| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > conncompid | Structured version Visualization version GIF version | ||
| Description: The connected component containing 𝐴 contains 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| conncomp.2 | ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} |
| Ref | Expression |
|---|---|
| conncompid | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 2 | 1 | snssd 4763 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ⊆ 𝑋) |
| 3 | snex 5378 | . . . . . 6 ⊢ {𝐴} ∈ V | |
| 4 | 3 | elpw 4557 | . . . . 5 ⊢ ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋) |
| 5 | 2, 4 | sylibr 234 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → {𝐴} ∈ 𝒫 𝑋) |
| 6 | snidg 4614 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴}) | |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ {𝐴}) |
| 8 | restsn2 23074 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) = 𝒫 {𝐴}) | |
| 9 | pwsn 4854 | . . . . . . 7 ⊢ 𝒫 {𝐴} = {∅, {𝐴}} | |
| 10 | indisconn 23321 | . . . . . . 7 ⊢ {∅, {𝐴}} ∈ Conn | |
| 11 | 9, 10 | eqeltri 2824 | . . . . . 6 ⊢ 𝒫 {𝐴} ∈ Conn |
| 12 | 8, 11 | eqeltrdi 2836 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐽 ↾t {𝐴}) ∈ Conn) |
| 13 | 7, 12 | jca 511 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn)) |
| 14 | eleq2 2817 | . . . . . 6 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
| 15 | oveq2 7361 | . . . . . . . 8 ⊢ (𝑥 = {𝐴} → (𝐽 ↾t 𝑥) = (𝐽 ↾t {𝐴})) | |
| 16 | 15 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑥 = {𝐴} → ((𝐽 ↾t 𝑥) ∈ Conn ↔ (𝐽 ↾t {𝐴}) ∈ Conn)) |
| 17 | 14, 16 | anbi12d 632 | . . . . . 6 ⊢ (𝑥 = {𝐴} → ((𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn) ↔ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn))) |
| 18 | 14, 17 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = {𝐴} → ((𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)) ↔ (𝐴 ∈ {𝐴} ∧ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn)))) |
| 19 | 18 | rspcev 3579 | . . . 4 ⊢ (({𝐴} ∈ 𝒫 𝑋 ∧ (𝐴 ∈ {𝐴} ∧ (𝐴 ∈ {𝐴} ∧ (𝐽 ↾t {𝐴}) ∈ Conn))) → ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) |
| 20 | 5, 7, 13, 19 | syl12anc 836 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) |
| 21 | elunirab 4876 | . . 3 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} ↔ ∃𝑥 ∈ 𝒫 𝑋(𝐴 ∈ 𝑥 ∧ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn))) | |
| 22 | 20, 21 | sylibr 234 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)}) |
| 23 | conncomp.2 | . 2 ⊢ 𝑆 = ∪ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ (𝐽 ↾t 𝑥) ∈ Conn)} | |
| 24 | 22, 23 | eleqtrrdi 2839 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3396 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 {csn 4579 {cpr 4581 ∪ cuni 4861 ‘cfv 6486 (class class class)co 7353 ↾t crest 17342 TopOnctopon 22813 Conncconn 23314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-en 8880 df-fin 8883 df-fi 9320 df-rest 17344 df-topgen 17365 df-top 22797 df-topon 22814 df-bases 22849 df-cld 22922 df-conn 23315 |
| This theorem is referenced by: conncompcld 23337 conncompclo 23338 tgpconncompeqg 24015 tgpconncomp 24016 |
| Copyright terms: Public domain | W3C validator |