MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem36 Structured version   Visualization version   GIF version

Theorem fin23lem36 10239
Description: Lemma for fin23 10280. Weak order property of 𝑌. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem33.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.f (𝜑:ω–1-1→V)
fin23lem.g (𝜑 ran 𝐺)
fin23lem.h (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
fin23lem.i 𝑌 = (rec(𝑖, ) ↾ ω)
Assertion
Ref Expression
fin23lem36 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → ran (𝑌𝐴) ⊆ ran (𝑌𝐵))
Distinct variable groups:   𝑔,𝑎,𝑖,𝑗,𝑥   𝐴,𝑎,𝑗   ,𝑎,𝐺,𝑔,𝑖,𝑗,𝑥   𝐵,𝑎   𝐹,𝑎   𝜑,𝑎,𝑗   𝑌,𝑎,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑔,,𝑖)   𝐴(𝑥,𝑔,,𝑖)   𝐵(𝑥,𝑔,,𝑖,𝑗)   𝐹(𝑥,𝑔,,𝑖,𝑗)   𝑌(𝑥,𝑔,,𝑖)

Proof of Theorem fin23lem36
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . . 7 (𝑎 = 𝐵 → (𝑌𝑎) = (𝑌𝐵))
21rneqd 5877 . . . . . 6 (𝑎 = 𝐵 → ran (𝑌𝑎) = ran (𝑌𝐵))
32unieqd 4869 . . . . 5 (𝑎 = 𝐵 ran (𝑌𝑎) = ran (𝑌𝐵))
43sseq1d 3961 . . . 4 (𝑎 = 𝐵 → ( ran (𝑌𝑎) ⊆ ran (𝑌𝐵) ↔ ran (𝑌𝐵) ⊆ ran (𝑌𝐵)))
54imbi2d 340 . . 3 (𝑎 = 𝐵 → ((𝜑 ran (𝑌𝑎) ⊆ ran (𝑌𝐵)) ↔ (𝜑 ran (𝑌𝐵) ⊆ ran (𝑌𝐵))))
6 fveq2 6822 . . . . . . 7 (𝑎 = 𝑏 → (𝑌𝑎) = (𝑌𝑏))
76rneqd 5877 . . . . . 6 (𝑎 = 𝑏 → ran (𝑌𝑎) = ran (𝑌𝑏))
87unieqd 4869 . . . . 5 (𝑎 = 𝑏 ran (𝑌𝑎) = ran (𝑌𝑏))
98sseq1d 3961 . . . 4 (𝑎 = 𝑏 → ( ran (𝑌𝑎) ⊆ ran (𝑌𝐵) ↔ ran (𝑌𝑏) ⊆ ran (𝑌𝐵)))
109imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝜑 ran (𝑌𝑎) ⊆ ran (𝑌𝐵)) ↔ (𝜑 ran (𝑌𝑏) ⊆ ran (𝑌𝐵))))
11 fveq2 6822 . . . . . . 7 (𝑎 = suc 𝑏 → (𝑌𝑎) = (𝑌‘suc 𝑏))
1211rneqd 5877 . . . . . 6 (𝑎 = suc 𝑏 → ran (𝑌𝑎) = ran (𝑌‘suc 𝑏))
1312unieqd 4869 . . . . 5 (𝑎 = suc 𝑏 ran (𝑌𝑎) = ran (𝑌‘suc 𝑏))
1413sseq1d 3961 . . . 4 (𝑎 = suc 𝑏 → ( ran (𝑌𝑎) ⊆ ran (𝑌𝐵) ↔ ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵)))
1514imbi2d 340 . . 3 (𝑎 = suc 𝑏 → ((𝜑 ran (𝑌𝑎) ⊆ ran (𝑌𝐵)) ↔ (𝜑 ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵))))
16 fveq2 6822 . . . . . . 7 (𝑎 = 𝐴 → (𝑌𝑎) = (𝑌𝐴))
1716rneqd 5877 . . . . . 6 (𝑎 = 𝐴 → ran (𝑌𝑎) = ran (𝑌𝐴))
1817unieqd 4869 . . . . 5 (𝑎 = 𝐴 ran (𝑌𝑎) = ran (𝑌𝐴))
1918sseq1d 3961 . . . 4 (𝑎 = 𝐴 → ( ran (𝑌𝑎) ⊆ ran (𝑌𝐵) ↔ ran (𝑌𝐴) ⊆ ran (𝑌𝐵)))
2019imbi2d 340 . . 3 (𝑎 = 𝐴 → ((𝜑 ran (𝑌𝑎) ⊆ ran (𝑌𝐵)) ↔ (𝜑 ran (𝑌𝐴) ⊆ ran (𝑌𝐵))))
21 ssid 3952 . . . 4 ran (𝑌𝐵) ⊆ ran (𝑌𝐵)
22212a1i 12 . . 3 (𝐵 ∈ ω → (𝜑 ran (𝑌𝐵) ⊆ ran (𝑌𝐵)))
23 simprr 772 . . . . . . . 8 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → 𝜑)
24 simpll 766 . . . . . . . 8 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → 𝑏 ∈ ω)
25 fin23lem33.f . . . . . . . . 9 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
26 fin23lem.f . . . . . . . . 9 (𝜑:ω–1-1→V)
27 fin23lem.g . . . . . . . . 9 (𝜑 ran 𝐺)
28 fin23lem.h . . . . . . . . 9 (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
29 fin23lem.i . . . . . . . . 9 𝑌 = (rec(𝑖, ) ↾ ω)
3025, 26, 27, 28, 29fin23lem35 10238 . . . . . . . 8 ((𝜑𝑏 ∈ ω) → ran (𝑌‘suc 𝑏) ⊊ ran (𝑌𝑏))
3123, 24, 30syl2anc 584 . . . . . . 7 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → ran (𝑌‘suc 𝑏) ⊊ ran (𝑌𝑏))
3231pssssd 4047 . . . . . 6 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝑏))
33 sstr2 3936 . . . . . 6 ( ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝑏) → ( ran (𝑌𝑏) ⊆ ran (𝑌𝐵) → ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵)))
3432, 33syl 17 . . . . 5 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → ( ran (𝑌𝑏) ⊆ ran (𝑌𝐵) → ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵)))
3534expr 456 . . . 4 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → (𝜑 → ( ran (𝑌𝑏) ⊆ ran (𝑌𝐵) → ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵))))
3635a2d 29 . . 3 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → ((𝜑 ran (𝑌𝑏) ⊆ ran (𝑌𝐵)) → (𝜑 ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵))))
375, 10, 15, 20, 22, 36findsg 7827 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝜑 ran (𝑌𝐴) ⊆ ran (𝑌𝐵)))
3837impr 454 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → ran (𝑌𝐴) ⊆ ran (𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wral 3047  Vcvv 3436  wss 3897  wpss 3898  𝒫 cpw 4547   cuni 4856   cint 4895  ran crn 5615  cres 5616  suc csuc 6308  1-1wf1 6478  cfv 6481  (class class class)co 7346  ωcom 7796  reccrdg 8328  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator