Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lrelat Structured version   Visualization version   GIF version

Theorem lrelat 35088
Description: Subspaces are relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 29774 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lrelat.s 𝑆 = (LSubSp‘𝑊)
lrelat.p = (LSSum‘𝑊)
lrelat.a 𝐴 = (LSAtoms‘𝑊)
lrelat.w (𝜑𝑊 ∈ LMod)
lrelat.t (𝜑𝑇𝑆)
lrelat.u (𝜑𝑈𝑆)
lrelat.l (𝜑𝑇𝑈)
Assertion
Ref Expression
lrelat (𝜑 → ∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈))
Distinct variable groups:   𝐴,𝑞   𝑆,𝑞   𝑇,𝑞   𝑈,𝑞   𝑊,𝑞   𝜑,𝑞
Allowed substitution hint:   (𝑞)

Proof of Theorem lrelat
StepHypRef Expression
1 lrelat.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lrelat.a . . 3 𝐴 = (LSAtoms‘𝑊)
3 lrelat.w . . 3 (𝜑𝑊 ∈ LMod)
4 lrelat.t . . 3 (𝜑𝑇𝑆)
5 lrelat.u . . 3 (𝜑𝑈𝑆)
6 lrelat.l . . 3 (𝜑𝑇𝑈)
71, 2, 3, 4, 5, 6lpssat 35087 . 2 (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
8 ancom 454 . . . 4 ((𝑞𝑈 ∧ ¬ 𝑞𝑇) ↔ (¬ 𝑞𝑇𝑞𝑈))
9 lrelat.p . . . . . 6 = (LSSum‘𝑊)
103adantr 474 . . . . . . . 8 ((𝜑𝑞𝐴) → 𝑊 ∈ LMod)
111lsssssubg 19324 . . . . . . . 8 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
1210, 11syl 17 . . . . . . 7 ((𝜑𝑞𝐴) → 𝑆 ⊆ (SubGrp‘𝑊))
134adantr 474 . . . . . . 7 ((𝜑𝑞𝐴) → 𝑇𝑆)
1412, 13sseldd 3828 . . . . . 6 ((𝜑𝑞𝐴) → 𝑇 ∈ (SubGrp‘𝑊))
15 simpr 479 . . . . . . . 8 ((𝜑𝑞𝐴) → 𝑞𝐴)
161, 2, 10, 15lsatlssel 35071 . . . . . . 7 ((𝜑𝑞𝐴) → 𝑞𝑆)
1712, 16sseldd 3828 . . . . . 6 ((𝜑𝑞𝐴) → 𝑞 ∈ (SubGrp‘𝑊))
189, 14, 17lssnle 18445 . . . . 5 ((𝜑𝑞𝐴) → (¬ 𝑞𝑇𝑇 ⊊ (𝑇 𝑞)))
196pssssd 3932 . . . . . . . 8 (𝜑𝑇𝑈)
2019adantr 474 . . . . . . 7 ((𝜑𝑞𝐴) → 𝑇𝑈)
2120biantrurd 528 . . . . . 6 ((𝜑𝑞𝐴) → (𝑞𝑈 ↔ (𝑇𝑈𝑞𝑈)))
225adantr 474 . . . . . . . 8 ((𝜑𝑞𝐴) → 𝑈𝑆)
2312, 22sseldd 3828 . . . . . . 7 ((𝜑𝑞𝐴) → 𝑈 ∈ (SubGrp‘𝑊))
249lsmlub 18436 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑞 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑇𝑈𝑞𝑈) ↔ (𝑇 𝑞) ⊆ 𝑈))
2514, 17, 23, 24syl3anc 1494 . . . . . 6 ((𝜑𝑞𝐴) → ((𝑇𝑈𝑞𝑈) ↔ (𝑇 𝑞) ⊆ 𝑈))
2621, 25bitrd 271 . . . . 5 ((𝜑𝑞𝐴) → (𝑞𝑈 ↔ (𝑇 𝑞) ⊆ 𝑈))
2718, 26anbi12d 624 . . . 4 ((𝜑𝑞𝐴) → ((¬ 𝑞𝑇𝑞𝑈) ↔ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)))
288, 27syl5bb 275 . . 3 ((𝜑𝑞𝐴) → ((𝑞𝑈 ∧ ¬ 𝑞𝑇) ↔ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)))
2928rexbidva 3259 . 2 (𝜑 → (∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇) ↔ ∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)))
307, 29mpbid 224 1 (𝜑 → ∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wrex 3118  wss 3798  wpss 3799  cfv 6127  (class class class)co 6910  SubGrpcsubg 17946  LSSumclsm 18407  LModclmod 19226  LSubSpclss 19295  LSAtomsclsa 35048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-lsm 18409  df-mgp 18851  df-ur 18863  df-ring 18910  df-lmod 19228  df-lss 19296  df-lsp 19338  df-lsatoms 35050
This theorem is referenced by:  lcvat  35104
  Copyright terms: Public domain W3C validator