MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem4 Structured version   Visualization version   GIF version

Theorem lsppratlem4 21036
Description: Lemma for lspprat 21039. In the second case of lsppratlem1 21033, 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}) and 𝑦 ∉ (𝑁‘{𝑥}) implies 𝑌 ∈ (𝑁‘{𝑥, 𝑦}) and thus 𝑋 ∈ (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}) as well. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem4.x3 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌}))
Assertion
Ref Expression
lsppratlem4 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))

Proof of Theorem lsppratlem4
StepHypRef Expression
1 lspprat.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 20989 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 lspprat.v . . . . 5 𝑉 = (Base‘𝑊)
5 lspprat.s . . . . 5 𝑆 = (LSubSp‘𝑊)
6 lspprat.n . . . . 5 𝑁 = (LSpan‘𝑊)
7 lspprat.u . . . . . . . 8 (𝜑𝑈𝑆)
84, 5lssss 20818 . . . . . . . 8 (𝑈𝑆𝑈𝑉)
97, 8syl 17 . . . . . . 7 (𝜑𝑈𝑉)
109ssdifssd 4106 . . . . . 6 (𝜑 → (𝑈 ∖ { 0 }) ⊆ 𝑉)
11 lsppratlem1.x2 . . . . . 6 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
1210, 11sseldd 3944 . . . . 5 (𝜑𝑥𝑉)
139ssdifssd 4106 . . . . . 6 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉)
14 lsppratlem1.y2 . . . . . 6 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
1513, 14sseldd 3944 . . . . 5 (𝜑𝑦𝑉)
164, 5, 6, 3, 12, 15lspprcl 20860 . . . 4 (𝜑 → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆)
17 df-pr 4588 . . . . 5 {𝑥, 𝑌} = ({𝑥} ∪ {𝑌})
18 snsspr1 4774 . . . . . . 7 {𝑥} ⊆ {𝑥, 𝑦}
1912, 15prssd 4782 . . . . . . . 8 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
204, 6lspssid 20867 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉) → {𝑥, 𝑦} ⊆ (𝑁‘{𝑥, 𝑦}))
213, 19, 20syl2anc 584 . . . . . . 7 (𝜑 → {𝑥, 𝑦} ⊆ (𝑁‘{𝑥, 𝑦}))
2218, 21sstrid 3955 . . . . . 6 (𝜑 → {𝑥} ⊆ (𝑁‘{𝑥, 𝑦}))
2312snssd 4769 . . . . . . . . 9 (𝜑 → {𝑥} ⊆ 𝑉)
24 lspprat.y . . . . . . . . 9 (𝜑𝑌𝑉)
25 lspprat.p . . . . . . . . . . . . . 14 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2625pssssd 4059 . . . . . . . . . . . . 13 (𝜑𝑈 ⊆ (𝑁‘{𝑋, 𝑌}))
274, 5, 6, 3, 12, 24lspprcl 20860 . . . . . . . . . . . . . 14 (𝜑 → (𝑁‘{𝑥, 𝑌}) ∈ 𝑆)
28 df-pr 4588 . . . . . . . . . . . . . . 15 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
29 lsppratlem4.x3 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌}))
3029snssd 4769 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑋} ⊆ (𝑁‘{𝑥, 𝑌}))
31 snsspr2 4775 . . . . . . . . . . . . . . . . 17 {𝑌} ⊆ {𝑥, 𝑌}
3212, 24prssd 4782 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑥, 𝑌} ⊆ 𝑉)
334, 6lspssid 20867 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ {𝑥, 𝑌} ⊆ 𝑉) → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
343, 32, 33syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
3531, 34sstrid 3955 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
3630, 35unssd 4151 . . . . . . . . . . . . . . 15 (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
3728, 36eqsstrid 3982 . . . . . . . . . . . . . 14 (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
385, 6lspssp 20870 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑥, 𝑌}) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
393, 27, 37, 38syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
4026, 39sstrd 3954 . . . . . . . . . . . 12 (𝜑𝑈 ⊆ (𝑁‘{𝑥, 𝑌}))
4117fveq2i 6843 . . . . . . . . . . . 12 (𝑁‘{𝑥, 𝑌}) = (𝑁‘({𝑥} ∪ {𝑌}))
4240, 41sseqtrdi 3984 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑌})))
4342ssdifd 4104 . . . . . . . . . 10 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))
4443, 14sseldd 3944 . . . . . . . . 9 (𝜑𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))
454, 5, 6lspsolv 21029 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉𝑌𝑉𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))) → 𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
461, 23, 24, 44, 45syl13anc 1374 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
47 df-pr 4588 . . . . . . . . 9 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
4847fveq2i 6843 . . . . . . . 8 (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦}))
4946, 48eleqtrrdi 2839 . . . . . . 7 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
5049snssd 4769 . . . . . 6 (𝜑 → {𝑌} ⊆ (𝑁‘{𝑥, 𝑦}))
5122, 50unssd 4151 . . . . 5 (𝜑 → ({𝑥} ∪ {𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
5217, 51eqsstrid 3982 . . . 4 (𝜑 → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑦}))
535, 6lspssp 20870 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑥, 𝑦}) ∈ 𝑆 ∧ {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑦})) → (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
543, 16, 52, 53syl3anc 1373 . . 3 (𝜑 → (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
5554, 29sseldd 3944 . 2 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
5655, 49jca 511 1 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3908  cun 3909  wss 3911  wpss 3912  {csn 4585  {cpr 4587  cfv 6499  Basecbs 17155  0gc0g 17378  LModclmod 20742  LSubSpclss 20813  LSpanclspn 20853  LVecclvec 20985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lvec 20986
This theorem is referenced by:  lsppratlem5  21037
  Copyright terms: Public domain W3C validator