![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lrelat | Structured version Visualization version GIF version |
Description: Subspaces are relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 32122 analog.) (Contributed by NM, 11-Jan-2015.) |
Ref | Expression |
---|---|
lrelat.s | β’ π = (LSubSpβπ) |
lrelat.p | β’ β = (LSSumβπ) |
lrelat.a | β’ π΄ = (LSAtomsβπ) |
lrelat.w | β’ (π β π β LMod) |
lrelat.t | β’ (π β π β π) |
lrelat.u | β’ (π β π β π) |
lrelat.l | β’ (π β π β π) |
Ref | Expression |
---|---|
lrelat | β’ (π β βπ β π΄ (π β (π β π) β§ (π β π) β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lrelat.s | . . 3 β’ π = (LSubSpβπ) | |
2 | lrelat.a | . . 3 β’ π΄ = (LSAtomsβπ) | |
3 | lrelat.w | . . 3 β’ (π β π β LMod) | |
4 | lrelat.t | . . 3 β’ (π β π β π) | |
5 | lrelat.u | . . 3 β’ (π β π β π) | |
6 | lrelat.l | . . 3 β’ (π β π β π) | |
7 | 1, 2, 3, 4, 5, 6 | lpssat 38394 | . 2 β’ (π β βπ β π΄ (π β π β§ Β¬ π β π)) |
8 | ancom 460 | . . . 4 β’ ((π β π β§ Β¬ π β π) β (Β¬ π β π β§ π β π)) | |
9 | lrelat.p | . . . . . 6 β’ β = (LSSumβπ) | |
10 | 3 | adantr 480 | . . . . . . . 8 β’ ((π β§ π β π΄) β π β LMod) |
11 | 1 | lsssssubg 20803 | . . . . . . . 8 β’ (π β LMod β π β (SubGrpβπ)) |
12 | 10, 11 | syl 17 | . . . . . . 7 β’ ((π β§ π β π΄) β π β (SubGrpβπ)) |
13 | 4 | adantr 480 | . . . . . . 7 β’ ((π β§ π β π΄) β π β π) |
14 | 12, 13 | sseldd 3978 | . . . . . 6 β’ ((π β§ π β π΄) β π β (SubGrpβπ)) |
15 | simpr 484 | . . . . . . . 8 β’ ((π β§ π β π΄) β π β π΄) | |
16 | 1, 2, 10, 15 | lsatlssel 38378 | . . . . . . 7 β’ ((π β§ π β π΄) β π β π) |
17 | 12, 16 | sseldd 3978 | . . . . . 6 β’ ((π β§ π β π΄) β π β (SubGrpβπ)) |
18 | 9, 14, 17 | lssnle 19592 | . . . . 5 β’ ((π β§ π β π΄) β (Β¬ π β π β π β (π β π))) |
19 | 6 | pssssd 4092 | . . . . . . . 8 β’ (π β π β π) |
20 | 19 | adantr 480 | . . . . . . 7 β’ ((π β§ π β π΄) β π β π) |
21 | 20 | biantrurd 532 | . . . . . 6 β’ ((π β§ π β π΄) β (π β π β (π β π β§ π β π))) |
22 | 5 | adantr 480 | . . . . . . . 8 β’ ((π β§ π β π΄) β π β π) |
23 | 12, 22 | sseldd 3978 | . . . . . . 7 β’ ((π β§ π β π΄) β π β (SubGrpβπ)) |
24 | 9 | lsmlub 19582 | . . . . . . 7 β’ ((π β (SubGrpβπ) β§ π β (SubGrpβπ) β§ π β (SubGrpβπ)) β ((π β π β§ π β π) β (π β π) β π)) |
25 | 14, 17, 23, 24 | syl3anc 1368 | . . . . . 6 β’ ((π β§ π β π΄) β ((π β π β§ π β π) β (π β π) β π)) |
26 | 21, 25 | bitrd 279 | . . . . 5 β’ ((π β§ π β π΄) β (π β π β (π β π) β π)) |
27 | 18, 26 | anbi12d 630 | . . . 4 β’ ((π β§ π β π΄) β ((Β¬ π β π β§ π β π) β (π β (π β π) β§ (π β π) β π))) |
28 | 8, 27 | bitrid 283 | . . 3 β’ ((π β§ π β π΄) β ((π β π β§ Β¬ π β π) β (π β (π β π) β§ (π β π) β π))) |
29 | 28 | rexbidva 3170 | . 2 β’ (π β (βπ β π΄ (π β π β§ Β¬ π β π) β βπ β π΄ (π β (π β π) β§ (π β π) β π))) |
30 | 7, 29 | mpbid 231 | 1 β’ (π β βπ β π΄ (π β (π β π) β§ (π β π) β π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βwrex 3064 β wss 3943 β wpss 3944 βcfv 6536 (class class class)co 7404 SubGrpcsubg 19045 LSSumclsm 19552 LModclmod 20704 LSubSpclss 20776 LSAtomsclsa 38355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19048 df-lsm 19554 df-mgp 20038 df-ur 20085 df-ring 20138 df-lmod 20706 df-lss 20777 df-lsp 20817 df-lsatoms 38357 |
This theorem is referenced by: lcvat 38411 |
Copyright terms: Public domain | W3C validator |