Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lrelat Structured version   Visualization version   GIF version

Theorem lrelat 36210
 Description: Subspaces are relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 30136 analog.) (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lrelat.s 𝑆 = (LSubSp‘𝑊)
lrelat.p = (LSSum‘𝑊)
lrelat.a 𝐴 = (LSAtoms‘𝑊)
lrelat.w (𝜑𝑊 ∈ LMod)
lrelat.t (𝜑𝑇𝑆)
lrelat.u (𝜑𝑈𝑆)
lrelat.l (𝜑𝑇𝑈)
Assertion
Ref Expression
lrelat (𝜑 → ∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈))
Distinct variable groups:   𝐴,𝑞   𝑆,𝑞   𝑇,𝑞   𝑈,𝑞   𝑊,𝑞   𝜑,𝑞
Allowed substitution hint:   (𝑞)

Proof of Theorem lrelat
StepHypRef Expression
1 lrelat.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lrelat.a . . 3 𝐴 = (LSAtoms‘𝑊)
3 lrelat.w . . 3 (𝜑𝑊 ∈ LMod)
4 lrelat.t . . 3 (𝜑𝑇𝑆)
5 lrelat.u . . 3 (𝜑𝑈𝑆)
6 lrelat.l . . 3 (𝜑𝑇𝑈)
71, 2, 3, 4, 5, 6lpssat 36209 . 2 (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
8 ancom 464 . . . 4 ((𝑞𝑈 ∧ ¬ 𝑞𝑇) ↔ (¬ 𝑞𝑇𝑞𝑈))
9 lrelat.p . . . . . 6 = (LSSum‘𝑊)
103adantr 484 . . . . . . . 8 ((𝜑𝑞𝐴) → 𝑊 ∈ LMod)
111lsssssubg 19716 . . . . . . . 8 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
1210, 11syl 17 . . . . . . 7 ((𝜑𝑞𝐴) → 𝑆 ⊆ (SubGrp‘𝑊))
134adantr 484 . . . . . . 7 ((𝜑𝑞𝐴) → 𝑇𝑆)
1412, 13sseldd 3952 . . . . . 6 ((𝜑𝑞𝐴) → 𝑇 ∈ (SubGrp‘𝑊))
15 simpr 488 . . . . . . . 8 ((𝜑𝑞𝐴) → 𝑞𝐴)
161, 2, 10, 15lsatlssel 36193 . . . . . . 7 ((𝜑𝑞𝐴) → 𝑞𝑆)
1712, 16sseldd 3952 . . . . . 6 ((𝜑𝑞𝐴) → 𝑞 ∈ (SubGrp‘𝑊))
189, 14, 17lssnle 18789 . . . . 5 ((𝜑𝑞𝐴) → (¬ 𝑞𝑇𝑇 ⊊ (𝑇 𝑞)))
196pssssd 4058 . . . . . . . 8 (𝜑𝑇𝑈)
2019adantr 484 . . . . . . 7 ((𝜑𝑞𝐴) → 𝑇𝑈)
2120biantrurd 536 . . . . . 6 ((𝜑𝑞𝐴) → (𝑞𝑈 ↔ (𝑇𝑈𝑞𝑈)))
225adantr 484 . . . . . . . 8 ((𝜑𝑞𝐴) → 𝑈𝑆)
2312, 22sseldd 3952 . . . . . . 7 ((𝜑𝑞𝐴) → 𝑈 ∈ (SubGrp‘𝑊))
249lsmlub 18779 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑞 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑇𝑈𝑞𝑈) ↔ (𝑇 𝑞) ⊆ 𝑈))
2514, 17, 23, 24syl3anc 1368 . . . . . 6 ((𝜑𝑞𝐴) → ((𝑇𝑈𝑞𝑈) ↔ (𝑇 𝑞) ⊆ 𝑈))
2621, 25bitrd 282 . . . . 5 ((𝜑𝑞𝐴) → (𝑞𝑈 ↔ (𝑇 𝑞) ⊆ 𝑈))
2718, 26anbi12d 633 . . . 4 ((𝜑𝑞𝐴) → ((¬ 𝑞𝑇𝑞𝑈) ↔ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)))
288, 27syl5bb 286 . . 3 ((𝜑𝑞𝐴) → ((𝑞𝑈 ∧ ¬ 𝑞𝑇) ↔ (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)))
2928rexbidva 3288 . 2 (𝜑 → (∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇) ↔ ∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈)))
307, 29mpbid 235 1 (𝜑 → ∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∃wrex 3133   ⊆ wss 3918   ⊊ wpss 3919  ‘cfv 6336  (class class class)co 7138  SubGrpcsubg 18262  LSSumclsm 18748  LModclmod 19620  LSubSpclss 19689  LSAtomsclsa 36170 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-0g 16704  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-submnd 17946  df-grp 18095  df-minusg 18096  df-sbg 18097  df-subg 18265  df-lsm 18750  df-mgp 19229  df-ur 19241  df-ring 19288  df-lmod 19622  df-lss 19690  df-lsp 19730  df-lsatoms 36172 This theorem is referenced by:  lcvat  36226
 Copyright terms: Public domain W3C validator