| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > conncompid | Structured version Visualization version GIF version | ||
| Description: The connected component containing 𝐴 contains 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| conncomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
| Ref | Expression |
|---|---|
| conncompid | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 2 | 1 | snssd 4776 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ⊆ 𝑋) |
| 3 | snex 5394 | . . . . . 6 ⊢ {𝐴} ∈ V | |
| 4 | 3 | elpw 4570 | . . . . 5 ⊢ ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋) |
| 5 | 2, 4 | sylibr 234 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ 𝒫 𝑋) |
| 6 | snidg 4627 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴}) | |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ {𝐴}) |
| 8 | restsn2 23065 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) = 𝒫 {𝐴}) | |
| 9 | pwsn 4867 | . . . . . . 7 ⊢ 𝒫 {𝐴} = {∅, {𝐴}} | |
| 10 | indisconn 23312 | . . . . . . 7 ⊢ {∅, {𝐴}} ∈ Conn | |
| 11 | 9, 10 | eqeltri 2825 | . . . . . 6 ⊢ 𝒫 {𝐴} ∈ Conn |
| 12 | 8, 11 | eqeltrdi 2837 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) ∈ Conn) |
| 13 | 7, 12 | jca 511 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn)) |
| 14 | eleq2 2818 | . . . . . 6 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
| 15 | oveq2 7398 | . . . . . . . 8 ⊢ (𝑥 = {𝐴} → (𝐽 ↾t 𝑥) = (𝐽 ↾t {𝐴})) | |
| 16 | 15 | eleq1d 2814 | . . . . . . 7 ⊢ (𝑥 = {𝐴} → ((𝐽 ↾t 𝑥) ∈ Conn ↔ (𝐽 ↾t {𝐴}) ∈ Conn)) |
| 17 | 14, 16 | anbi12d 632 | . . . . . 6 ⊢ (𝑥 = {𝐴} → ((𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn) ↔ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn))) |
| 18 | 14, 17 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = {𝐴} → ((𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)) ↔ (𝐴 ∈ {𝐴} ∧ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn)))) |
| 19 | 18 | rspcev 3591 | . . . 4 ⊢ (({𝐴} ∈ 𝒫 𝑋 ∧ (𝐴 ∈ {𝐴} ∧ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn))) → ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) |
| 20 | 5, 7, 13, 19 | syl12anc 836 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) |
| 21 | elunirab 4889 | . . 3 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ↔ ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) | |
| 22 | 20, 21 | sylibr 234 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) |
| 23 | conncomp.2 | . 2 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
| 24 | 22, 23 | eleqtrrdi 2840 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {csn 4592 {cpr 4594 ∪ cuni 4874 ‘cfv 6514 (class class class)co 7390 ↾t crest 17390 TopOnctopon 22804 Conncconn 23305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-en 8922 df-fin 8925 df-fi 9369 df-rest 17392 df-topgen 17413 df-top 22788 df-topon 22805 df-bases 22840 df-cld 22913 df-conn 23306 |
| This theorem is referenced by: conncompcld 23328 conncompclo 23329 tgpconncompeqg 24006 tgpconncomp 24007 |
| Copyright terms: Public domain | W3C validator |