| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > conncompid | Structured version Visualization version GIF version | ||
| Description: The connected component containing 𝐴 contains 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| conncomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
| Ref | Expression |
|---|---|
| conncompid | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 2 | 1 | snssd 4760 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ⊆ 𝑋) |
| 3 | snex 5376 | . . . . . 6 ⊢ {𝐴} ∈ V | |
| 4 | 3 | elpw 4553 | . . . . 5 ⊢ ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋) |
| 5 | 2, 4 | sylibr 234 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ 𝒫 𝑋) |
| 6 | snidg 4612 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴}) | |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ {𝐴}) |
| 8 | restsn2 23087 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) = 𝒫 {𝐴}) | |
| 9 | pwsn 4851 | . . . . . . 7 ⊢ 𝒫 {𝐴} = {∅, {𝐴}} | |
| 10 | indisconn 23334 | . . . . . . 7 ⊢ {∅, {𝐴}} ∈ Conn | |
| 11 | 9, 10 | eqeltri 2829 | . . . . . 6 ⊢ 𝒫 {𝐴} ∈ Conn |
| 12 | 8, 11 | eqeltrdi 2841 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) ∈ Conn) |
| 13 | 7, 12 | jca 511 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn)) |
| 14 | eleq2 2822 | . . . . . 6 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
| 15 | oveq2 7360 | . . . . . . . 8 ⊢ (𝑥 = {𝐴} → (𝐽 ↾t 𝑥) = (𝐽 ↾t {𝐴})) | |
| 16 | 15 | eleq1d 2818 | . . . . . . 7 ⊢ (𝑥 = {𝐴} → ((𝐽 ↾t 𝑥) ∈ Conn ↔ (𝐽 ↾t {𝐴}) ∈ Conn)) |
| 17 | 14, 16 | anbi12d 632 | . . . . . 6 ⊢ (𝑥 = {𝐴} → ((𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn) ↔ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn))) |
| 18 | 14, 17 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = {𝐴} → ((𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)) ↔ (𝐴 ∈ {𝐴} ∧ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn)))) |
| 19 | 18 | rspcev 3573 | . . . 4 ⊢ (({𝐴} ∈ 𝒫 𝑋 ∧ (𝐴 ∈ {𝐴} ∧ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn))) → ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) |
| 20 | 5, 7, 13, 19 | syl12anc 836 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) |
| 21 | elunirab 4873 | . . 3 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ↔ ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) | |
| 22 | 20, 21 | sylibr 234 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) |
| 23 | conncomp.2 | . 2 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
| 24 | 22, 23 | eleqtrrdi 2844 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4549 {csn 4575 {cpr 4577 ∪ cuni 4858 ‘cfv 6486 (class class class)co 7352 ↾t crest 17326 TopOnctopon 22826 Conncconn 23327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-en 8876 df-fin 8879 df-fi 9302 df-rest 17328 df-topgen 17349 df-top 22810 df-topon 22827 df-bases 22862 df-cld 22935 df-conn 23328 |
| This theorem is referenced by: conncompcld 23350 conncompclo 23351 tgpconncompeqg 24028 tgpconncomp 24029 |
| Copyright terms: Public domain | W3C validator |