| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pwinfig | Structured version Visualization version GIF version | ||
| Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝐵 is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020.) |
| Ref | Expression |
|---|---|
| pwinfig | ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwelg 43573 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) | |
| 2 | pwfi 9357 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | |
| 3 | 2 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin)) |
| 5 | 1, 4 | anbi12d 632 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ Fin) ↔ (𝒫 𝐴 ∈ 𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin))) |
| 6 | eldif 3961 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ Fin) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ Fin)) | |
| 7 | eldif 3961 | . 2 ⊢ (𝒫 𝐴 ∈ (𝐵 ∖ Fin) ↔ (𝒫 𝐴 ∈ 𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3061 ∖ cdif 3948 𝒫 cpw 4600 ∪ cuni 4907 Fincfn 8985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-en 8986 df-dom 8987 df-fin 8989 |
| This theorem is referenced by: pwinfi2 43575 pwinfi3 43576 pwinfi 43577 |
| Copyright terms: Public domain | W3C validator |