MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem4 Structured version   Visualization version   GIF version

Theorem lsppratlem4 19915
Description: Lemma for lspprat 19918. In the second case of lsppratlem1 19912, 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}) and 𝑦 ∉ (𝑁‘{𝑥}) implies 𝑌 ∈ (𝑁‘{𝑥, 𝑦}) and thus 𝑋 ∈ (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}) as well. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem4.x3 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌}))
Assertion
Ref Expression
lsppratlem4 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))

Proof of Theorem lsppratlem4
StepHypRef Expression
1 lspprat.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 19871 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 lspprat.v . . . . 5 𝑉 = (Base‘𝑊)
5 lspprat.s . . . . 5 𝑆 = (LSubSp‘𝑊)
6 lspprat.n . . . . 5 𝑁 = (LSpan‘𝑊)
7 lspprat.u . . . . . . . 8 (𝜑𝑈𝑆)
84, 5lssss 19701 . . . . . . . 8 (𝑈𝑆𝑈𝑉)
97, 8syl 17 . . . . . . 7 (𝜑𝑈𝑉)
109ssdifssd 4070 . . . . . 6 (𝜑 → (𝑈 ∖ { 0 }) ⊆ 𝑉)
11 lsppratlem1.x2 . . . . . 6 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
1210, 11sseldd 3916 . . . . 5 (𝜑𝑥𝑉)
139ssdifssd 4070 . . . . . 6 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉)
14 lsppratlem1.y2 . . . . . 6 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
1513, 14sseldd 3916 . . . . 5 (𝜑𝑦𝑉)
164, 5, 6, 3, 12, 15lspprcl 19743 . . . 4 (𝜑 → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆)
17 df-pr 4528 . . . . 5 {𝑥, 𝑌} = ({𝑥} ∪ {𝑌})
18 snsspr1 4707 . . . . . . 7 {𝑥} ⊆ {𝑥, 𝑦}
1912, 15prssd 4715 . . . . . . . 8 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
204, 6lspssid 19750 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉) → {𝑥, 𝑦} ⊆ (𝑁‘{𝑥, 𝑦}))
213, 19, 20syl2anc 587 . . . . . . 7 (𝜑 → {𝑥, 𝑦} ⊆ (𝑁‘{𝑥, 𝑦}))
2218, 21sstrid 3926 . . . . . 6 (𝜑 → {𝑥} ⊆ (𝑁‘{𝑥, 𝑦}))
2312snssd 4702 . . . . . . . . 9 (𝜑 → {𝑥} ⊆ 𝑉)
24 lspprat.y . . . . . . . . 9 (𝜑𝑌𝑉)
25 lspprat.p . . . . . . . . . . . . . 14 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2625pssssd 4025 . . . . . . . . . . . . 13 (𝜑𝑈 ⊆ (𝑁‘{𝑋, 𝑌}))
274, 5, 6, 3, 12, 24lspprcl 19743 . . . . . . . . . . . . . 14 (𝜑 → (𝑁‘{𝑥, 𝑌}) ∈ 𝑆)
28 df-pr 4528 . . . . . . . . . . . . . . 15 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
29 lsppratlem4.x3 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌}))
3029snssd 4702 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑋} ⊆ (𝑁‘{𝑥, 𝑌}))
31 snsspr2 4708 . . . . . . . . . . . . . . . . 17 {𝑌} ⊆ {𝑥, 𝑌}
3212, 24prssd 4715 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑥, 𝑌} ⊆ 𝑉)
334, 6lspssid 19750 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ {𝑥, 𝑌} ⊆ 𝑉) → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
343, 32, 33syl2anc 587 . . . . . . . . . . . . . . . . 17 (𝜑 → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
3531, 34sstrid 3926 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
3630, 35unssd 4113 . . . . . . . . . . . . . . 15 (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
3728, 36eqsstrid 3963 . . . . . . . . . . . . . 14 (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
385, 6lspssp 19753 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑥, 𝑌}) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
393, 27, 37, 38syl3anc 1368 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
4026, 39sstrd 3925 . . . . . . . . . . . 12 (𝜑𝑈 ⊆ (𝑁‘{𝑥, 𝑌}))
4117fveq2i 6648 . . . . . . . . . . . 12 (𝑁‘{𝑥, 𝑌}) = (𝑁‘({𝑥} ∪ {𝑌}))
4240, 41sseqtrdi 3965 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑌})))
4342ssdifd 4068 . . . . . . . . . 10 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))
4443, 14sseldd 3916 . . . . . . . . 9 (𝜑𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))
454, 5, 6lspsolv 19908 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉𝑌𝑉𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))) → 𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
461, 23, 24, 44, 45syl13anc 1369 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
47 df-pr 4528 . . . . . . . . 9 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
4847fveq2i 6648 . . . . . . . 8 (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦}))
4946, 48eleqtrrdi 2901 . . . . . . 7 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
5049snssd 4702 . . . . . 6 (𝜑 → {𝑌} ⊆ (𝑁‘{𝑥, 𝑦}))
5122, 50unssd 4113 . . . . 5 (𝜑 → ({𝑥} ∪ {𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
5217, 51eqsstrid 3963 . . . 4 (𝜑 → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑦}))
535, 6lspssp 19753 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑥, 𝑦}) ∈ 𝑆 ∧ {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑦})) → (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
543, 16, 52, 53syl3anc 1368 . . 3 (𝜑 → (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
5554, 29sseldd 3916 . 2 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
5655, 49jca 515 1 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cdif 3878  cun 3879  wss 3881  wpss 3882  {csn 4525  {cpr 4527  cfv 6324  Basecbs 16475  0gc0g 16705  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736  LVecclvec 19867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868
This theorem is referenced by:  lsppratlem5  19916
  Copyright terms: Public domain W3C validator