| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > conncompid | Structured version Visualization version GIF version | ||
| Description: The connected component containing 𝐴 contains 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| conncomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
| Ref | Expression |
|---|---|
| conncompid | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 2 | 1 | snssd 4790 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ⊆ 𝑋) |
| 3 | snex 5411 | . . . . . 6 ⊢ {𝐴} ∈ V | |
| 4 | 3 | elpw 4584 | . . . . 5 ⊢ ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋) |
| 5 | 2, 4 | sylibr 234 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ 𝒫 𝑋) |
| 6 | snidg 4641 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴}) | |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ {𝐴}) |
| 8 | restsn2 23114 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) = 𝒫 {𝐴}) | |
| 9 | pwsn 4881 | . . . . . . 7 ⊢ 𝒫 {𝐴} = {∅, {𝐴}} | |
| 10 | indisconn 23361 | . . . . . . 7 ⊢ {∅, {𝐴}} ∈ Conn | |
| 11 | 9, 10 | eqeltri 2831 | . . . . . 6 ⊢ 𝒫 {𝐴} ∈ Conn |
| 12 | 8, 11 | eqeltrdi 2843 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) ∈ Conn) |
| 13 | 7, 12 | jca 511 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn)) |
| 14 | eleq2 2824 | . . . . . 6 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
| 15 | oveq2 7418 | . . . . . . . 8 ⊢ (𝑥 = {𝐴} → (𝐽 ↾t 𝑥) = (𝐽 ↾t {𝐴})) | |
| 16 | 15 | eleq1d 2820 | . . . . . . 7 ⊢ (𝑥 = {𝐴} → ((𝐽 ↾t 𝑥) ∈ Conn ↔ (𝐽 ↾t {𝐴}) ∈ Conn)) |
| 17 | 14, 16 | anbi12d 632 | . . . . . 6 ⊢ (𝑥 = {𝐴} → ((𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn) ↔ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn))) |
| 18 | 14, 17 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = {𝐴} → ((𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)) ↔ (𝐴 ∈ {𝐴} ∧ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn)))) |
| 19 | 18 | rspcev 3606 | . . . 4 ⊢ (({𝐴} ∈ 𝒫 𝑋 ∧ (𝐴 ∈ {𝐴} ∧ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn))) → ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) |
| 20 | 5, 7, 13, 19 | syl12anc 836 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) |
| 21 | elunirab 4903 | . . 3 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ↔ ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) | |
| 22 | 20, 21 | sylibr 234 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) |
| 23 | conncomp.2 | . 2 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
| 24 | 22, 23 | eleqtrrdi 2846 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 {crab 3420 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 {csn 4606 {cpr 4608 ∪ cuni 4888 ‘cfv 6536 (class class class)co 7410 ↾t crest 17439 TopOnctopon 22853 Conncconn 23354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-en 8965 df-fin 8968 df-fi 9428 df-rest 17441 df-topgen 17462 df-top 22837 df-topon 22854 df-bases 22889 df-cld 22962 df-conn 23355 |
| This theorem is referenced by: conncompcld 23377 conncompclo 23378 tgpconncompeqg 24055 tgpconncomp 24056 |
| Copyright terms: Public domain | W3C validator |