Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difex2 Structured version   Visualization version   GIF version

Theorem difex2 7339
 Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
difex2 (𝐵𝐶 → (𝐴 ∈ V ↔ (𝐴𝐵) ∈ V))

Proof of Theorem difex2
StepHypRef Expression
1 difexg 5122 . 2 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
2 ssun2 4070 . . . . 5 𝐴 ⊆ (𝐵𝐴)
3 uncom 4050 . . . . . 6 ((𝐴𝐵) ∪ 𝐵) = (𝐵 ∪ (𝐴𝐵))
4 undif2 4339 . . . . . 6 (𝐵 ∪ (𝐴𝐵)) = (𝐵𝐴)
53, 4eqtr2i 2820 . . . . 5 (𝐵𝐴) = ((𝐴𝐵) ∪ 𝐵)
62, 5sseqtri 3924 . . . 4 𝐴 ⊆ ((𝐴𝐵) ∪ 𝐵)
7 unexg 7329 . . . 4 (((𝐴𝐵) ∈ V ∧ 𝐵𝐶) → ((𝐴𝐵) ∪ 𝐵) ∈ V)
8 ssexg 5118 . . . 4 ((𝐴 ⊆ ((𝐴𝐵) ∪ 𝐵) ∧ ((𝐴𝐵) ∪ 𝐵) ∈ V) → 𝐴 ∈ V)
96, 7, 8sylancr 587 . . 3 (((𝐴𝐵) ∈ V ∧ 𝐵𝐶) → 𝐴 ∈ V)
109expcom 414 . 2 (𝐵𝐶 → ((𝐴𝐵) ∈ V → 𝐴 ∈ V))
111, 10impbid2 227 1 (𝐵𝐶 → (𝐴 ∈ V ↔ (𝐴𝐵) ∈ V))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∈ wcel 2081  Vcvv 3437   ∖ cdif 3856   ∪ cun 3857   ⊆ wss 3859 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221  ax-un 7319 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-sn 4473  df-pr 4475  df-uni 4746 This theorem is referenced by:  elpwun  7348
 Copyright terms: Public domain W3C validator