MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem39 Structured version   Visualization version   GIF version

Theorem fin23lem39 9761
Description: Lemma for fin23 9800. Thus, we have that 𝑔 could not have been in 𝐹 after all. (Contributed by Stefan O'Rear, 4-Nov-2014.)
Hypotheses
Ref Expression
fin23lem33.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.f (𝜑:ω–1-1→V)
fin23lem.g (𝜑 ran 𝐺)
fin23lem.h (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
fin23lem.i 𝑌 = (rec(𝑖, ) ↾ ω)
Assertion
Ref Expression
fin23lem39 (𝜑 → ¬ 𝐺𝐹)
Distinct variable groups:   𝑔,𝑎,𝑖,𝑗,𝑥,,𝐺   𝐹,𝑎   𝜑,𝑎,𝑗   𝑌,𝑎,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑔,,𝑖)   𝐹(𝑥,𝑔,,𝑖,𝑗)   𝑌(𝑥,𝑔,,𝑖)

Proof of Theorem fin23lem39
Dummy variables 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin23lem33.f . . 3 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
2 fin23lem.f . . 3 (𝜑:ω–1-1→V)
3 fin23lem.g . . 3 (𝜑 ran 𝐺)
4 fin23lem.h . . 3 (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
5 fin23lem.i . . 3 𝑌 = (rec(𝑖, ) ↾ ω)
61, 2, 3, 4, 5fin23lem38 9760 . 2 (𝜑 → ¬ ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)))
71, 2, 3, 4, 5fin23lem35 9758 . . . . . . 7 ((𝜑𝑒 ∈ ω) → ran (𝑌‘suc 𝑒) ⊊ ran (𝑌𝑒))
87pssssd 4025 . . . . . 6 ((𝜑𝑒 ∈ ω) → ran (𝑌‘suc 𝑒) ⊆ ran (𝑌𝑒))
9 peano2 7582 . . . . . . . . 9 (𝑒 ∈ ω → suc 𝑒 ∈ ω)
10 fveq2 6645 . . . . . . . . . . . 12 (𝑐 = suc 𝑒 → (𝑌𝑐) = (𝑌‘suc 𝑒))
1110rneqd 5772 . . . . . . . . . . 11 (𝑐 = suc 𝑒 → ran (𝑌𝑐) = ran (𝑌‘suc 𝑒))
1211unieqd 4814 . . . . . . . . . 10 (𝑐 = suc 𝑒 ran (𝑌𝑐) = ran (𝑌‘suc 𝑒))
13 eqid 2798 . . . . . . . . . 10 (𝑐 ∈ ω ↦ ran (𝑌𝑐)) = (𝑐 ∈ ω ↦ ran (𝑌𝑐))
14 fvex 6658 . . . . . . . . . . . 12 (𝑌‘suc 𝑒) ∈ V
1514rnex 7599 . . . . . . . . . . 11 ran (𝑌‘suc 𝑒) ∈ V
1615uniex 7447 . . . . . . . . . 10 ran (𝑌‘suc 𝑒) ∈ V
1712, 13, 16fvmpt 6745 . . . . . . . . 9 (suc 𝑒 ∈ ω → ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) = ran (𝑌‘suc 𝑒))
189, 17syl 17 . . . . . . . 8 (𝑒 ∈ ω → ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) = ran (𝑌‘suc 𝑒))
19 fveq2 6645 . . . . . . . . . . 11 (𝑐 = 𝑒 → (𝑌𝑐) = (𝑌𝑒))
2019rneqd 5772 . . . . . . . . . 10 (𝑐 = 𝑒 → ran (𝑌𝑐) = ran (𝑌𝑒))
2120unieqd 4814 . . . . . . . . 9 (𝑐 = 𝑒 ran (𝑌𝑐) = ran (𝑌𝑒))
22 fvex 6658 . . . . . . . . . . 11 (𝑌𝑒) ∈ V
2322rnex 7599 . . . . . . . . . 10 ran (𝑌𝑒) ∈ V
2423uniex 7447 . . . . . . . . 9 ran (𝑌𝑒) ∈ V
2521, 13, 24fvmpt 6745 . . . . . . . 8 (𝑒 ∈ ω → ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒) = ran (𝑌𝑒))
2618, 25sseq12d 3948 . . . . . . 7 (𝑒 ∈ ω → (((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒) ↔ ran (𝑌‘suc 𝑒) ⊆ ran (𝑌𝑒)))
2726adantl 485 . . . . . 6 ((𝜑𝑒 ∈ ω) → (((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒) ↔ ran (𝑌‘suc 𝑒) ⊆ ran (𝑌𝑒)))
288, 27mpbird 260 . . . . 5 ((𝜑𝑒 ∈ ω) → ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒))
2928ralrimiva 3149 . . . 4 (𝜑 → ∀𝑒 ∈ ω ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒))
3029adantr 484 . . 3 ((𝜑𝐺𝐹) → ∀𝑒 ∈ ω ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒))
31 fveq1 6644 . . . . . . 7 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → (𝑑‘suc 𝑒) = ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒))
32 fveq1 6644 . . . . . . 7 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → (𝑑𝑒) = ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒))
3331, 32sseq12d 3948 . . . . . 6 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → ((𝑑‘suc 𝑒) ⊆ (𝑑𝑒) ↔ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒)))
3433ralbidv 3162 . . . . 5 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → (∀𝑒 ∈ ω (𝑑‘suc 𝑒) ⊆ (𝑑𝑒) ↔ ∀𝑒 ∈ ω ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒)))
35 rneq 5770 . . . . . . 7 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → ran 𝑑 = ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)))
3635inteqd 4843 . . . . . 6 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → ran 𝑑 = ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)))
3736, 35eleq12d 2884 . . . . 5 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → ( ran 𝑑 ∈ ran 𝑑 ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ ran (𝑐 ∈ ω ↦ ran (𝑌𝑐))))
3834, 37imbi12d 348 . . . 4 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → ((∀𝑒 ∈ ω (𝑑‘suc 𝑒) ⊆ (𝑑𝑒) → ran 𝑑 ∈ ran 𝑑) ↔ (∀𝑒 ∈ ω ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒) → ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)))))
391isfin3ds 9740 . . . . . 6 (𝐺𝐹 → (𝐺𝐹 ↔ ∀𝑑 ∈ (𝒫 𝐺m ω)(∀𝑒 ∈ ω (𝑑‘suc 𝑒) ⊆ (𝑑𝑒) → ran 𝑑 ∈ ran 𝑑)))
4039ibi 270 . . . . 5 (𝐺𝐹 → ∀𝑑 ∈ (𝒫 𝐺m ω)(∀𝑒 ∈ ω (𝑑‘suc 𝑒) ⊆ (𝑑𝑒) → ran 𝑑 ∈ ran 𝑑))
4140adantl 485 . . . 4 ((𝜑𝐺𝐹) → ∀𝑑 ∈ (𝒫 𝐺m ω)(∀𝑒 ∈ ω (𝑑‘suc 𝑒) ⊆ (𝑑𝑒) → ran 𝑑 ∈ ran 𝑑))
421, 2, 3, 4, 5fin23lem34 9757 . . . . . . . . 9 ((𝜑𝑐 ∈ ω) → ((𝑌𝑐):ω–1-1→V ∧ ran (𝑌𝑐) ⊆ 𝐺))
4342simprd 499 . . . . . . . 8 ((𝜑𝑐 ∈ ω) → ran (𝑌𝑐) ⊆ 𝐺)
4443adantlr 714 . . . . . . 7 (((𝜑𝐺𝐹) ∧ 𝑐 ∈ ω) → ran (𝑌𝑐) ⊆ 𝐺)
45 elpw2g 5211 . . . . . . . 8 (𝐺𝐹 → ( ran (𝑌𝑐) ∈ 𝒫 𝐺 ran (𝑌𝑐) ⊆ 𝐺))
4645ad2antlr 726 . . . . . . 7 (((𝜑𝐺𝐹) ∧ 𝑐 ∈ ω) → ( ran (𝑌𝑐) ∈ 𝒫 𝐺 ran (𝑌𝑐) ⊆ 𝐺))
4744, 46mpbird 260 . . . . . 6 (((𝜑𝐺𝐹) ∧ 𝑐 ∈ ω) → ran (𝑌𝑐) ∈ 𝒫 𝐺)
4847fmpttd 6856 . . . . 5 ((𝜑𝐺𝐹) → (𝑐 ∈ ω ↦ ran (𝑌𝑐)):ω⟶𝒫 𝐺)
49 pwexg 5244 . . . . . 6 (𝐺𝐹 → 𝒫 𝐺 ∈ V)
50 vex 3444 . . . . . . . 8 ∈ V
51 f1f 6549 . . . . . . . 8 (:ω–1-1→V → :ω⟶V)
52 dmfex 7623 . . . . . . . 8 (( ∈ V ∧ :ω⟶V) → ω ∈ V)
5350, 51, 52sylancr 590 . . . . . . 7 (:ω–1-1→V → ω ∈ V)
542, 53syl 17 . . . . . 6 (𝜑 → ω ∈ V)
55 elmapg 8402 . . . . . 6 ((𝒫 𝐺 ∈ V ∧ ω ∈ V) → ((𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ (𝒫 𝐺m ω) ↔ (𝑐 ∈ ω ↦ ran (𝑌𝑐)):ω⟶𝒫 𝐺))
5649, 54, 55syl2anr 599 . . . . 5 ((𝜑𝐺𝐹) → ((𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ (𝒫 𝐺m ω) ↔ (𝑐 ∈ ω ↦ ran (𝑌𝑐)):ω⟶𝒫 𝐺))
5748, 56mpbird 260 . . . 4 ((𝜑𝐺𝐹) → (𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ (𝒫 𝐺m ω))
5838, 41, 57rspcdva 3573 . . 3 ((𝜑𝐺𝐹) → (∀𝑒 ∈ ω ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒) → ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ ran (𝑐 ∈ ω ↦ ran (𝑌𝑐))))
5930, 58mpd 15 . 2 ((𝜑𝐺𝐹) → ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)))
606, 59mtand 815 1 (𝜑 → ¬ 𝐺𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  {cab 2776  wral 3106  Vcvv 3441  wss 3881  wpss 3882  𝒫 cpw 4497   cuni 4800   cint 4838  cmpt 5110  ran crn 5520  cres 5521  suc csuc 6161  wf 6320  1-1wf1 6321  cfv 6324  (class class class)co 7135  ωcom 7560  reccrdg 8028  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-map 8391
This theorem is referenced by:  fin23lem41  9763
  Copyright terms: Public domain W3C validator