Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwelg | Structured version Visualization version GIF version |
Description: The powerclass is an element of a class closed under union and powerclass operations iff the element is a member of that class. (Contributed by RP, 21-Mar-2020.) |
Ref | Expression |
---|---|
pwelg | ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → 𝒫 𝑥 ∈ 𝐵) | |
2 | 1 | ralimi 3087 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 𝒫 𝑥 ∈ 𝐵) |
3 | pweq 4549 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
4 | 3 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) |
5 | 4 | rspccv 3558 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝒫 𝑥 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝐵)) |
6 | 2, 5 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝐵)) |
7 | simpl 483 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐵) | |
8 | 7 | ralimi 3087 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∪ 𝑥 ∈ 𝐵) |
9 | unieq 4850 | . . . . . 6 ⊢ (𝑥 = 𝒫 𝐴 → ∪ 𝑥 = ∪ 𝒫 𝐴) | |
10 | unipw 5366 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
11 | 9, 10 | eqtrdi 2794 | . . . . 5 ⊢ (𝑥 = 𝒫 𝐴 → ∪ 𝑥 = 𝐴) |
12 | 11 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝒫 𝐴 → (∪ 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
13 | 12 | rspccv 3558 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∪ 𝑥 ∈ 𝐵 → (𝒫 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐵)) |
14 | 8, 13 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝒫 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐵)) |
15 | 6, 14 | impbid 211 | 1 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 𝒫 cpw 4533 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-uni 4840 |
This theorem is referenced by: pwinfig 41168 |
Copyright terms: Public domain | W3C validator |