Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difex2 | Structured version Visualization version GIF version |
Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
difex2 | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V ↔ (𝐴 ∖ 𝐵) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexg 5201 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) | |
2 | ssun2 4080 | . . . . 5 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | |
3 | uncom 4060 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐵 ∪ (𝐴 ∖ 𝐵)) | |
4 | undif2 4376 | . . . . . 6 ⊢ (𝐵 ∪ (𝐴 ∖ 𝐵)) = (𝐵 ∪ 𝐴) | |
5 | 3, 4 | eqtr2i 2782 | . . . . 5 ⊢ (𝐵 ∪ 𝐴) = ((𝐴 ∖ 𝐵) ∪ 𝐵) |
6 | 2, 5 | sseqtri 3930 | . . . 4 ⊢ 𝐴 ⊆ ((𝐴 ∖ 𝐵) ∪ 𝐵) |
7 | unexg 7476 | . . . 4 ⊢ (((𝐴 ∖ 𝐵) ∈ V ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ V) | |
8 | ssexg 5197 | . . . 4 ⊢ ((𝐴 ⊆ ((𝐴 ∖ 𝐵) ∪ 𝐵) ∧ ((𝐴 ∖ 𝐵) ∪ 𝐵) ∈ V) → 𝐴 ∈ V) | |
9 | 6, 7, 8 | sylancr 590 | . . 3 ⊢ (((𝐴 ∖ 𝐵) ∈ V ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
10 | 9 | expcom 417 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∖ 𝐵) ∈ V → 𝐴 ∈ V)) |
11 | 1, 10 | impbid2 229 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V ↔ (𝐴 ∖ 𝐵) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 Vcvv 3409 ∖ cdif 3857 ∪ cun 3858 ⊆ wss 3860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-sn 4526 df-pr 4528 df-uni 4802 |
This theorem is referenced by: elpwun 7496 |
Copyright terms: Public domain | W3C validator |