![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwelg | Structured version Visualization version GIF version |
Description: The powerclass is an element of a class closed under union and powerclass operations iff the element is a member of that class. (Contributed by RP, 21-Mar-2020.) |
Ref | Expression |
---|---|
pwelg | ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → 𝒫 𝑥 ∈ 𝐵) | |
2 | 1 | ralimi 3080 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 𝒫 𝑥 ∈ 𝐵) |
3 | pweq 4617 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
4 | 3 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) |
5 | 4 | rspccv 3606 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝒫 𝑥 ∈ 𝐵 → (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝐵)) |
6 | 2, 5 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝐵)) |
7 | simpl 482 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐵) | |
8 | 7 | ralimi 3080 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∪ 𝑥 ∈ 𝐵) |
9 | unieq 4919 | . . . . . 6 ⊢ (𝑥 = 𝒫 𝐴 → ∪ 𝑥 = ∪ 𝒫 𝐴) | |
10 | unipw 5452 | . . . . . 6 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
11 | 9, 10 | eqtrdi 2784 | . . . . 5 ⊢ (𝑥 = 𝒫 𝐴 → ∪ 𝑥 = 𝐴) |
12 | 11 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = 𝒫 𝐴 → (∪ 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
13 | 12 | rspccv 3606 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ∪ 𝑥 ∈ 𝐵 → (𝒫 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐵)) |
14 | 8, 13 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝒫 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐵)) |
15 | 6, 14 | impbid 211 | 1 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 𝒫 cpw 4603 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-v 3473 df-un 3952 df-in 3954 df-ss 3964 df-pw 4605 df-sn 4630 df-pr 4632 df-uni 4909 |
This theorem is referenced by: pwinfig 42991 |
Copyright terms: Public domain | W3C validator |