐵,𝑎   𝐹,𝑎   𝜑,𝑎,𝑗   𝑌,𝑎,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑔,,𝑖)   𝐴(𝑥,𝑔,,𝑖)   𝐵(𝑥,𝑔,,𝑖,𝑗)   𝐹(𝑥,𝑔,,𝑖,𝑗)   𝑌(𝑥,𝑔,,𝑖)

Proof of Theorem fin23lem36
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . . 7 (𝑎 = 𝐵 → (𝑌𝑎) = (𝑌𝐵))
21rneqd 5902 . . . . . 6 (𝑎 = 𝐵 → ran (𝑌𝑎) = ran (𝑌𝐵))
32unieqd 4884 . . . . 5 (𝑎 = 𝐵 ran (𝑌𝑎) = ran (𝑌𝐵))
43sseq1d 3978 . . . 4 (𝑎 = 𝐵 → ( ran (𝑌𝑎) ⊆ ran (𝑌𝐵) ↔ ran (𝑌𝐵) ⊆ ran (𝑌𝐵)))
54imbi2d 340 . . 3 (𝑎 = 𝐵 → ((𝜑 ran (𝑌𝑎) ⊆ ran (𝑌𝐵)) ↔ (𝜑 ran (𝑌𝐵) ⊆ ran (𝑌𝐵))))
6 fveq2 6858 . . . . . . 7 (𝑎 = 𝑏 → (𝑌𝑎) = (𝑌𝑏))
76rneqd 5902 . . . . . 6 (𝑎 = 𝑏 → ran (𝑌𝑎) = ran (𝑌𝑏))
87unieqd 4884 . . . . 5 (𝑎 = 𝑏 ran (𝑌𝑎) = ran (𝑌𝑏))
98sseq1d 3978 . . . 4 (𝑎 = 𝑏 → ( ran (𝑌𝑎) ⊆ ran (𝑌𝐵) ↔ ran (𝑌𝑏) ⊆ ran (𝑌𝐵)))
109imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝜑 ran (𝑌𝑎) ⊆ ran (𝑌𝐵)) ↔ (𝜑 ran (𝑌𝑏) ⊆ ran (𝑌𝐵))))
11 fveq2 6858 . . . . . . 7 (𝑎 = suc 𝑏 → (𝑌𝑎) = (𝑌‘suc 𝑏))
1211rneqd 5902 . . . . . 6 (𝑎 = suc 𝑏 → ran (𝑌𝑎) = ran (𝑌‘suc 𝑏))
1312unieqd 4884 . . . . 5 (𝑎 = suc 𝑏 ran (𝑌𝑎) = ran (𝑌‘suc 𝑏))
1413sseq1d 3978 . . . 4 (𝑎 = suc 𝑏 → ( ran (𝑌𝑎) ⊆ ran (𝑌𝐵) ↔ ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵)))
1514imbi2d 340 . . 3 (𝑎 = suc 𝑏 → ((𝜑 ran (𝑌𝑎) ⊆ ran (𝑌𝐵)) ↔ (𝜑 ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵))))
16 fveq2 6858 . . . . . . 7 (𝑎 = 𝐴 → (𝑌𝑎) = (𝑌𝐴))
1716rneqd 5902 . . . . . 6 (𝑎 = 𝐴 → ran (𝑌𝑎) = ran (𝑌𝐴))
1817unieqd 4884 . . . . 5 (𝑎 = 𝐴 ran (𝑌𝑎) = ran (𝑌𝐴))
1918sseq1d 3978 . . . 4 (𝑎 = 𝐴 → ( ran (𝑌𝑎) ⊆ ran (𝑌𝐵) ↔ ran (𝑌𝐴) ⊆ ran (𝑌𝐵)))
2019imbi2d 340 . . 3 (𝑎 = 𝐴 → ((𝜑 ran (𝑌𝑎) ⊆ ran (𝑌𝐵)) ↔ (𝜑 ran (𝑌𝐴) ⊆ ran (𝑌𝐵))))
21 ssid 3969 . . . 4 ran (𝑌𝐵) ⊆ ran (𝑌𝐵)
22212a1i 12 . . 3 (𝐵 ∈ ω → (𝜑 ran (𝑌𝐵) ⊆ ran (𝑌𝐵)))
23 simprr 772 . . . . . . . 8 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → 𝜑)
24 simpll 766 . . . . . . . 8 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → 𝑏 ∈ ω)
25 fin23lem33.f . . . . . . . . 9 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
26 fin23lem.f . . . . . . . . 9 (𝜑:ω–1-1→V)
27 fin23lem.g . . . . . . . . 9 (𝜑 ran 𝐺)
28 fin23lem.h . . . . . . . . 9 (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
29 fin23lem.i . . . . . . . . 9 𝑌 = (rec(𝑖, ) ↾ ω)
3025, 26, 27, 28, 29fin23lem35 10300 . . . . . . . 8 ((𝜑𝑏 ∈ ω) → ran (𝑌‘suc 𝑏) ⊊ ran (𝑌𝑏))
3123, 24, 30syl2anc 584 . . . . . . 7 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → ran (𝑌‘suc 𝑏) ⊊ ran (𝑌𝑏))
3231pssssd 4063 . . . . . 6 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝑏))
33 sstr2 3953 . . . . . 6 ( ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝑏) → ( ran (𝑌𝑏) ⊆ ran (𝑌𝐵) → ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵)))
3432, 33syl 17 . . . . 5 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → ( ran (𝑌𝑏) ⊆ ran (𝑌𝐵) → ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵)))
3534expr 456 . . . 4 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → (𝜑 → ( ran (𝑌𝑏) ⊆ ran (𝑌𝐵) → ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵))))
3635a2d 29 . . 3 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → ((𝜑 ran (𝑌𝑏) ⊆ ran (𝑌𝐵)) → (𝜑 ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵))))
375, 10, 15, 20, 22, 36findsg 7873 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝜑 ran (𝑌𝐴) ⊆ ran (𝑌𝐵)))
3837impr 454 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → ran (𝑌𝐴) ⊆ ran (𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3447  wss 3914  wpss 3915  𝒫 cpw 4563   cuni 4871   cint 4910  ran crn 5639  cres 5640  suc csuc 6334  1-1wf1 6508  cfv 6511  (class class class)co 7387  ωcom 7842  reccrdg 8377  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator