![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > conncompid | Structured version Visualization version GIF version |
Description: The connected component containing 𝐴 contains 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
conncomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
Ref | Expression |
---|---|
conncompid | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
2 | 1 | snssd 4808 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ⊆ 𝑋) |
3 | snex 5427 | . . . . . 6 ⊢ {𝐴} ∈ V | |
4 | 3 | elpw 4602 | . . . . 5 ⊢ ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋) |
5 | 2, 4 | sylibr 233 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ 𝒫 𝑋) |
6 | snidg 4658 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴}) | |
7 | 6 | adantl 483 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ {𝐴}) |
8 | restsn2 22644 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) = 𝒫 {𝐴}) | |
9 | pwsn 4896 | . . . . . . 7 ⊢ 𝒫 {𝐴} = {∅, {𝐴}} | |
10 | indisconn 22891 | . . . . . . 7 ⊢ {∅, {𝐴}} ∈ Conn | |
11 | 9, 10 | eqeltri 2830 | . . . . . 6 ⊢ 𝒫 {𝐴} ∈ Conn |
12 | 8, 11 | eqeltrdi 2842 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) ∈ Conn) |
13 | 7, 12 | jca 513 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn)) |
14 | eleq2 2823 | . . . . . 6 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
15 | oveq2 7404 | . . . . . . . 8 ⊢ (𝑥 = {𝐴} → (𝐽 ↾t 𝑥) = (𝐽 ↾t {𝐴})) | |
16 | 15 | eleq1d 2819 | . . . . . . 7 ⊢ (𝑥 = {𝐴} → ((𝐽 ↾t 𝑥) ∈ Conn ↔ (𝐽 ↾t {𝐴}) ∈ Conn)) |
17 | 14, 16 | anbi12d 632 | . . . . . 6 ⊢ (𝑥 = {𝐴} → ((𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn) ↔ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn))) |
18 | 14, 17 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = {𝐴} → ((𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)) ↔ (𝐴 ∈ {𝐴} ∧ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn)))) |
19 | 18 | rspcev 3611 | . . . 4 ⊢ (({𝐴} ∈ 𝒫 𝑋 ∧ (𝐴 ∈ {𝐴} ∧ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn))) → ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) |
20 | 5, 7, 13, 19 | syl12anc 836 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) |
21 | elunirab 4920 | . . 3 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ↔ ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) | |
22 | 20, 21 | sylibr 233 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) |
23 | conncomp.2 | . 2 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
24 | 22, 23 | eleqtrrdi 2845 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 {crab 3433 ⊆ wss 3946 ∅c0 4320 𝒫 cpw 4598 {csn 4624 {cpr 4626 ∪ cuni 4904 ‘cfv 6535 (class class class)co 7396 ↾t crest 17353 TopOnctopon 22381 Conncconn 22884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-en 8928 df-fin 8931 df-fi 9393 df-rest 17355 df-topgen 17376 df-top 22365 df-topon 22382 df-bases 22418 df-cld 22492 df-conn 22885 |
This theorem is referenced by: conncompcld 22907 conncompclo 22908 tgpconncompeqg 23585 tgpconncomp 23586 |
Copyright terms: Public domain | W3C validator |