MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfuhgr1v0e Structured version   Visualization version   GIF version

Theorem lfuhgr1v0e 27042
Description: A loop-free hypergraph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
lfuhgr1v0e.v 𝑉 = (Vtx‘𝐺)
lfuhgr1v0e.i 𝐼 = (iEdg‘𝐺)
lfuhgr1v0e.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
Assertion
Ref Expression
lfuhgr1v0e ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (Edg‘𝐺) = ∅)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐼(𝑥)

Proof of Theorem lfuhgr1v0e
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lfuhgr1v0e.i . . . . . 6 𝐼 = (iEdg‘𝐺)
21a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → 𝐼 = (iEdg‘𝐺))
31dmeqi 5761 . . . . . 6 dom 𝐼 = dom (iEdg‘𝐺)
43a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → dom 𝐼 = dom (iEdg‘𝐺))
5 lfuhgr1v0e.e . . . . . 6 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
6 lfuhgr1v0e.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
76fvexi 6673 . . . . . . . . 9 𝑉 ∈ V
8 hash1snb 13783 . . . . . . . . 9 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
97, 8ax-mp 5 . . . . . . . 8 ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})
10 pweq 4538 . . . . . . . . . . . 12 (𝑉 = {𝑣} → 𝒫 𝑉 = 𝒫 {𝑣})
1110rabeqdv 3470 . . . . . . . . . . 11 (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)})
12 2pos 11735 . . . . . . . . . . . . . . 15 0 < 2
13 0re 10637 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
14 2re 11706 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
1513, 14ltnlei 10755 . . . . . . . . . . . . . . 15 (0 < 2 ↔ ¬ 2 ≤ 0)
1612, 15mpbi 233 . . . . . . . . . . . . . 14 ¬ 2 ≤ 0
17 1lt2 11803 . . . . . . . . . . . . . . 15 1 < 2
18 1re 10635 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
1918, 14ltnlei 10755 . . . . . . . . . . . . . . 15 (1 < 2 ↔ ¬ 2 ≤ 1)
2017, 19mpbi 233 . . . . . . . . . . . . . 14 ¬ 2 ≤ 1
21 0ex 5198 . . . . . . . . . . . . . . 15 ∅ ∈ V
22 snex 5320 . . . . . . . . . . . . . . 15 {𝑣} ∈ V
23 fveq2 6659 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
24 hash0 13731 . . . . . . . . . . . . . . . . . 18 (♯‘∅) = 0
2523, 24syl6eq 2875 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → (♯‘𝑥) = 0)
2625breq2d 5065 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 0))
2726notbid 321 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (¬ 2 ≤ (♯‘𝑥) ↔ ¬ 2 ≤ 0))
28 fveq2 6659 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑣} → (♯‘𝑥) = (♯‘{𝑣}))
29 hashsng 13733 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ V → (♯‘{𝑣}) = 1)
3029elv 3485 . . . . . . . . . . . . . . . . . 18 (♯‘{𝑣}) = 1
3128, 30syl6eq 2875 . . . . . . . . . . . . . . . . 17 (𝑥 = {𝑣} → (♯‘𝑥) = 1)
3231breq2d 5065 . . . . . . . . . . . . . . . 16 (𝑥 = {𝑣} → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 1))
3332notbid 321 . . . . . . . . . . . . . . 15 (𝑥 = {𝑣} → (¬ 2 ≤ (♯‘𝑥) ↔ ¬ 2 ≤ 1))
3421, 22, 27, 33ralpr 4621 . . . . . . . . . . . . . 14 (∀𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥) ↔ (¬ 2 ≤ 0 ∧ ¬ 2 ≤ 1))
3516, 20, 34mpbir2an 710 . . . . . . . . . . . . 13 𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥)
36 pwsn 4817 . . . . . . . . . . . . . 14 𝒫 {𝑣} = {∅, {𝑣}}
3736raleqi 3401 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥) ↔ ∀𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥))
3835, 37mpbir 234 . . . . . . . . . . . 12 𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥)
39 rabeq0 4321 . . . . . . . . . . . 12 ({𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥))
4038, 39mpbir 234 . . . . . . . . . . 11 {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)} = ∅
4111, 40syl6eq 2875 . . . . . . . . . 10 (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅)
4241a1d 25 . . . . . . . . 9 (𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
4342exlimiv 1932 . . . . . . . 8 (∃𝑣 𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
449, 43sylbi 220 . . . . . . 7 ((♯‘𝑉) = 1 → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
4544impcom 411 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅)
465, 45syl5eq 2871 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → 𝐸 = ∅)
472, 4, 46feq123d 6492 . . . 4 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → (𝐼:dom 𝐼𝐸 ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅))
4847biimp3a 1466 . . 3 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅)
49 f00 6550 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅))
5049simplbi 501 . . 3 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅)
5148, 50syl 17 . 2 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (iEdg‘𝐺) = ∅)
52 uhgriedg0edg0 26918 . . 3 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
53523ad2ant1 1130 . 2 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
5451, 53mpbird 260 1 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (Edg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2115  wral 3133  {crab 3137  Vcvv 3480  c0 4276  𝒫 cpw 4522  {csn 4550  {cpr 4552   class class class wbr 5053  dom cdm 5543  wf 6340  cfv 6344  0cc0 10531  1c1 10532   < clt 10669  cle 10670  2c2 11687  chash 13693  Vtxcvtx 26787  iEdgciedg 26788  Edgcedg 26838  UHGraphcuhgr 26847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9323  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11695  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-hash 13694  df-edg 26839  df-uhgr 26849
This theorem is referenced by:  usgr1vr  27043  vtxdlfuhgr1v  27267
  Copyright terms: Public domain W3C validator