MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difex2 Structured version   Visualization version   GIF version

Theorem difex2 7739
Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
difex2 (𝐵𝐶 → (𝐴 ∈ V ↔ (𝐴𝐵) ∈ V))

Proof of Theorem difex2
StepHypRef Expression
1 difexg 5287 . 2 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
2 ssun2 4145 . . . . 5 𝐴 ⊆ (𝐵𝐴)
3 uncom 4124 . . . . . 6 ((𝐴𝐵) ∪ 𝐵) = (𝐵 ∪ (𝐴𝐵))
4 undif2 4443 . . . . . 6 (𝐵 ∪ (𝐴𝐵)) = (𝐵𝐴)
53, 4eqtr2i 2754 . . . . 5 (𝐵𝐴) = ((𝐴𝐵) ∪ 𝐵)
62, 5sseqtri 3998 . . . 4 𝐴 ⊆ ((𝐴𝐵) ∪ 𝐵)
7 unexg 7722 . . . 4 (((𝐴𝐵) ∈ V ∧ 𝐵𝐶) → ((𝐴𝐵) ∪ 𝐵) ∈ V)
8 ssexg 5281 . . . 4 ((𝐴 ⊆ ((𝐴𝐵) ∪ 𝐵) ∧ ((𝐴𝐵) ∪ 𝐵) ∈ V) → 𝐴 ∈ V)
96, 7, 8sylancr 587 . . 3 (((𝐴𝐵) ∈ V ∧ 𝐵𝐶) → 𝐴 ∈ V)
109expcom 413 . 2 (𝐵𝐶 → ((𝐴𝐵) ∈ V → 𝐴 ∈ V))
111, 10impbid2 226 1 (𝐵𝐶 → (𝐴 ∈ V ↔ (𝐴𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3450  cdif 3914  cun 3915  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-sn 4593  df-pr 4595  df-uni 4875
This theorem is referenced by:  elpwun  7748
  Copyright terms: Public domain W3C validator