Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwinfig Structured version   Visualization version   GIF version

Theorem pwinfig 43551
Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝐵 is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020.)
Assertion
Ref Expression
pwinfig (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwinfig
StepHypRef Expression
1 pwelg 43550 . . 3 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))
2 pwfi 9355 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
32notbii 320 . . . 4 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin)
43a1i 11 . . 3 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin))
51, 4anbi12d 632 . 2 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → ((𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin) ↔ (𝒫 𝐴𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin)))
6 eldif 3973 . 2 (𝐴 ∈ (𝐵 ∖ Fin) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin))
7 eldif 3973 . 2 (𝒫 𝐴 ∈ (𝐵 ∖ Fin) ↔ (𝒫 𝐴𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin))
85, 6, 73bitr4g 314 1 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2106  wral 3059  cdif 3960  𝒫 cpw 4605   cuni 4912  Fincfn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-en 8985  df-dom 8986  df-fin 8988
This theorem is referenced by:  pwinfi2  43552  pwinfi3  43553  pwinfi  43554
  Copyright terms: Public domain W3C validator