MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfuhgr1v0e Structured version   Visualization version   GIF version

Theorem lfuhgr1v0e 26558
Description: A loop-free hypergraph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
lfuhgr1v0e.v 𝑉 = (Vtx‘𝐺)
lfuhgr1v0e.i 𝐼 = (iEdg‘𝐺)
lfuhgr1v0e.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
Assertion
Ref Expression
lfuhgr1v0e ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (Edg‘𝐺) = ∅)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐼(𝑥)

Proof of Theorem lfuhgr1v0e
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lfuhgr1v0e.i . . . . . 6 𝐼 = (iEdg‘𝐺)
21a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → 𝐼 = (iEdg‘𝐺))
31dmeqi 5561 . . . . . 6 dom 𝐼 = dom (iEdg‘𝐺)
43a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → dom 𝐼 = dom (iEdg‘𝐺))
5 lfuhgr1v0e.e . . . . . 6 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
6 lfuhgr1v0e.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
76fvexi 6451 . . . . . . . . 9 𝑉 ∈ V
8 hash1snb 13503 . . . . . . . . 9 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
97, 8ax-mp 5 . . . . . . . 8 ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})
10 pweq 4383 . . . . . . . . . . . 12 (𝑉 = {𝑣} → 𝒫 𝑉 = 𝒫 {𝑣})
1110rabeqdv 3407 . . . . . . . . . . 11 (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)})
12 2pos 11468 . . . . . . . . . . . . . . 15 0 < 2
13 0re 10365 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
14 2re 11432 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
1513, 14ltnlei 10484 . . . . . . . . . . . . . . 15 (0 < 2 ↔ ¬ 2 ≤ 0)
1612, 15mpbi 222 . . . . . . . . . . . . . 14 ¬ 2 ≤ 0
17 1lt2 11536 . . . . . . . . . . . . . . 15 1 < 2
18 1re 10363 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
1918, 14ltnlei 10484 . . . . . . . . . . . . . . 15 (1 < 2 ↔ ¬ 2 ≤ 1)
2017, 19mpbi 222 . . . . . . . . . . . . . 14 ¬ 2 ≤ 1
21 0ex 5016 . . . . . . . . . . . . . . 15 ∅ ∈ V
22 snex 5131 . . . . . . . . . . . . . . 15 {𝑣} ∈ V
23 fveq2 6437 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
24 hash0 13455 . . . . . . . . . . . . . . . . . 18 (♯‘∅) = 0
2523, 24syl6eq 2877 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → (♯‘𝑥) = 0)
2625breq2d 4887 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 0))
2726notbid 310 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (¬ 2 ≤ (♯‘𝑥) ↔ ¬ 2 ≤ 0))
28 fveq2 6437 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑣} → (♯‘𝑥) = (♯‘{𝑣}))
29 vex 3417 . . . . . . . . . . . . . . . . . . 19 𝑣 ∈ V
30 hashsng 13456 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ V → (♯‘{𝑣}) = 1)
3129, 30ax-mp 5 . . . . . . . . . . . . . . . . . 18 (♯‘{𝑣}) = 1
3228, 31syl6eq 2877 . . . . . . . . . . . . . . . . 17 (𝑥 = {𝑣} → (♯‘𝑥) = 1)
3332breq2d 4887 . . . . . . . . . . . . . . . 16 (𝑥 = {𝑣} → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 1))
3433notbid 310 . . . . . . . . . . . . . . 15 (𝑥 = {𝑣} → (¬ 2 ≤ (♯‘𝑥) ↔ ¬ 2 ≤ 1))
3521, 22, 27, 34ralpr 4459 . . . . . . . . . . . . . 14 (∀𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥) ↔ (¬ 2 ≤ 0 ∧ ¬ 2 ≤ 1))
3616, 20, 35mpbir2an 702 . . . . . . . . . . . . 13 𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥)
37 pwsn 4652 . . . . . . . . . . . . . 14 𝒫 {𝑣} = {∅, {𝑣}}
3837raleqi 3354 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥) ↔ ∀𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥))
3936, 38mpbir 223 . . . . . . . . . . . 12 𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥)
40 rabeq0 4188 . . . . . . . . . . . 12 ({𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥))
4139, 40mpbir 223 . . . . . . . . . . 11 {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)} = ∅
4211, 41syl6eq 2877 . . . . . . . . . 10 (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅)
4342a1d 25 . . . . . . . . 9 (𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
4443exlimiv 2029 . . . . . . . 8 (∃𝑣 𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
459, 44sylbi 209 . . . . . . 7 ((♯‘𝑉) = 1 → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
4645impcom 398 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅)
475, 46syl5eq 2873 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → 𝐸 = ∅)
482, 4, 47feq123d 6271 . . . 4 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → (𝐼:dom 𝐼𝐸 ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅))
4948biimp3a 1597 . . 3 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅)
50 f00 6328 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅))
5150simplbi 493 . . 3 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅)
5249, 51syl 17 . 2 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (iEdg‘𝐺) = ∅)
53 uhgriedg0edg0 26432 . . 3 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
54533ad2ant1 1167 . 2 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
5552, 54mpbird 249 1 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (Edg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wex 1878  wcel 2164  wral 3117  {crab 3121  Vcvv 3414  c0 4146  𝒫 cpw 4380  {csn 4399  {cpr 4401   class class class wbr 4875  dom cdm 5346  wf 6123  cfv 6127  0cc0 10259  1c1 10260   < clt 10398  cle 10399  2c2 11413  chash 13417  Vtxcvtx 26301  iEdgciedg 26302  Edgcedg 26352  UHGraphcuhgr 26361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-hash 13418  df-edg 26353  df-uhgr 26363
This theorem is referenced by:  usgr1vr  26559  vtxdlfuhgr1v  26784
  Copyright terms: Public domain W3C validator