![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwinfig | Structured version Visualization version GIF version |
Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝐵 is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020.) |
Ref | Expression |
---|---|
pwinfig | ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwelg 42993 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) | |
2 | pwfi 9207 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | |
3 | 2 | notbii 319 | . . . 4 ⊢ (¬ 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin) |
4 | 3 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin)) |
5 | 1, 4 | anbi12d 630 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ Fin) ↔ (𝒫 𝐴 ∈ 𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin))) |
6 | eldif 3957 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ Fin) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ Fin)) | |
7 | eldif 3957 | . 2 ⊢ (𝒫 𝐴 ∈ (𝐵 ∖ Fin) ↔ (𝒫 𝐴 ∈ 𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin)) | |
8 | 5, 6, 7 | 3bitr4g 313 | 1 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ∀wral 3057 ∖ cdif 3944 𝒫 cpw 4604 ∪ cuni 4910 Fincfn 8968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-om 7875 df-1o 8491 df-en 8969 df-fin 8972 |
This theorem is referenced by: pwinfi2 42995 pwinfi3 42996 pwinfi 42997 |
Copyright terms: Public domain | W3C validator |