MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfuhgr1v0e Structured version   Visualization version   GIF version

Theorem lfuhgr1v0e 27621
Description: A loop-free hypergraph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
lfuhgr1v0e.v 𝑉 = (Vtx‘𝐺)
lfuhgr1v0e.i 𝐼 = (iEdg‘𝐺)
lfuhgr1v0e.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
Assertion
Ref Expression
lfuhgr1v0e ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (Edg‘𝐺) = ∅)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐼(𝑥)

Proof of Theorem lfuhgr1v0e
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lfuhgr1v0e.i . . . . . 6 𝐼 = (iEdg‘𝐺)
21a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → 𝐼 = (iEdg‘𝐺))
31dmeqi 5813 . . . . . 6 dom 𝐼 = dom (iEdg‘𝐺)
43a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → dom 𝐼 = dom (iEdg‘𝐺))
5 lfuhgr1v0e.e . . . . . 6 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
6 lfuhgr1v0e.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
76fvexi 6788 . . . . . . . . 9 𝑉 ∈ V
8 hash1snb 14134 . . . . . . . . 9 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
97, 8ax-mp 5 . . . . . . . 8 ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})
10 pweq 4549 . . . . . . . . . . . 12 (𝑉 = {𝑣} → 𝒫 𝑉 = 𝒫 {𝑣})
1110rabeqdv 3419 . . . . . . . . . . 11 (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)})
12 2pos 12076 . . . . . . . . . . . . . . 15 0 < 2
13 0re 10977 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
14 2re 12047 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
1513, 14ltnlei 11096 . . . . . . . . . . . . . . 15 (0 < 2 ↔ ¬ 2 ≤ 0)
1612, 15mpbi 229 . . . . . . . . . . . . . 14 ¬ 2 ≤ 0
17 1lt2 12144 . . . . . . . . . . . . . . 15 1 < 2
18 1re 10975 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
1918, 14ltnlei 11096 . . . . . . . . . . . . . . 15 (1 < 2 ↔ ¬ 2 ≤ 1)
2017, 19mpbi 229 . . . . . . . . . . . . . 14 ¬ 2 ≤ 1
21 0ex 5231 . . . . . . . . . . . . . . 15 ∅ ∈ V
22 snex 5354 . . . . . . . . . . . . . . 15 {𝑣} ∈ V
23 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
24 hash0 14082 . . . . . . . . . . . . . . . . . 18 (♯‘∅) = 0
2523, 24eqtrdi 2794 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → (♯‘𝑥) = 0)
2625breq2d 5086 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 0))
2726notbid 318 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (¬ 2 ≤ (♯‘𝑥) ↔ ¬ 2 ≤ 0))
28 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑣} → (♯‘𝑥) = (♯‘{𝑣}))
29 hashsng 14084 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ V → (♯‘{𝑣}) = 1)
3029elv 3438 . . . . . . . . . . . . . . . . . 18 (♯‘{𝑣}) = 1
3128, 30eqtrdi 2794 . . . . . . . . . . . . . . . . 17 (𝑥 = {𝑣} → (♯‘𝑥) = 1)
3231breq2d 5086 . . . . . . . . . . . . . . . 16 (𝑥 = {𝑣} → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 1))
3332notbid 318 . . . . . . . . . . . . . . 15 (𝑥 = {𝑣} → (¬ 2 ≤ (♯‘𝑥) ↔ ¬ 2 ≤ 1))
3421, 22, 27, 33ralpr 4636 . . . . . . . . . . . . . 14 (∀𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥) ↔ (¬ 2 ≤ 0 ∧ ¬ 2 ≤ 1))
3516, 20, 34mpbir2an 708 . . . . . . . . . . . . 13 𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥)
36 pwsn 4831 . . . . . . . . . . . . . 14 𝒫 {𝑣} = {∅, {𝑣}}
3736raleqi 3346 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥) ↔ ∀𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥))
3835, 37mpbir 230 . . . . . . . . . . . 12 𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥)
39 rabeq0 4318 . . . . . . . . . . . 12 ({𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥))
4038, 39mpbir 230 . . . . . . . . . . 11 {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)} = ∅
4111, 40eqtrdi 2794 . . . . . . . . . 10 (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅)
4241a1d 25 . . . . . . . . 9 (𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
4342exlimiv 1933 . . . . . . . 8 (∃𝑣 𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
449, 43sylbi 216 . . . . . . 7 ((♯‘𝑉) = 1 → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
4544impcom 408 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅)
465, 45eqtrid 2790 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → 𝐸 = ∅)
472, 4, 46feq123d 6589 . . . 4 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → (𝐼:dom 𝐼𝐸 ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅))
4847biimp3a 1468 . . 3 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅)
49 f00 6656 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅))
5049simplbi 498 . . 3 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅)
5148, 50syl 17 . 2 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (iEdg‘𝐺) = ∅)
52 uhgriedg0edg0 27497 . . 3 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
53523ad2ant1 1132 . 2 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
5451, 53mpbird 256 1 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (Edg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  c0 4256  𝒫 cpw 4533  {csn 4561  {cpr 4563   class class class wbr 5074  dom cdm 5589  wf 6429  cfv 6433  0cc0 10871  1c1 10872   < clt 11009  cle 11010  2c2 12028  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  UHGraphcuhgr 27426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-uhgr 27428
This theorem is referenced by:  usgr1vr  27622  vtxdlfuhgr1v  27846
  Copyright terms: Public domain W3C validator