| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lrelat | Structured version Visualization version GIF version | ||
| Description: Subspaces are relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 32300 analog.) (Contributed by NM, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| lrelat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lrelat.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lrelat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lrelat.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lrelat.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| lrelat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lrelat.l | ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
| Ref | Expression |
|---|---|
| lrelat | ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lrelat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | lrelat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 3 | lrelat.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 4 | lrelat.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 5 | lrelat.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 6 | lrelat.l | . . 3 ⊢ (𝜑 → 𝑇 ⊊ 𝑈) | |
| 7 | 1, 2, 3, 4, 5, 6 | lpssat 39013 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇)) |
| 8 | ancom 460 | . . . 4 ⊢ ((𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇) ↔ (¬ 𝑞 ⊆ 𝑇 ∧ 𝑞 ⊆ 𝑈)) | |
| 9 | lrelat.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
| 10 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑊 ∈ LMod) |
| 11 | 1 | lsssssubg 20871 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 13 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑇 ∈ 𝑆) |
| 14 | 12, 13 | sseldd 3950 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑇 ∈ (SubGrp‘𝑊)) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
| 16 | 1, 2, 10, 15 | lsatlssel 38997 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝑆) |
| 17 | 12, 16 | sseldd 3950 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ (SubGrp‘𝑊)) |
| 18 | 9, 14, 17 | lssnle 19611 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞 ⊆ 𝑇 ↔ 𝑇 ⊊ (𝑇 ⊕ 𝑞))) |
| 19 | 6 | pssssd 4066 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ⊆ 𝑈) |
| 20 | 19 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑇 ⊆ 𝑈) |
| 21 | 20 | biantrurd 532 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞 ⊆ 𝑈 ↔ (𝑇 ⊆ 𝑈 ∧ 𝑞 ⊆ 𝑈))) |
| 22 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑈 ∈ 𝑆) |
| 23 | 12, 22 | sseldd 3950 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 24 | 9 | lsmlub 19601 | . . . . . . 7 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑞 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑇 ⊆ 𝑈 ∧ 𝑞 ⊆ 𝑈) ↔ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
| 25 | 14, 17, 23, 24 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → ((𝑇 ⊆ 𝑈 ∧ 𝑞 ⊆ 𝑈) ↔ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
| 26 | 21, 25 | bitrd 279 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞 ⊆ 𝑈 ↔ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
| 27 | 18, 26 | anbi12d 632 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑞 ⊆ 𝑇 ∧ 𝑞 ⊆ 𝑈) ↔ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈))) |
| 28 | 8, 27 | bitrid 283 | . . 3 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → ((𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇) ↔ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈))) |
| 29 | 28 | rexbidva 3156 | . 2 ⊢ (𝜑 → (∃𝑞 ∈ 𝐴 (𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇) ↔ ∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈))) |
| 30 | 7, 29 | mpbid 232 | 1 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3917 ⊊ wpss 3918 ‘cfv 6514 (class class class)co 7390 SubGrpcsubg 19059 LSSumclsm 19571 LModclmod 20773 LSubSpclss 20844 LSAtomsclsa 38974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-lsm 19573 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lsatoms 38976 |
| This theorem is referenced by: lcvat 39030 |
| Copyright terms: Public domain | W3C validator |