![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lrelat | Structured version Visualization version GIF version |
Description: Subspaces are relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 32192 analog.) (Contributed by NM, 11-Jan-2015.) |
Ref | Expression |
---|---|
lrelat.s | β’ π = (LSubSpβπ) |
lrelat.p | β’ β = (LSSumβπ) |
lrelat.a | β’ π΄ = (LSAtomsβπ) |
lrelat.w | β’ (π β π β LMod) |
lrelat.t | β’ (π β π β π) |
lrelat.u | β’ (π β π β π) |
lrelat.l | β’ (π β π β π) |
Ref | Expression |
---|---|
lrelat | β’ (π β βπ β π΄ (π β (π β π) β§ (π β π) β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lrelat.s | . . 3 β’ π = (LSubSpβπ) | |
2 | lrelat.a | . . 3 β’ π΄ = (LSAtomsβπ) | |
3 | lrelat.w | . . 3 β’ (π β π β LMod) | |
4 | lrelat.t | . . 3 β’ (π β π β π) | |
5 | lrelat.u | . . 3 β’ (π β π β π) | |
6 | lrelat.l | . . 3 β’ (π β π β π) | |
7 | 1, 2, 3, 4, 5, 6 | lpssat 38489 | . 2 β’ (π β βπ β π΄ (π β π β§ Β¬ π β π)) |
8 | ancom 459 | . . . 4 β’ ((π β π β§ Β¬ π β π) β (Β¬ π β π β§ π β π)) | |
9 | lrelat.p | . . . . . 6 β’ β = (LSSumβπ) | |
10 | 3 | adantr 479 | . . . . . . . 8 β’ ((π β§ π β π΄) β π β LMod) |
11 | 1 | lsssssubg 20847 | . . . . . . . 8 β’ (π β LMod β π β (SubGrpβπ)) |
12 | 10, 11 | syl 17 | . . . . . . 7 β’ ((π β§ π β π΄) β π β (SubGrpβπ)) |
13 | 4 | adantr 479 | . . . . . . 7 β’ ((π β§ π β π΄) β π β π) |
14 | 12, 13 | sseldd 3981 | . . . . . 6 β’ ((π β§ π β π΄) β π β (SubGrpβπ)) |
15 | simpr 483 | . . . . . . . 8 β’ ((π β§ π β π΄) β π β π΄) | |
16 | 1, 2, 10, 15 | lsatlssel 38473 | . . . . . . 7 β’ ((π β§ π β π΄) β π β π) |
17 | 12, 16 | sseldd 3981 | . . . . . 6 β’ ((π β§ π β π΄) β π β (SubGrpβπ)) |
18 | 9, 14, 17 | lssnle 19634 | . . . . 5 β’ ((π β§ π β π΄) β (Β¬ π β π β π β (π β π))) |
19 | 6 | pssssd 4095 | . . . . . . . 8 β’ (π β π β π) |
20 | 19 | adantr 479 | . . . . . . 7 β’ ((π β§ π β π΄) β π β π) |
21 | 20 | biantrurd 531 | . . . . . 6 β’ ((π β§ π β π΄) β (π β π β (π β π β§ π β π))) |
22 | 5 | adantr 479 | . . . . . . . 8 β’ ((π β§ π β π΄) β π β π) |
23 | 12, 22 | sseldd 3981 | . . . . . . 7 β’ ((π β§ π β π΄) β π β (SubGrpβπ)) |
24 | 9 | lsmlub 19624 | . . . . . . 7 β’ ((π β (SubGrpβπ) β§ π β (SubGrpβπ) β§ π β (SubGrpβπ)) β ((π β π β§ π β π) β (π β π) β π)) |
25 | 14, 17, 23, 24 | syl3anc 1368 | . . . . . 6 β’ ((π β§ π β π΄) β ((π β π β§ π β π) β (π β π) β π)) |
26 | 21, 25 | bitrd 278 | . . . . 5 β’ ((π β§ π β π΄) β (π β π β (π β π) β π)) |
27 | 18, 26 | anbi12d 630 | . . . 4 β’ ((π β§ π β π΄) β ((Β¬ π β π β§ π β π) β (π β (π β π) β§ (π β π) β π))) |
28 | 8, 27 | bitrid 282 | . . 3 β’ ((π β§ π β π΄) β ((π β π β§ Β¬ π β π) β (π β (π β π) β§ (π β π) β π))) |
29 | 28 | rexbidva 3172 | . 2 β’ (π β (βπ β π΄ (π β π β§ Β¬ π β π) β βπ β π΄ (π β (π β π) β§ (π β π) β π))) |
30 | 7, 29 | mpbid 231 | 1 β’ (π β βπ β π΄ (π β (π β π) β§ (π β π) β π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βwrex 3066 β wss 3947 β wpss 3948 βcfv 6551 (class class class)co 7424 SubGrpcsubg 19080 LSSumclsm 19594 LModclmod 20748 LSubSpclss 20820 LSAtomsclsa 38450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-0g 17428 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18746 df-grp 18898 df-minusg 18899 df-sbg 18900 df-subg 19083 df-lsm 19596 df-mgp 20080 df-ur 20127 df-ring 20180 df-lmod 20750 df-lss 20821 df-lsp 20861 df-lsatoms 38452 |
This theorem is referenced by: lcvat 38506 |
Copyright terms: Public domain | W3C validator |