![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difex2 | Structured version Visualization version GIF version |
Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
difex2 | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V ↔ (𝐴 ∖ 𝐵) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexg 5335 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
2 | ssun2 4189 | . . . . 5 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | |
3 | uncom 4168 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (𝐴 ∖ 𝐵)) | |
4 | undif2 4483 | . . . . . 6 ⊢ (𝐵 ∪ (𝐴 ∖ 𝐵)) = (𝐵 ∪ 𝐴) | |
5 | 3, 4 | eqtr2i 2764 | . . . . 5 ⊢ (𝐵 ∪ 𝐴) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
6 | 2, 5 | sseqtri 4032 | . . . 4 ⊢ 𝐴 ⊆ ((𝐴 ∖ 𝐵) ∪ 𝐵) |
7 | unexg 7762 | . . . 4 ⊢ (((𝐴 ∖ 𝐵) ∈ V ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ V) | |
8 | ssexg 5329 | . . . 4 ⊢ ((𝐴 ⊆ ((𝐴 ∖ 𝐵) ∪ 𝐵) ∧ ((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ V) → 𝐴 ∈ V) | |
9 | 6, 7, 8 | sylancr 587 | . . 3 ⊢ (((𝐴 ∖ 𝐵) ∈ V ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
10 | 9 | expcom 413 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∖ 𝐵) ∈ V → 𝐴 ∈ V)) |
11 | 1, 10 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V ↔ (𝐴 ∖ 𝐵) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 ∪ cun 3961 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-uni 4913 |
This theorem is referenced by: elpwun 7788 |
Copyright terms: Public domain | W3C validator |