Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwinfig Structured version   Visualization version   GIF version

Theorem pwinfig 43557
Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝐵 is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020.)
Assertion
Ref Expression
pwinfig (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwinfig
StepHypRef Expression
1 pwelg 43556 . . 3 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))
2 pwfi 9275 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
32notbii 320 . . . 4 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin)
43a1i 11 . . 3 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin))
51, 4anbi12d 632 . 2 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → ((𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin) ↔ (𝒫 𝐴𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin)))
6 eldif 3927 . 2 (𝐴 ∈ (𝐵 ∖ Fin) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin))
7 eldif 3927 . 2 (𝒫 𝐴 ∈ (𝐵 ∖ Fin) ↔ (𝒫 𝐴𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin))
85, 6, 73bitr4g 314 1 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wral 3045  cdif 3914  𝒫 cpw 4566   cuni 4874  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-en 8922  df-dom 8923  df-fin 8925
This theorem is referenced by:  pwinfi2  43558  pwinfi3  43559  pwinfi  43560
  Copyright terms: Public domain W3C validator