Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lrelat | Structured version Visualization version GIF version |
Description: Subspaces are relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 30627 analog.) (Contributed by NM, 11-Jan-2015.) |
Ref | Expression |
---|---|
lrelat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lrelat.p | ⊢ ⊕ = (LSSum‘𝑊) |
lrelat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lrelat.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lrelat.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lrelat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lrelat.l | ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
Ref | Expression |
---|---|
lrelat | ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lrelat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | lrelat.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
3 | lrelat.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
4 | lrelat.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
5 | lrelat.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
6 | lrelat.l | . . 3 ⊢ (𝜑 → 𝑇 ⊊ 𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | lpssat 36954 | . 2 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇)) |
8 | ancom 460 | . . . 4 ⊢ ((𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇) ↔ (¬ 𝑞 ⊆ 𝑇 ∧ 𝑞 ⊆ 𝑈)) | |
9 | lrelat.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
10 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑊 ∈ LMod) |
11 | 1 | lsssssubg 20135 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑆 ⊆ (SubGrp‘𝑊)) |
13 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑇 ∈ 𝑆) |
14 | 12, 13 | sseldd 3918 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑇 ∈ (SubGrp‘𝑊)) |
15 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
16 | 1, 2, 10, 15 | lsatlssel 36938 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝑆) |
17 | 12, 16 | sseldd 3918 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ (SubGrp‘𝑊)) |
18 | 9, 14, 17 | lssnle 19195 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞 ⊆ 𝑇 ↔ 𝑇 ⊊ (𝑇 ⊕ 𝑞))) |
19 | 6 | pssssd 4028 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ⊆ 𝑈) |
20 | 19 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑇 ⊆ 𝑈) |
21 | 20 | biantrurd 532 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞 ⊆ 𝑈 ↔ (𝑇 ⊆ 𝑈 ∧ 𝑞 ⊆ 𝑈))) |
22 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑈 ∈ 𝑆) |
23 | 12, 22 | sseldd 3918 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑈 ∈ (SubGrp‘𝑊)) |
24 | 9 | lsmlub 19185 | . . . . . . 7 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑞 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑇 ⊆ 𝑈 ∧ 𝑞 ⊆ 𝑈) ↔ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
25 | 14, 17, 23, 24 | syl3anc 1369 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → ((𝑇 ⊆ 𝑈 ∧ 𝑞 ⊆ 𝑈) ↔ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
26 | 21, 25 | bitrd 278 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞 ⊆ 𝑈 ↔ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
27 | 18, 26 | anbi12d 630 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑞 ⊆ 𝑇 ∧ 𝑞 ⊆ 𝑈) ↔ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈))) |
28 | 8, 27 | syl5bb 282 | . . 3 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → ((𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇) ↔ (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈))) |
29 | 28 | rexbidva 3224 | . 2 ⊢ (𝜑 → (∃𝑞 ∈ 𝐴 (𝑞 ⊆ 𝑈 ∧ ¬ 𝑞 ⊆ 𝑇) ↔ ∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈))) |
30 | 7, 29 | mpbid 231 | 1 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 (𝑇 ⊊ (𝑇 ⊕ 𝑞) ∧ (𝑇 ⊕ 𝑞) ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 ⊊ wpss 3884 ‘cfv 6418 (class class class)co 7255 SubGrpcsubg 18664 LSSumclsm 19154 LModclmod 20038 LSubSpclss 20108 LSAtomsclsa 36915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-lsm 19156 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lsatoms 36917 |
This theorem is referenced by: lcvat 36971 |
Copyright terms: Public domain | W3C validator |