Step | Hyp | Ref
| Expression |
1 | | lfuhgr1v0e.i |
. . . . . 6
⊢ 𝐼 = (iEdg‘𝐺) |
2 | 1 | a1i 11 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧
(♯‘𝑉) = 1)
→ 𝐼 =
(iEdg‘𝐺)) |
3 | 1 | dmeqi 5802 |
. . . . . 6
⊢ dom 𝐼 = dom (iEdg‘𝐺) |
4 | 3 | a1i 11 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧
(♯‘𝑉) = 1)
→ dom 𝐼 = dom
(iEdg‘𝐺)) |
5 | | lfuhgr1v0e.e |
. . . . . 6
⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} |
6 | | lfuhgr1v0e.v |
. . . . . . . . . 10
⊢ 𝑉 = (Vtx‘𝐺) |
7 | 6 | fvexi 6770 |
. . . . . . . . 9
⊢ 𝑉 ∈ V |
8 | | hash1snb 14062 |
. . . . . . . . 9
⊢ (𝑉 ∈ V →
((♯‘𝑉) = 1
↔ ∃𝑣 𝑉 = {𝑣})) |
9 | 7, 8 | ax-mp 5 |
. . . . . . . 8
⊢
((♯‘𝑉) =
1 ↔ ∃𝑣 𝑉 = {𝑣}) |
10 | | pweq 4546 |
. . . . . . . . . . . 12
⊢ (𝑉 = {𝑣} → 𝒫 𝑉 = 𝒫 {𝑣}) |
11 | 10 | rabeqdv 3409 |
. . . . . . . . . . 11
⊢ (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)}) |
12 | | 2pos 12006 |
. . . . . . . . . . . . . . 15
⊢ 0 <
2 |
13 | | 0re 10908 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ |
14 | | 2re 11977 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℝ |
15 | 13, 14 | ltnlei 11026 |
. . . . . . . . . . . . . . 15
⊢ (0 < 2
↔ ¬ 2 ≤ 0) |
16 | 12, 15 | mpbi 229 |
. . . . . . . . . . . . . 14
⊢ ¬ 2
≤ 0 |
17 | | 1lt2 12074 |
. . . . . . . . . . . . . . 15
⊢ 1 <
2 |
18 | | 1re 10906 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ |
19 | 18, 14 | ltnlei 11026 |
. . . . . . . . . . . . . . 15
⊢ (1 < 2
↔ ¬ 2 ≤ 1) |
20 | 17, 19 | mpbi 229 |
. . . . . . . . . . . . . 14
⊢ ¬ 2
≤ 1 |
21 | | 0ex 5226 |
. . . . . . . . . . . . . . 15
⊢ ∅
∈ V |
22 | | snex 5349 |
. . . . . . . . . . . . . . 15
⊢ {𝑣} ∈ V |
23 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ∅ →
(♯‘𝑥) =
(♯‘∅)) |
24 | | hash0 14010 |
. . . . . . . . . . . . . . . . . 18
⊢
(♯‘∅) = 0 |
25 | 23, 24 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ∅ →
(♯‘𝑥) =
0) |
26 | 25 | breq2d 5082 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ∅ → (2 ≤
(♯‘𝑥) ↔ 2
≤ 0)) |
27 | 26 | notbid 317 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ∅ → (¬ 2 ≤
(♯‘𝑥) ↔
¬ 2 ≤ 0)) |
28 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = {𝑣} → (♯‘𝑥) = (♯‘{𝑣})) |
29 | | hashsng 14012 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ V →
(♯‘{𝑣}) =
1) |
30 | 29 | elv 3428 |
. . . . . . . . . . . . . . . . . 18
⊢
(♯‘{𝑣})
= 1 |
31 | 28, 30 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = {𝑣} → (♯‘𝑥) = 1) |
32 | 31 | breq2d 5082 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = {𝑣} → (2 ≤ (♯‘𝑥) ↔ 2 ≤
1)) |
33 | 32 | notbid 317 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = {𝑣} → (¬ 2 ≤ (♯‘𝑥) ↔ ¬ 2 ≤
1)) |
34 | 21, 22, 27, 33 | ralpr 4633 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
{∅, {𝑣}} ¬ 2 ≤
(♯‘𝑥) ↔
(¬ 2 ≤ 0 ∧ ¬ 2 ≤ 1)) |
35 | 16, 20, 34 | mpbir2an 707 |
. . . . . . . . . . . . 13
⊢
∀𝑥 ∈
{∅, {𝑣}} ¬ 2 ≤
(♯‘𝑥) |
36 | | pwsn 4828 |
. . . . . . . . . . . . . 14
⊢ 𝒫
{𝑣} = {∅, {𝑣}} |
37 | 36 | raleqi 3337 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝒫 {𝑣} ¬ 2 ≤
(♯‘𝑥) ↔
∀𝑥 ∈ {∅,
{𝑣}} ¬ 2 ≤
(♯‘𝑥)) |
38 | 35, 37 | mpbir 230 |
. . . . . . . . . . . 12
⊢
∀𝑥 ∈
𝒫 {𝑣} ¬ 2 ≤
(♯‘𝑥) |
39 | | rabeq0 4315 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤
(♯‘𝑥)} =
∅ ↔ ∀𝑥
∈ 𝒫 {𝑣} ¬
2 ≤ (♯‘𝑥)) |
40 | 38, 39 | mpbir 230 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤
(♯‘𝑥)} =
∅ |
41 | 11, 40 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅) |
42 | 41 | a1d 25 |
. . . . . . . . 9
⊢ (𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅)) |
43 | 42 | exlimiv 1934 |
. . . . . . . 8
⊢
(∃𝑣 𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅)) |
44 | 9, 43 | sylbi 216 |
. . . . . . 7
⊢
((♯‘𝑉) =
1 → (𝐺 ∈ UHGraph
→ {𝑥 ∈ 𝒫
𝑉 ∣ 2 ≤
(♯‘𝑥)} =
∅)) |
45 | 44 | impcom 407 |
. . . . . 6
⊢ ((𝐺 ∈ UHGraph ∧
(♯‘𝑉) = 1)
→ {𝑥 ∈ 𝒫
𝑉 ∣ 2 ≤
(♯‘𝑥)} =
∅) |
46 | 5, 45 | syl5eq 2791 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧
(♯‘𝑉) = 1)
→ 𝐸 =
∅) |
47 | 2, 4, 46 | feq123d 6573 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧
(♯‘𝑉) = 1)
→ (𝐼:dom 𝐼⟶𝐸 ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅)) |
48 | 47 | biimp3a 1467 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧
(♯‘𝑉) = 1 ∧
𝐼:dom 𝐼⟶𝐸) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅) |
49 | | f00 6640 |
. . . 4
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom
(iEdg‘𝐺) =
∅)) |
50 | 49 | simplbi 497 |
. . 3
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅) |
51 | 48, 50 | syl 17 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧
(♯‘𝑉) = 1 ∧
𝐼:dom 𝐼⟶𝐸) → (iEdg‘𝐺) = ∅) |
52 | | uhgriedg0edg0 27400 |
. . 3
⊢ (𝐺 ∈ UHGraph →
((Edg‘𝐺) = ∅
↔ (iEdg‘𝐺) =
∅)) |
53 | 52 | 3ad2ant1 1131 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧
(♯‘𝑉) = 1 ∧
𝐼:dom 𝐼⟶𝐸) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
54 | 51, 53 | mpbird 256 |
1
⊢ ((𝐺 ∈ UHGraph ∧
(♯‘𝑉) = 1 ∧
𝐼:dom 𝐼⟶𝐸) → (Edg‘𝐺) = ∅) |