Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑎 = 𝐵 → (𝑌‘𝑎) = (𝑌‘𝐵)) |
2 | 1 | rneqd 5836 |
. . . . . 6
⊢ (𝑎 = 𝐵 → ran (𝑌‘𝑎) = ran (𝑌‘𝐵)) |
3 | 2 | unieqd 4850 |
. . . . 5
⊢ (𝑎 = 𝐵 → ∪ ran
(𝑌‘𝑎) = ∪ ran (𝑌‘𝐵)) |
4 | 3 | sseq1d 3948 |
. . . 4
⊢ (𝑎 = 𝐵 → (∪ ran
(𝑌‘𝑎) ⊆ ∪ ran
(𝑌‘𝐵) ↔ ∪ ran
(𝑌‘𝐵) ⊆ ∪ ran
(𝑌‘𝐵))) |
5 | 4 | imbi2d 340 |
. . 3
⊢ (𝑎 = 𝐵 → ((𝜑 → ∪ ran
(𝑌‘𝑎) ⊆ ∪ ran
(𝑌‘𝐵)) ↔ (𝜑 → ∪ ran
(𝑌‘𝐵) ⊆ ∪ ran
(𝑌‘𝐵)))) |
6 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (𝑌‘𝑎) = (𝑌‘𝑏)) |
7 | 6 | rneqd 5836 |
. . . . . 6
⊢ (𝑎 = 𝑏 → ran (𝑌‘𝑎) = ran (𝑌‘𝑏)) |
8 | 7 | unieqd 4850 |
. . . . 5
⊢ (𝑎 = 𝑏 → ∪ ran
(𝑌‘𝑎) = ∪ ran (𝑌‘𝑏)) |
9 | 8 | sseq1d 3948 |
. . . 4
⊢ (𝑎 = 𝑏 → (∪ ran
(𝑌‘𝑎) ⊆ ∪ ran
(𝑌‘𝐵) ↔ ∪ ran
(𝑌‘𝑏) ⊆ ∪ ran
(𝑌‘𝐵))) |
10 | 9 | imbi2d 340 |
. . 3
⊢ (𝑎 = 𝑏 → ((𝜑 → ∪ ran
(𝑌‘𝑎) ⊆ ∪ ran
(𝑌‘𝐵)) ↔ (𝜑 → ∪ ran
(𝑌‘𝑏) ⊆ ∪ ran
(𝑌‘𝐵)))) |
11 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑎 = suc 𝑏 → (𝑌‘𝑎) = (𝑌‘suc 𝑏)) |
12 | 11 | rneqd 5836 |
. . . . . 6
⊢ (𝑎 = suc 𝑏 → ran (𝑌‘𝑎) = ran (𝑌‘suc 𝑏)) |
13 | 12 | unieqd 4850 |
. . . . 5
⊢ (𝑎 = suc 𝑏 → ∪ ran
(𝑌‘𝑎) = ∪ ran (𝑌‘suc 𝑏)) |
14 | 13 | sseq1d 3948 |
. . . 4
⊢ (𝑎 = suc 𝑏 → (∪ ran
(𝑌‘𝑎) ⊆ ∪ ran
(𝑌‘𝐵) ↔ ∪ ran
(𝑌‘suc 𝑏) ⊆ ∪ ran (𝑌‘𝐵))) |
15 | 14 | imbi2d 340 |
. . 3
⊢ (𝑎 = suc 𝑏 → ((𝜑 → ∪ ran
(𝑌‘𝑎) ⊆ ∪ ran
(𝑌‘𝐵)) ↔ (𝜑 → ∪ ran
(𝑌‘suc 𝑏) ⊆ ∪ ran (𝑌‘𝐵)))) |
16 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑌‘𝑎) = (𝑌‘𝐴)) |
17 | 16 | rneqd 5836 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ran (𝑌‘𝑎) = ran (𝑌‘𝐴)) |
18 | 17 | unieqd 4850 |
. . . . 5
⊢ (𝑎 = 𝐴 → ∪ ran
(𝑌‘𝑎) = ∪ ran (𝑌‘𝐴)) |
19 | 18 | sseq1d 3948 |
. . . 4
⊢ (𝑎 = 𝐴 → (∪ ran
(𝑌‘𝑎) ⊆ ∪ ran
(𝑌‘𝐵) ↔ ∪ ran
(𝑌‘𝐴) ⊆ ∪ ran
(𝑌‘𝐵))) |
20 | 19 | imbi2d 340 |
. . 3
⊢ (𝑎 = 𝐴 → ((𝜑 → ∪ ran
(𝑌‘𝑎) ⊆ ∪ ran
(𝑌‘𝐵)) ↔ (𝜑 → ∪ ran
(𝑌‘𝐴) ⊆ ∪ ran
(𝑌‘𝐵)))) |
21 | | ssid 3939 |
. . . 4
⊢ ∪ ran (𝑌‘𝐵) ⊆ ∪ ran
(𝑌‘𝐵) |
22 | 21 | 2a1i 12 |
. . 3
⊢ (𝐵 ∈ ω → (𝜑 → ∪ ran (𝑌‘𝐵) ⊆ ∪ ran
(𝑌‘𝐵))) |
23 | | simprr 769 |
. . . . . . . 8
⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ⊆ 𝑏 ∧ 𝜑)) → 𝜑) |
24 | | simpll 763 |
. . . . . . . 8
⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ⊆ 𝑏 ∧ 𝜑)) → 𝑏 ∈ ω) |
25 | | fin23lem33.f |
. . . . . . . . 9
⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran
𝑎 ∈ ran 𝑎)} |
26 | | fin23lem.f |
. . . . . . . . 9
⊢ (𝜑 → ℎ:ω–1-1→V) |
27 | | fin23lem.g |
. . . . . . . . 9
⊢ (𝜑 → ∪ ran ℎ
⊆ 𝐺) |
28 | | fin23lem.h |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ∪ ran 𝑗 ⊆ 𝐺) → ((𝑖‘𝑗):ω–1-1→V ∧ ∪ ran (𝑖‘𝑗) ⊊ ∪ ran
𝑗))) |
29 | | fin23lem.i |
. . . . . . . . 9
⊢ 𝑌 = (rec(𝑖, ℎ) ↾ ω) |
30 | 25, 26, 27, 28, 29 | fin23lem35 10034 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ ω) → ∪ ran (𝑌‘suc 𝑏) ⊊ ∪ ran
(𝑌‘𝑏)) |
31 | 23, 24, 30 | syl2anc 583 |
. . . . . . 7
⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ⊆ 𝑏 ∧ 𝜑)) → ∪ ran
(𝑌‘suc 𝑏) ⊊ ∪ ran (𝑌‘𝑏)) |
32 | 31 | pssssd 4028 |
. . . . . 6
⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ⊆ 𝑏 ∧ 𝜑)) → ∪ ran
(𝑌‘suc 𝑏) ⊆ ∪ ran (𝑌‘𝑏)) |
33 | | sstr2 3924 |
. . . . . 6
⊢ (∪ ran (𝑌‘suc 𝑏) ⊆ ∪ ran
(𝑌‘𝑏) → (∪ ran
(𝑌‘𝑏) ⊆ ∪ ran
(𝑌‘𝐵) → ∪ ran
(𝑌‘suc 𝑏) ⊆ ∪ ran (𝑌‘𝐵))) |
34 | 32, 33 | syl 17 |
. . . . 5
⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ⊆ 𝑏 ∧ 𝜑)) → (∪ ran
(𝑌‘𝑏) ⊆ ∪ ran
(𝑌‘𝐵) → ∪ ran
(𝑌‘suc 𝑏) ⊆ ∪ ran (𝑌‘𝐵))) |
35 | 34 | expr 456 |
. . . 4
⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑏) → (𝜑 → (∪ ran
(𝑌‘𝑏) ⊆ ∪ ran
(𝑌‘𝐵) → ∪ ran
(𝑌‘suc 𝑏) ⊆ ∪ ran (𝑌‘𝐵)))) |
36 | 35 | a2d 29 |
. . 3
⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑏) → ((𝜑 → ∪ ran
(𝑌‘𝑏) ⊆ ∪ ran
(𝑌‘𝐵)) → (𝜑 → ∪ ran
(𝑌‘suc 𝑏) ⊆ ∪ ran (𝑌‘𝐵)))) |
37 | 5, 10, 15, 20, 22, 36 | findsg 7720 |
. 2
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (𝜑 → ∪ ran
(𝑌‘𝐴) ⊆ ∪ ran
(𝑌‘𝐵))) |
38 | 37 | impr 454 |
1
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ⊆ 𝐴 ∧ 𝜑)) → ∪ ran
(𝑌‘𝐴) ⊆ ∪ ran
(𝑌‘𝐵)) |