| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difex2 | Structured version Visualization version GIF version | ||
| Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| difex2 | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V ↔ (𝐴 ∖ 𝐵) ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexg 5267 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
| 2 | ssun2 4129 | . . . . 5 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | |
| 3 | uncom 4108 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (𝐴 ∖ 𝐵)) | |
| 4 | undif2 4427 | . . . . . 6 ⊢ (𝐵 ∪ (𝐴 ∖ 𝐵)) = (𝐵 ∪ 𝐴) | |
| 5 | 3, 4 | eqtr2i 2755 | . . . . 5 ⊢ (𝐵 ∪ 𝐴) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
| 6 | 2, 5 | sseqtri 3983 | . . . 4 ⊢ 𝐴 ⊆ ((𝐴 ∖ 𝐵) ∪ 𝐵) |
| 7 | unexg 7676 | . . . 4 ⊢ (((𝐴 ∖ 𝐵) ∈ V ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ V) | |
| 8 | ssexg 5261 | . . . 4 ⊢ ((𝐴 ⊆ ((𝐴 ∖ 𝐵) ∪ 𝐵) ∧ ((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ V) → 𝐴 ∈ V) | |
| 9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (((𝐴 ∖ 𝐵) ∈ V ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| 10 | 9 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∖ 𝐵) ∈ V → 𝐴 ∈ V)) |
| 11 | 1, 10 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V ↔ (𝐴 ∖ 𝐵) ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3899 ∪ cun 3900 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-sn 4577 df-pr 4579 df-uni 4860 |
| This theorem is referenced by: elpwun 7702 |
| Copyright terms: Public domain | W3C validator |