MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem4 Structured version   Visualization version   GIF version

Theorem lsppratlem4 21170
Description: Lemma for lspprat 21173. In the second case of lsppratlem1 21167, 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}) and 𝑦 ∉ (𝑁‘{𝑥}) implies 𝑌 ∈ (𝑁‘{𝑥, 𝑦}) and thus 𝑋 ∈ (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}) as well. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem4.x3 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌}))
Assertion
Ref Expression
lsppratlem4 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))

Proof of Theorem lsppratlem4
StepHypRef Expression
1 lspprat.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 21123 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 lspprat.v . . . . 5 𝑉 = (Base‘𝑊)
5 lspprat.s . . . . 5 𝑆 = (LSubSp‘𝑊)
6 lspprat.n . . . . 5 𝑁 = (LSpan‘𝑊)
7 lspprat.u . . . . . . . 8 (𝜑𝑈𝑆)
84, 5lssss 20952 . . . . . . . 8 (𝑈𝑆𝑈𝑉)
97, 8syl 17 . . . . . . 7 (𝜑𝑈𝑉)
109ssdifssd 4157 . . . . . 6 (𝜑 → (𝑈 ∖ { 0 }) ⊆ 𝑉)
11 lsppratlem1.x2 . . . . . 6 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
1210, 11sseldd 3996 . . . . 5 (𝜑𝑥𝑉)
139ssdifssd 4157 . . . . . 6 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉)
14 lsppratlem1.y2 . . . . . 6 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
1513, 14sseldd 3996 . . . . 5 (𝜑𝑦𝑉)
164, 5, 6, 3, 12, 15lspprcl 20994 . . . 4 (𝜑 → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆)
17 df-pr 4634 . . . . 5 {𝑥, 𝑌} = ({𝑥} ∪ {𝑌})
18 snsspr1 4819 . . . . . . 7 {𝑥} ⊆ {𝑥, 𝑦}
1912, 15prssd 4827 . . . . . . . 8 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
204, 6lspssid 21001 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉) → {𝑥, 𝑦} ⊆ (𝑁‘{𝑥, 𝑦}))
213, 19, 20syl2anc 584 . . . . . . 7 (𝜑 → {𝑥, 𝑦} ⊆ (𝑁‘{𝑥, 𝑦}))
2218, 21sstrid 4007 . . . . . 6 (𝜑 → {𝑥} ⊆ (𝑁‘{𝑥, 𝑦}))
2312snssd 4814 . . . . . . . . 9 (𝜑 → {𝑥} ⊆ 𝑉)
24 lspprat.y . . . . . . . . 9 (𝜑𝑌𝑉)
25 lspprat.p . . . . . . . . . . . . . 14 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2625pssssd 4110 . . . . . . . . . . . . 13 (𝜑𝑈 ⊆ (𝑁‘{𝑋, 𝑌}))
274, 5, 6, 3, 12, 24lspprcl 20994 . . . . . . . . . . . . . 14 (𝜑 → (𝑁‘{𝑥, 𝑌}) ∈ 𝑆)
28 df-pr 4634 . . . . . . . . . . . . . . 15 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
29 lsppratlem4.x3 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌}))
3029snssd 4814 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑋} ⊆ (𝑁‘{𝑥, 𝑌}))
31 snsspr2 4820 . . . . . . . . . . . . . . . . 17 {𝑌} ⊆ {𝑥, 𝑌}
3212, 24prssd 4827 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑥, 𝑌} ⊆ 𝑉)
334, 6lspssid 21001 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ {𝑥, 𝑌} ⊆ 𝑉) → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
343, 32, 33syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑 → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
3531, 34sstrid 4007 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
3630, 35unssd 4202 . . . . . . . . . . . . . . 15 (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
3728, 36eqsstrid 4044 . . . . . . . . . . . . . 14 (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
385, 6lspssp 21004 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑥, 𝑌}) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
393, 27, 37, 38syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
4026, 39sstrd 4006 . . . . . . . . . . . 12 (𝜑𝑈 ⊆ (𝑁‘{𝑥, 𝑌}))
4117fveq2i 6910 . . . . . . . . . . . 12 (𝑁‘{𝑥, 𝑌}) = (𝑁‘({𝑥} ∪ {𝑌}))
4240, 41sseqtrdi 4046 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑌})))
4342ssdifd 4155 . . . . . . . . . 10 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))
4443, 14sseldd 3996 . . . . . . . . 9 (𝜑𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))
454, 5, 6lspsolv 21163 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉𝑌𝑉𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))) → 𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
461, 23, 24, 44, 45syl13anc 1371 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
47 df-pr 4634 . . . . . . . . 9 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
4847fveq2i 6910 . . . . . . . 8 (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦}))
4946, 48eleqtrrdi 2850 . . . . . . 7 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
5049snssd 4814 . . . . . 6 (𝜑 → {𝑌} ⊆ (𝑁‘{𝑥, 𝑦}))
5122, 50unssd 4202 . . . . 5 (𝜑 → ({𝑥} ∪ {𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
5217, 51eqsstrid 4044 . . . 4 (𝜑 → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑦}))
535, 6lspssp 21004 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑥, 𝑦}) ∈ 𝑆 ∧ {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑦})) → (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
543, 16, 52, 53syl3anc 1370 . . 3 (𝜑 → (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
5554, 29sseldd 3996 . 2 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
5655, 49jca 511 1 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cdif 3960  cun 3961  wss 3963  wpss 3964  {csn 4631  {cpr 4633  cfv 6563  Basecbs 17245  0gc0g 17486  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  LVecclvec 21119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120
This theorem is referenced by:  lsppratlem5  21171
  Copyright terms: Public domain W3C validator