Proof of Theorem lsppratlem4
| Step | Hyp | Ref
| Expression |
| 1 | | lspprat.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ LVec) |
| 2 | | lveclmod 21069 |
. . . . 5
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 4 | | lspprat.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
| 5 | | lspprat.s |
. . . . 5
⊢ 𝑆 = (LSubSp‘𝑊) |
| 6 | | lspprat.n |
. . . . 5
⊢ 𝑁 = (LSpan‘𝑊) |
| 7 | | lspprat.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| 8 | 4, 5 | lssss 20898 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
| 10 | 9 | ssdifssd 4127 |
. . . . . 6
⊢ (𝜑 → (𝑈 ∖ { 0 }) ⊆ 𝑉) |
| 11 | | lsppratlem1.x2 |
. . . . . 6
⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) |
| 12 | 10, 11 | sseldd 3964 |
. . . . 5
⊢ (𝜑 → 𝑥 ∈ 𝑉) |
| 13 | 9 | ssdifssd 4127 |
. . . . . 6
⊢ (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉) |
| 14 | | lsppratlem1.y2 |
. . . . . 6
⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| 15 | 13, 14 | sseldd 3964 |
. . . . 5
⊢ (𝜑 → 𝑦 ∈ 𝑉) |
| 16 | 4, 5, 6, 3, 12, 15 | lspprcl 20940 |
. . . 4
⊢ (𝜑 → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆) |
| 17 | | df-pr 4609 |
. . . . 5
⊢ {𝑥, 𝑌} = ({𝑥} ∪ {𝑌}) |
| 18 | | snsspr1 4795 |
. . . . . . 7
⊢ {𝑥} ⊆ {𝑥, 𝑦} |
| 19 | 12, 15 | prssd 4803 |
. . . . . . . 8
⊢ (𝜑 → {𝑥, 𝑦} ⊆ 𝑉) |
| 20 | 4, 6 | lspssid 20947 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉) → {𝑥, 𝑦} ⊆ (𝑁‘{𝑥, 𝑦})) |
| 21 | 3, 19, 20 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → {𝑥, 𝑦} ⊆ (𝑁‘{𝑥, 𝑦})) |
| 22 | 18, 21 | sstrid 3975 |
. . . . . 6
⊢ (𝜑 → {𝑥} ⊆ (𝑁‘{𝑥, 𝑦})) |
| 23 | 12 | snssd 4790 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥} ⊆ 𝑉) |
| 24 | | lspprat.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 25 | | lspprat.p |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| 26 | 25 | pssssd 4080 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ⊆ (𝑁‘{𝑋, 𝑌})) |
| 27 | 4, 5, 6, 3, 12, 24 | lspprcl 20940 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁‘{𝑥, 𝑌}) ∈ 𝑆) |
| 28 | | df-pr 4609 |
. . . . . . . . . . . . . . 15
⊢ {𝑋, 𝑌} = ({𝑋} ∪ {𝑌}) |
| 29 | | lsppratlem4.x3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) |
| 30 | 29 | snssd 4790 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {𝑋} ⊆ (𝑁‘{𝑥, 𝑌})) |
| 31 | | snsspr2 4796 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑌} ⊆ {𝑥, 𝑌} |
| 32 | 12, 24 | prssd 4803 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → {𝑥, 𝑌} ⊆ 𝑉) |
| 33 | 4, 6 | lspssid 20947 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ LMod ∧ {𝑥, 𝑌} ⊆ 𝑉) → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌})) |
| 34 | 3, 32, 33 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌})) |
| 35 | 31, 34 | sstrid 3975 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {𝑌} ⊆ (𝑁‘{𝑥, 𝑌})) |
| 36 | 30, 35 | unssd 4172 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘{𝑥, 𝑌})) |
| 37 | 28, 36 | eqsstrid 4002 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌})) |
| 38 | 5, 6 | lspssp 20950 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑥, 𝑌}) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌})) |
| 39 | 3, 27, 37, 38 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌})) |
| 40 | 26, 39 | sstrd 3974 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑈 ⊆ (𝑁‘{𝑥, 𝑌})) |
| 41 | 17 | fveq2i 6884 |
. . . . . . . . . . . 12
⊢ (𝑁‘{𝑥, 𝑌}) = (𝑁‘({𝑥} ∪ {𝑌})) |
| 42 | 40, 41 | sseqtrdi 4004 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑌}))) |
| 43 | 42 | ssdifd 4125 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥}))) |
| 44 | 43, 14 | sseldd 3964 |
. . . . . . . . 9
⊢ (𝜑 → 𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥}))) |
| 45 | 4, 5, 6 | lspsolv 21109 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))) → 𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑦}))) |
| 46 | 1, 23, 24, 44, 45 | syl13anc 1374 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑦}))) |
| 47 | | df-pr 4609 |
. . . . . . . . 9
⊢ {𝑥, 𝑦} = ({𝑥} ∪ {𝑦}) |
| 48 | 47 | fveq2i 6884 |
. . . . . . . 8
⊢ (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦})) |
| 49 | 46, 48 | eleqtrrdi 2846 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) |
| 50 | 49 | snssd 4790 |
. . . . . 6
⊢ (𝜑 → {𝑌} ⊆ (𝑁‘{𝑥, 𝑦})) |
| 51 | 22, 50 | unssd 4172 |
. . . . 5
⊢ (𝜑 → ({𝑥} ∪ {𝑌}) ⊆ (𝑁‘{𝑥, 𝑦})) |
| 52 | 17, 51 | eqsstrid 4002 |
. . . 4
⊢ (𝜑 → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑦})) |
| 53 | 5, 6 | lspssp 20950 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑥, 𝑦}) ∈ 𝑆 ∧ {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑦})) → (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦})) |
| 54 | 3, 16, 52, 53 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦})) |
| 55 | 54, 29 | sseldd 3964 |
. 2
⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) |
| 56 | 55, 49 | jca 511 |
1
⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) |