MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfuhgr1v0e Structured version   Visualization version   GIF version

Theorem lfuhgr1v0e 29217
Description: A loop-free hypergraph with one vertex has no edges. (Contributed by AV, 18-Oct-2020.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
lfuhgr1v0e.v 𝑉 = (Vtx‘𝐺)
lfuhgr1v0e.i 𝐼 = (iEdg‘𝐺)
lfuhgr1v0e.e 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
Assertion
Ref Expression
lfuhgr1v0e ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (Edg‘𝐺) = ∅)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐼(𝑥)

Proof of Theorem lfuhgr1v0e
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lfuhgr1v0e.i . . . . . 6 𝐼 = (iEdg‘𝐺)
21a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → 𝐼 = (iEdg‘𝐺))
31dmeqi 5851 . . . . . 6 dom 𝐼 = dom (iEdg‘𝐺)
43a1i 11 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → dom 𝐼 = dom (iEdg‘𝐺))
5 lfuhgr1v0e.e . . . . . 6 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}
6 lfuhgr1v0e.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
76fvexi 6840 . . . . . . . . 9 𝑉 ∈ V
8 hash1snb 14344 . . . . . . . . 9 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
97, 8ax-mp 5 . . . . . . . 8 ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣})
10 pweq 4567 . . . . . . . . . . . 12 (𝑉 = {𝑣} → 𝒫 𝑉 = 𝒫 {𝑣})
1110rabeqdv 3412 . . . . . . . . . . 11 (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)})
12 2pos 12249 . . . . . . . . . . . . . . 15 0 < 2
13 0re 11136 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
14 2re 12220 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
1513, 14ltnlei 11255 . . . . . . . . . . . . . . 15 (0 < 2 ↔ ¬ 2 ≤ 0)
1612, 15mpbi 230 . . . . . . . . . . . . . 14 ¬ 2 ≤ 0
17 1lt2 12312 . . . . . . . . . . . . . . 15 1 < 2
18 1re 11134 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
1918, 14ltnlei 11255 . . . . . . . . . . . . . . 15 (1 < 2 ↔ ¬ 2 ≤ 1)
2017, 19mpbi 230 . . . . . . . . . . . . . 14 ¬ 2 ≤ 1
21 0ex 5249 . . . . . . . . . . . . . . 15 ∅ ∈ V
22 vsnex 5376 . . . . . . . . . . . . . . 15 {𝑣} ∈ V
23 fveq2 6826 . . . . . . . . . . . . . . . . . 18 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
24 hash0 14292 . . . . . . . . . . . . . . . . . 18 (♯‘∅) = 0
2523, 24eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → (♯‘𝑥) = 0)
2625breq2d 5107 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 0))
2726notbid 318 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (¬ 2 ≤ (♯‘𝑥) ↔ ¬ 2 ≤ 0))
28 fveq2 6826 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑣} → (♯‘𝑥) = (♯‘{𝑣}))
29 hashsng 14294 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ V → (♯‘{𝑣}) = 1)
3029elv 3443 . . . . . . . . . . . . . . . . . 18 (♯‘{𝑣}) = 1
3128, 30eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (𝑥 = {𝑣} → (♯‘𝑥) = 1)
3231breq2d 5107 . . . . . . . . . . . . . . . 16 (𝑥 = {𝑣} → (2 ≤ (♯‘𝑥) ↔ 2 ≤ 1))
3332notbid 318 . . . . . . . . . . . . . . 15 (𝑥 = {𝑣} → (¬ 2 ≤ (♯‘𝑥) ↔ ¬ 2 ≤ 1))
3421, 22, 27, 33ralpr 4654 . . . . . . . . . . . . . 14 (∀𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥) ↔ (¬ 2 ≤ 0 ∧ ¬ 2 ≤ 1))
3516, 20, 34mpbir2an 711 . . . . . . . . . . . . 13 𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥)
36 pwsn 4854 . . . . . . . . . . . . . 14 𝒫 {𝑣} = {∅, {𝑣}}
3736raleqi 3288 . . . . . . . . . . . . 13 (∀𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥) ↔ ∀𝑥 ∈ {∅, {𝑣}} ¬ 2 ≤ (♯‘𝑥))
3835, 37mpbir 231 . . . . . . . . . . . 12 𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥)
39 rabeq0 4341 . . . . . . . . . . . 12 ({𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)} = ∅ ↔ ∀𝑥 ∈ 𝒫 {𝑣} ¬ 2 ≤ (♯‘𝑥))
4038, 39mpbir 231 . . . . . . . . . . 11 {𝑥 ∈ 𝒫 {𝑣} ∣ 2 ≤ (♯‘𝑥)} = ∅
4111, 40eqtrdi 2780 . . . . . . . . . 10 (𝑉 = {𝑣} → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅)
4241a1d 25 . . . . . . . . 9 (𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
4342exlimiv 1930 . . . . . . . 8 (∃𝑣 𝑉 = {𝑣} → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
449, 43sylbi 217 . . . . . . 7 ((♯‘𝑉) = 1 → (𝐺 ∈ UHGraph → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅))
4544impcom 407 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} = ∅)
465, 45eqtrid 2776 . . . . 5 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → 𝐸 = ∅)
472, 4, 46feq123d 6645 . . . 4 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1) → (𝐼:dom 𝐼𝐸 ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅))
4847biimp3a 1471 . . 3 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅)
49 f00 6710 . . . 4 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅))
5049simplbi 497 . . 3 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅)
5148, 50syl 17 . 2 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (iEdg‘𝐺) = ∅)
52 uhgriedg0edg0 29090 . . 3 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
53523ad2ant1 1133 . 2 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
5451, 53mpbird 257 1 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 1 ∧ 𝐼:dom 𝐼𝐸) → (Edg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  c0 4286  𝒫 cpw 4553  {csn 4579  {cpr 4581   class class class wbr 5095  dom cdm 5623  wf 6482  cfv 6486  0cc0 11028  1c1 11029   < clt 11168  cle 11169  2c2 12201  chash 14255  Vtxcvtx 28959  iEdgciedg 28960  Edgcedg 29010  UHGraphcuhgr 29019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256  df-edg 29011  df-uhgr 29021
This theorem is referenced by:  usgr1vr  29218  vtxdlfuhgr1v  29443
  Copyright terms: Public domain W3C validator