MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem4 Structured version   Visualization version   GIF version

Theorem lsppratlem4 20327
Description: Lemma for lspprat 20330. In the second case of lsppratlem1 20324, 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}) and 𝑦 ∉ (𝑁‘{𝑥}) implies 𝑌 ∈ (𝑁‘{𝑥, 𝑦}) and thus 𝑋 ∈ (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}) as well. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem4.x3 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌}))
Assertion
Ref Expression
lsppratlem4 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))

Proof of Theorem lsppratlem4
StepHypRef Expression
1 lspprat.w . . . . 5 (𝜑𝑊 ∈ LVec)
2 lveclmod 20283 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
4 lspprat.v . . . . 5 𝑉 = (Base‘𝑊)
5 lspprat.s . . . . 5 𝑆 = (LSubSp‘𝑊)
6 lspprat.n . . . . 5 𝑁 = (LSpan‘𝑊)
7 lspprat.u . . . . . . . 8 (𝜑𝑈𝑆)
84, 5lssss 20113 . . . . . . . 8 (𝑈𝑆𝑈𝑉)
97, 8syl 17 . . . . . . 7 (𝜑𝑈𝑉)
109ssdifssd 4073 . . . . . 6 (𝜑 → (𝑈 ∖ { 0 }) ⊆ 𝑉)
11 lsppratlem1.x2 . . . . . 6 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
1210, 11sseldd 3918 . . . . 5 (𝜑𝑥𝑉)
139ssdifssd 4073 . . . . . 6 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ 𝑉)
14 lsppratlem1.y2 . . . . . 6 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
1513, 14sseldd 3918 . . . . 5 (𝜑𝑦𝑉)
164, 5, 6, 3, 12, 15lspprcl 20155 . . . 4 (𝜑 → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆)
17 df-pr 4561 . . . . 5 {𝑥, 𝑌} = ({𝑥} ∪ {𝑌})
18 snsspr1 4744 . . . . . . 7 {𝑥} ⊆ {𝑥, 𝑦}
1912, 15prssd 4752 . . . . . . . 8 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
204, 6lspssid 20162 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉) → {𝑥, 𝑦} ⊆ (𝑁‘{𝑥, 𝑦}))
213, 19, 20syl2anc 583 . . . . . . 7 (𝜑 → {𝑥, 𝑦} ⊆ (𝑁‘{𝑥, 𝑦}))
2218, 21sstrid 3928 . . . . . 6 (𝜑 → {𝑥} ⊆ (𝑁‘{𝑥, 𝑦}))
2312snssd 4739 . . . . . . . . 9 (𝜑 → {𝑥} ⊆ 𝑉)
24 lspprat.y . . . . . . . . 9 (𝜑𝑌𝑉)
25 lspprat.p . . . . . . . . . . . . . 14 (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
2625pssssd 4028 . . . . . . . . . . . . 13 (𝜑𝑈 ⊆ (𝑁‘{𝑋, 𝑌}))
274, 5, 6, 3, 12, 24lspprcl 20155 . . . . . . . . . . . . . 14 (𝜑 → (𝑁‘{𝑥, 𝑌}) ∈ 𝑆)
28 df-pr 4561 . . . . . . . . . . . . . . 15 {𝑋, 𝑌} = ({𝑋} ∪ {𝑌})
29 lsppratlem4.x3 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑌}))
3029snssd 4739 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑋} ⊆ (𝑁‘{𝑥, 𝑌}))
31 snsspr2 4745 . . . . . . . . . . . . . . . . 17 {𝑌} ⊆ {𝑥, 𝑌}
3212, 24prssd 4752 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑥, 𝑌} ⊆ 𝑉)
334, 6lspssid 20162 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ {𝑥, 𝑌} ⊆ 𝑉) → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
343, 32, 33syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝜑 → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
3531, 34sstrid 3928 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
3630, 35unssd 4116 . . . . . . . . . . . . . . 15 (𝜑 → ({𝑋} ∪ {𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
3728, 36eqsstrid 3965 . . . . . . . . . . . . . 14 (𝜑 → {𝑋, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌}))
385, 6lspssp 20165 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑥, 𝑌}) ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ (𝑁‘{𝑥, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
393, 27, 37, 38syl3anc 1369 . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}))
4026, 39sstrd 3927 . . . . . . . . . . . 12 (𝜑𝑈 ⊆ (𝑁‘{𝑥, 𝑌}))
4117fveq2i 6759 . . . . . . . . . . . 12 (𝑁‘{𝑥, 𝑌}) = (𝑁‘({𝑥} ∪ {𝑌}))
4240, 41sseqtrdi 3967 . . . . . . . . . . 11 (𝜑𝑈 ⊆ (𝑁‘({𝑥} ∪ {𝑌})))
4342ssdifd 4071 . . . . . . . . . 10 (𝜑 → (𝑈 ∖ (𝑁‘{𝑥})) ⊆ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))
4443, 14sseldd 3918 . . . . . . . . 9 (𝜑𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))
454, 5, 6lspsolv 20320 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ ({𝑥} ⊆ 𝑉𝑌𝑉𝑦 ∈ ((𝑁‘({𝑥} ∪ {𝑌})) ∖ (𝑁‘{𝑥})))) → 𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
461, 23, 24, 44, 45syl13anc 1370 . . . . . . . 8 (𝜑𝑌 ∈ (𝑁‘({𝑥} ∪ {𝑦})))
47 df-pr 4561 . . . . . . . . 9 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
4847fveq2i 6759 . . . . . . . 8 (𝑁‘{𝑥, 𝑦}) = (𝑁‘({𝑥} ∪ {𝑦}))
4946, 48eleqtrrdi 2850 . . . . . . 7 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
5049snssd 4739 . . . . . 6 (𝜑 → {𝑌} ⊆ (𝑁‘{𝑥, 𝑦}))
5122, 50unssd 4116 . . . . 5 (𝜑 → ({𝑥} ∪ {𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
5217, 51eqsstrid 3965 . . . 4 (𝜑 → {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑦}))
535, 6lspssp 20165 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑥, 𝑦}) ∈ 𝑆 ∧ {𝑥, 𝑌} ⊆ (𝑁‘{𝑥, 𝑦})) → (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
543, 16, 52, 53syl3anc 1369 . . 3 (𝜑 → (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
5554, 29sseldd 3918 . 2 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
5655, 49jca 511 1 (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cdif 3880  cun 3881  wss 3883  wpss 3884  {csn 4558  {cpr 4560  cfv 6418  Basecbs 16840  0gc0g 17067  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280
This theorem is referenced by:  lsppratlem5  20328
  Copyright terms: Public domain W3C validator