MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem36 Structured version   Visualization version   GIF version

Theorem fin23lem36 10104
Description: Lemma for fin23 10145. Weak order property of 𝑌. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem33.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.f (𝜑:ω–1-1→V)
fin23lem.g (𝜑 ran 𝐺)
fin23lem.h (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
fin23lem.i 𝑌 = (rec(𝑖, ) ↾ ω)
Assertion
Ref Expression
fin23lem36 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → ran (𝑌𝐴) ⊆ ran (𝑌𝐵))
Distinct variable groups:   𝑔,𝑎,𝑖,𝑗,𝑥   𝐴,𝑎,𝑗   ,𝑎,𝐺,𝑔,𝑖,𝑗,𝑥   𝐵,𝑎   𝐹,𝑎   𝜑,𝑎,𝑗   𝑌,𝑎,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑔,,𝑖)   𝐴(𝑥,𝑔,,𝑖)   𝐵(𝑥,𝑔,,𝑖,𝑗)   𝐹(𝑥,𝑔,,𝑖,𝑗)   𝑌(𝑥,𝑔,,𝑖)

Proof of Theorem fin23lem36
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . . . 7 (𝑎 = 𝐵 → (𝑌𝑎) = (𝑌𝐵))
21rneqd 5847 . . . . . 6 (𝑎 = 𝐵 → ran (𝑌𝑎) = ran (𝑌𝐵))
32unieqd 4853 . . . . 5 (𝑎 = 𝐵 ran (𝑌𝑎) = ran (𝑌𝐵))
43sseq1d 3952 . . . 4 (𝑎 = 𝐵 → ( ran (𝑌𝑎) ⊆ ran (𝑌𝐵) ↔ ran (𝑌𝐵) ⊆ ran (𝑌𝐵)))
54imbi2d 341 . . 3 (𝑎 = 𝐵 → ((𝜑 ran (𝑌𝑎) ⊆ ran (𝑌𝐵)) ↔ (𝜑 ran (𝑌𝐵) ⊆ ran (𝑌𝐵))))
6 fveq2 6774 . . . . . . 7 (𝑎 = 𝑏 → (𝑌𝑎) = (𝑌𝑏))
76rneqd 5847 . . . . . 6 (𝑎 = 𝑏 → ran (𝑌𝑎) = ran (𝑌𝑏))
87unieqd 4853 . . . . 5 (𝑎 = 𝑏 ran (𝑌𝑎) = ran (𝑌𝑏))
98sseq1d 3952 . . . 4 (𝑎 = 𝑏 → ( ran (𝑌𝑎) ⊆ ran (𝑌𝐵) ↔ ran (𝑌𝑏) ⊆ ran (𝑌𝐵)))
109imbi2d 341 . . 3 (𝑎 = 𝑏 → ((𝜑 ran (𝑌𝑎) ⊆ ran (𝑌𝐵)) ↔ (𝜑 ran (𝑌𝑏) ⊆ ran (𝑌𝐵))))
11 fveq2 6774 . . . . . . 7 (𝑎 = suc 𝑏 → (𝑌𝑎) = (𝑌‘suc 𝑏))
1211rneqd 5847 . . . . . 6 (𝑎 = suc 𝑏 → ran (𝑌𝑎) = ran (𝑌‘suc 𝑏))
1312unieqd 4853 . . . . 5 (𝑎 = suc 𝑏 ran (𝑌𝑎) = ran (𝑌‘suc 𝑏))
1413sseq1d 3952 . . . 4 (𝑎 = suc 𝑏 → ( ran (𝑌𝑎) ⊆ ran (𝑌𝐵) ↔ ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵)))
1514imbi2d 341 . . 3 (𝑎 = suc 𝑏 → ((𝜑 ran (𝑌𝑎) ⊆ ran (𝑌𝐵)) ↔ (𝜑 ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵))))
16 fveq2 6774 . . . . . . 7 (𝑎 = 𝐴 → (𝑌𝑎) = (𝑌𝐴))
1716rneqd 5847 . . . . . 6 (𝑎 = 𝐴 → ran (𝑌𝑎) = ran (𝑌𝐴))
1817unieqd 4853 . . . . 5 (𝑎 = 𝐴 ran (𝑌𝑎) = ran (𝑌𝐴))
1918sseq1d 3952 . . . 4 (𝑎 = 𝐴 → ( ran (𝑌𝑎) ⊆ ran (𝑌𝐵) ↔ ran (𝑌𝐴) ⊆ ran (𝑌𝐵)))
2019imbi2d 341 . . 3 (𝑎 = 𝐴 → ((𝜑 ran (𝑌𝑎) ⊆ ran (𝑌𝐵)) ↔ (𝜑 ran (𝑌𝐴) ⊆ ran (𝑌𝐵))))
21 ssid 3943 . . . 4 ran (𝑌𝐵) ⊆ ran (𝑌𝐵)
22212a1i 12 . . 3 (𝐵 ∈ ω → (𝜑 ran (𝑌𝐵) ⊆ ran (𝑌𝐵)))
23 simprr 770 . . . . . . . 8 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → 𝜑)
24 simpll 764 . . . . . . . 8 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → 𝑏 ∈ ω)
25 fin23lem33.f . . . . . . . . 9 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
26 fin23lem.f . . . . . . . . 9 (𝜑:ω–1-1→V)
27 fin23lem.g . . . . . . . . 9 (𝜑 ran 𝐺)
28 fin23lem.h . . . . . . . . 9 (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
29 fin23lem.i . . . . . . . . 9 𝑌 = (rec(𝑖, ) ↾ ω)
3025, 26, 27, 28, 29fin23lem35 10103 . . . . . . . 8 ((𝜑𝑏 ∈ ω) → ran (𝑌‘suc 𝑏) ⊊ ran (𝑌𝑏))
3123, 24, 30syl2anc 584 . . . . . . 7 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → ran (𝑌‘suc 𝑏) ⊊ ran (𝑌𝑏))
3231pssssd 4032 . . . . . 6 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝑏))
33 sstr2 3928 . . . . . 6 ( ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝑏) → ( ran (𝑌𝑏) ⊆ ran (𝑌𝐵) → ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵)))
3432, 33syl 17 . . . . 5 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝑏𝜑)) → ( ran (𝑌𝑏) ⊆ ran (𝑌𝐵) → ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵)))
3534expr 457 . . . 4 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → (𝜑 → ( ran (𝑌𝑏) ⊆ ran (𝑌𝐵) → ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵))))
3635a2d 29 . . 3 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → ((𝜑 ran (𝑌𝑏) ⊆ ran (𝑌𝐵)) → (𝜑 ran (𝑌‘suc 𝑏) ⊆ ran (𝑌𝐵))))
375, 10, 15, 20, 22, 36findsg 7746 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝜑 ran (𝑌𝐴) ⊆ ran (𝑌𝐵)))
3837impr 455 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → ran (𝑌𝐴) ⊆ ran (𝑌𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wcel 2106  {cab 2715  wral 3064  Vcvv 3432  wss 3887  wpss 3888  𝒫 cpw 4533   cuni 4839   cint 4879  ran crn 5590  cres 5591  suc csuc 6268  1-1wf1 6430  cfv 6433  (class class class)co 7275  ωcom 7712  reccrdg 8240  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator