Step | Hyp | Ref
| Expression |
1 | | lspprat.w |
. . . . 5
β’ (π β π β LVec) |
2 | | lveclmod 20709 |
. . . . 5
β’ (π β LVec β π β LMod) |
3 | 1, 2 | syl 17 |
. . . 4
β’ (π β π β LMod) |
4 | | lspprat.v |
. . . . 5
β’ π = (Baseβπ) |
5 | | lspprat.s |
. . . . 5
β’ π = (LSubSpβπ) |
6 | | lspprat.n |
. . . . 5
β’ π = (LSpanβπ) |
7 | | lspprat.u |
. . . . . . . 8
β’ (π β π β π) |
8 | 4, 5 | lssss 20539 |
. . . . . . . 8
β’ (π β π β π β π) |
9 | 7, 8 | syl 17 |
. . . . . . 7
β’ (π β π β π) |
10 | 9 | ssdifssd 4141 |
. . . . . 6
β’ (π β (π β { 0 }) β π) |
11 | | lsppratlem1.x2 |
. . . . . 6
β’ (π β π₯ β (π β { 0 })) |
12 | 10, 11 | sseldd 3982 |
. . . . 5
β’ (π β π₯ β π) |
13 | 9 | ssdifssd 4141 |
. . . . . 6
β’ (π β (π β (πβ{π₯})) β π) |
14 | | lsppratlem1.y2 |
. . . . . 6
β’ (π β π¦ β (π β (πβ{π₯}))) |
15 | 13, 14 | sseldd 3982 |
. . . . 5
β’ (π β π¦ β π) |
16 | 4, 5, 6, 3, 12, 15 | lspprcl 20581 |
. . . 4
β’ (π β (πβ{π₯, π¦}) β π) |
17 | | df-pr 4630 |
. . . . 5
β’ {π₯, π} = ({π₯} βͺ {π}) |
18 | | snsspr1 4816 |
. . . . . . 7
β’ {π₯} β {π₯, π¦} |
19 | 12, 15 | prssd 4824 |
. . . . . . . 8
β’ (π β {π₯, π¦} β π) |
20 | 4, 6 | lspssid 20588 |
. . . . . . . 8
β’ ((π β LMod β§ {π₯, π¦} β π) β {π₯, π¦} β (πβ{π₯, π¦})) |
21 | 3, 19, 20 | syl2anc 584 |
. . . . . . 7
β’ (π β {π₯, π¦} β (πβ{π₯, π¦})) |
22 | 18, 21 | sstrid 3992 |
. . . . . 6
β’ (π β {π₯} β (πβ{π₯, π¦})) |
23 | 12 | snssd 4811 |
. . . . . . . . 9
β’ (π β {π₯} β π) |
24 | | lspprat.y |
. . . . . . . . 9
β’ (π β π β π) |
25 | | lspprat.p |
. . . . . . . . . . . . . 14
β’ (π β π β (πβ{π, π})) |
26 | 25 | pssssd 4096 |
. . . . . . . . . . . . 13
β’ (π β π β (πβ{π, π})) |
27 | 4, 5, 6, 3, 12, 24 | lspprcl 20581 |
. . . . . . . . . . . . . 14
β’ (π β (πβ{π₯, π}) β π) |
28 | | df-pr 4630 |
. . . . . . . . . . . . . . 15
β’ {π, π} = ({π} βͺ {π}) |
29 | | lsppratlem4.x3 |
. . . . . . . . . . . . . . . . 17
β’ (π β π β (πβ{π₯, π})) |
30 | 29 | snssd 4811 |
. . . . . . . . . . . . . . . 16
β’ (π β {π} β (πβ{π₯, π})) |
31 | | snsspr2 4817 |
. . . . . . . . . . . . . . . . 17
β’ {π} β {π₯, π} |
32 | 12, 24 | prssd 4824 |
. . . . . . . . . . . . . . . . . 18
β’ (π β {π₯, π} β π) |
33 | 4, 6 | lspssid 20588 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β LMod β§ {π₯, π} β π) β {π₯, π} β (πβ{π₯, π})) |
34 | 3, 32, 33 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
β’ (π β {π₯, π} β (πβ{π₯, π})) |
35 | 31, 34 | sstrid 3992 |
. . . . . . . . . . . . . . . 16
β’ (π β {π} β (πβ{π₯, π})) |
36 | 30, 35 | unssd 4185 |
. . . . . . . . . . . . . . 15
β’ (π β ({π} βͺ {π}) β (πβ{π₯, π})) |
37 | 28, 36 | eqsstrid 4029 |
. . . . . . . . . . . . . 14
β’ (π β {π, π} β (πβ{π₯, π})) |
38 | 5, 6 | lspssp 20591 |
. . . . . . . . . . . . . 14
β’ ((π β LMod β§ (πβ{π₯, π}) β π β§ {π, π} β (πβ{π₯, π})) β (πβ{π, π}) β (πβ{π₯, π})) |
39 | 3, 27, 37, 38 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’ (π β (πβ{π, π}) β (πβ{π₯, π})) |
40 | 26, 39 | sstrd 3991 |
. . . . . . . . . . . 12
β’ (π β π β (πβ{π₯, π})) |
41 | 17 | fveq2i 6891 |
. . . . . . . . . . . 12
β’ (πβ{π₯, π}) = (πβ({π₯} βͺ {π})) |
42 | 40, 41 | sseqtrdi 4031 |
. . . . . . . . . . 11
β’ (π β π β (πβ({π₯} βͺ {π}))) |
43 | 42 | ssdifd 4139 |
. . . . . . . . . 10
β’ (π β (π β (πβ{π₯})) β ((πβ({π₯} βͺ {π})) β (πβ{π₯}))) |
44 | 43, 14 | sseldd 3982 |
. . . . . . . . 9
β’ (π β π¦ β ((πβ({π₯} βͺ {π})) β (πβ{π₯}))) |
45 | 4, 5, 6 | lspsolv 20748 |
. . . . . . . . 9
β’ ((π β LVec β§ ({π₯} β π β§ π β π β§ π¦ β ((πβ({π₯} βͺ {π})) β (πβ{π₯})))) β π β (πβ({π₯} βͺ {π¦}))) |
46 | 1, 23, 24, 44, 45 | syl13anc 1372 |
. . . . . . . 8
β’ (π β π β (πβ({π₯} βͺ {π¦}))) |
47 | | df-pr 4630 |
. . . . . . . . 9
β’ {π₯, π¦} = ({π₯} βͺ {π¦}) |
48 | 47 | fveq2i 6891 |
. . . . . . . 8
β’ (πβ{π₯, π¦}) = (πβ({π₯} βͺ {π¦})) |
49 | 46, 48 | eleqtrrdi 2844 |
. . . . . . 7
β’ (π β π β (πβ{π₯, π¦})) |
50 | 49 | snssd 4811 |
. . . . . 6
β’ (π β {π} β (πβ{π₯, π¦})) |
51 | 22, 50 | unssd 4185 |
. . . . 5
β’ (π β ({π₯} βͺ {π}) β (πβ{π₯, π¦})) |
52 | 17, 51 | eqsstrid 4029 |
. . . 4
β’ (π β {π₯, π} β (πβ{π₯, π¦})) |
53 | 5, 6 | lspssp 20591 |
. . . 4
β’ ((π β LMod β§ (πβ{π₯, π¦}) β π β§ {π₯, π} β (πβ{π₯, π¦})) β (πβ{π₯, π}) β (πβ{π₯, π¦})) |
54 | 3, 16, 52, 53 | syl3anc 1371 |
. . 3
β’ (π β (πβ{π₯, π}) β (πβ{π₯, π¦})) |
55 | 54, 29 | sseldd 3982 |
. 2
β’ (π β π β (πβ{π₯, π¦})) |
56 | 55, 49 | jca 512 |
1
β’ (π β (π β (πβ{π₯, π¦}) β§ π β (πβ{π₯, π¦}))) |