| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pwinfig | Structured version Visualization version GIF version | ||
| Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝐵 is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020.) |
| Ref | Expression |
|---|---|
| pwinfig | ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwelg 43677 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ 𝐵 ↔ 𝒫 𝐴 ∈ 𝐵)) | |
| 2 | pwfi 9210 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | |
| 3 | 2 | notbii 320 | . . . 4 ⊢ (¬ 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin)) |
| 5 | 1, 4 | anbi12d 632 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ Fin) ↔ (𝒫 𝐴 ∈ 𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin))) |
| 6 | eldif 3908 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ Fin) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ Fin)) | |
| 7 | eldif 3908 | . 2 ⊢ (𝒫 𝐴 ∈ (𝐵 ∖ Fin) ↔ (𝒫 𝐴 ∈ 𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (∀𝑥 ∈ 𝐵 (∪ 𝑥 ∈ 𝐵 ∧ 𝒫 𝑥 ∈ 𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∖ cdif 3895 𝒫 cpw 4549 ∪ cuni 4858 Fincfn 8875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-1o 8391 df-en 8876 df-dom 8877 df-fin 8879 |
| This theorem is referenced by: pwinfi2 43679 pwinfi3 43680 pwinfi 43681 |
| Copyright terms: Public domain | W3C validator |