MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem4 Structured version   Visualization version   GIF version

Theorem lsppratlem4 19916
Description: Lemma for lspprat 19919. In the second case of lsppratlem1 19913, 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}) and 𝑦 ∉ (𝑁‘{𝑥}) implies 𝑌 ∈ (𝑁‘{𝑥, 𝑦}) and thus 𝑋 ∈ (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}) as well. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem4.x3 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌}))
Assertion
Ref Expression
lsppratlem4 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))

Proof of Theorem lsppratlem4
StepHypRef Expression
1 lspprat.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 19872 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 lspprat.v . . . . 5 𝑉 = (Base‘𝑊)
5 lspprat.s . . . . 5 𝑆 = (LSubSp‘𝑊)
6 lspprat.n . . . . 5 𝑁 = (LSpan‘𝑊)
7 lspprat.u . . . . . . . 8 (𝜑𝑈𝑆)
84, 5lssss 19702 . . . . . . . 8 (𝑈𝑆𝑈𝑉)
97, 8syl 17 . . . . . . 7 (𝜑𝑈𝑉)
109ssdifssd 4118 . . . . . 6 (𝜑 → (𝑈 ∖ { 0 }) ⊆ 𝑉)
11 lsppratlem1.x2 . . . . . 6 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
1210, 11sseldd 3967 . . . . 5 (𝜑𝑥𝑉)
139ssdifssd 4118 . . . . . 6 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉)
14 lsppratlem1.y2 . . . . . 6 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
1513, 14sseldd 3967 . . . . 5 (𝜑𝑦𝑉)
164, 5, 6, 3, 12, 15lspprcl 19744 . . . 4 (𝜑 → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆)
17 df-pr 4563 . . . . 5 {𝑥, 𝑌} = ({𝑥} ∪ {𝑌})
18 snsspr1 4740 . . . . . . 7 {𝑥} ⊆ {𝑥, 𝑦}
1912, 15prssd 4748 . . . . . . . 8 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
204, 6lspssid 19751 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉) → {𝑥, 𝑦} ⊆ (𝑁‘{𝑥, 𝑦}))
213, 19, 20syl2anc 586 . . . . . . 7 (𝜑 → {𝑥, 𝑦} ⊆ (𝑁‘{𝑥, 𝑦}))
2218, 21sstrid 3977 . . . . . 6 (𝜑 → {𝑥} ⊆ (𝑁‘{𝑥, 𝑦}))
2312snssd 4735 . . . . . . . . 9 (𝜑 → {𝑥} ⊆ 𝑉)
24 lspprat.y . . . . . . . . 9 (𝜑𝑌𝑉)
25 lspprat.p . . . . . . . . . . . . . 14 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2625pssssd 4073 . . . . . . . . . . . . 13 (𝜑𝑈 ⊆ (𝑁‘{𝑋, 𝑌}))
274, 5, 6, 3, 12, 24lspprcl 19744 . . . . . . . . . . . . . 14 (𝜑 → (𝑁‘{𝑥, 𝑌}) ∈ 𝑆)
28 df-pr 4563 . . . . . . . . . . . . . . 15 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
29 lsppratlem4.x3 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌}))
3029snssd 4735 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑋} ⊆ (𝑁‘{𝑥, 𝑌}))
31 snsspr2 4741 . . . . . . . . . . . . . . . . 17 {𝑌} ⊆ {𝑥, 𝑌}
3212, 24prssd 4748 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑥, 𝑌} ⊆ 𝑉)
334, 6lspssid 19751 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ {𝑥, 𝑌} ⊆ 𝑉) → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
343, 32, 33syl2anc 586 . . . . . . . . . . . . . . . . 17 (𝜑 → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
3531, 34sstrid 3977 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
3630, 35unssd 4161 . . . . . . . . . . . . . . 15 (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
3728, 36eqsstrid 4014 . . . . . . . . . . . . . 14 (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
385, 6lspssp 19754 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑥, 𝑌}) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
393, 27, 37, 38syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
4026, 39sstrd 3976 . . . . . . . . . . . 12 (𝜑𝑈 ⊆ (𝑁‘{𝑥, 𝑌}))
4117fveq2i 6667 . . . . . . . . . . . 12 (𝑁‘{𝑥, 𝑌}) = (𝑁‘({𝑥} ∪ {𝑌}))
4240, 41sseqtrdi 4016 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑌})))
4342ssdifd 4116 . . . . . . . . . 10 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))
4443, 14sseldd 3967 . . . . . . . . 9 (𝜑𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))
454, 5, 6lspsolv 19909 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉𝑌𝑉𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))) → 𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
461, 23, 24, 44, 45syl13anc 1368 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
47 df-pr 4563 . . . . . . . . 9 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
4847fveq2i 6667 . . . . . . . 8 (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦}))
4946, 48eleqtrrdi 2924 . . . . . . 7 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
5049snssd 4735 . . . . . 6 (𝜑 → {𝑌} ⊆ (𝑁‘{𝑥, 𝑦}))
5122, 50unssd 4161 . . . . 5 (𝜑 → ({𝑥} ∪ {𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
5217, 51eqsstrid 4014 . . . 4 (𝜑 → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑦}))
535, 6lspssp 19754 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑥, 𝑦}) ∈ 𝑆 ∧ {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑦})) → (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
543, 16, 52, 53syl3anc 1367 . . 3 (𝜑 → (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
5554, 29sseldd 3967 . 2 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
5655, 49jca 514 1 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cdif 3932  cun 3933  wss 3935  wpss 3936  {csn 4560  {cpr 4562  cfv 6349  Basecbs 16477  0gc0g 16707  LModclmod 19628  LSubSpclss 19697  LSpanclspn 19737  LVecclvec 19868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-drng 19498  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lvec 19869
This theorem is referenced by:  lsppratlem5  19917
  Copyright terms: Public domain W3C validator