Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwelg Structured version   Visualization version   GIF version

Theorem pwelg 43517
Description: The powerclass is an element of a class closed under union and powerclass operations iff the element is a member of that class. (Contributed by RP, 21-Mar-2020.)
Assertion
Ref Expression
pwelg (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwelg
StepHypRef Expression
1 simpr 484 . . . 4 (( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → 𝒫 𝑥𝐵)
21ralimi 3089 . . 3 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → ∀𝑥𝐵 𝒫 𝑥𝐵)
3 pweq 4636 . . . . 5 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
43eleq1d 2829 . . . 4 (𝑥 = 𝐴 → (𝒫 𝑥𝐵 ↔ 𝒫 𝐴𝐵))
54rspccv 3632 . . 3 (∀𝑥𝐵 𝒫 𝑥𝐵 → (𝐴𝐵 → 𝒫 𝐴𝐵))
62, 5syl 17 . 2 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝐴𝐵 → 𝒫 𝐴𝐵))
7 simpl 482 . . . 4 (( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → 𝑥𝐵)
87ralimi 3089 . . 3 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → ∀𝑥𝐵 𝑥𝐵)
9 unieq 4942 . . . . . 6 (𝑥 = 𝒫 𝐴 𝑥 = 𝒫 𝐴)
10 unipw 5470 . . . . . 6 𝒫 𝐴 = 𝐴
119, 10eqtrdi 2796 . . . . 5 (𝑥 = 𝒫 𝐴 𝑥 = 𝐴)
1211eleq1d 2829 . . . 4 (𝑥 = 𝒫 𝐴 → ( 𝑥𝐵𝐴𝐵))
1312rspccv 3632 . . 3 (∀𝑥𝐵 𝑥𝐵 → (𝒫 𝐴𝐵𝐴𝐵))
148, 13syl 17 . 2 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝒫 𝐴𝐵𝐴𝐵))
156, 14impbid 212 1 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  𝒫 cpw 4622   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-un 3981  df-ss 3993  df-pw 4624  df-sn 4649  df-pr 4651  df-uni 4932
This theorem is referenced by:  pwinfig  43518
  Copyright terms: Public domain W3C validator