Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwinfig Structured version   Visualization version   GIF version

Theorem pwinfig 43022
Description: The powerclass of an infinite set is an infinite set, and vice-versa. Here 𝐵 is a class which is closed under both the union and the powerclass operations and which may have infinite sets as members. (Contributed by RP, 21-Mar-2020.)
Assertion
Ref Expression
pwinfig (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwinfig
StepHypRef Expression
1 pwelg 43021 . . 3 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))
2 pwfi 9209 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
32notbii 319 . . . 4 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin)
43a1i 11 . . 3 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝒫 𝐴 ∈ Fin))
51, 4anbi12d 630 . 2 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → ((𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin) ↔ (𝒫 𝐴𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin)))
6 eldif 3959 . 2 (𝐴 ∈ (𝐵 ∖ Fin) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ Fin))
7 eldif 3959 . 2 (𝒫 𝐴 ∈ (𝐵 ∖ Fin) ↔ (𝒫 𝐴𝐵 ∧ ¬ 𝒫 𝐴 ∈ Fin))
85, 6, 73bitr4g 313 1 (∀𝑥𝐵 ( 𝑥𝐵 ∧ 𝒫 𝑥𝐵) → (𝐴 ∈ (𝐵 ∖ Fin) ↔ 𝒫 𝐴 ∈ (𝐵 ∖ Fin)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wcel 2098  wral 3058  cdif 3946  𝒫 cpw 4606   cuni 4912  Fincfn 8970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-om 7877  df-1o 8493  df-en 8971  df-fin 8974
This theorem is referenced by:  pwinfi2  43023  pwinfi3  43024  pwinfi  43025
  Copyright terms: Public domain W3C validator