Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem9 Structured version   Visualization version   GIF version

Theorem cvmlift2lem9 35333
Description: Lemma for cvmlift2 35338. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2lem10.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem9.1 (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀)
cvmlift2lem9.2 (𝜑𝑇 ∈ (𝑆𝑀))
cvmlift2lem9.3 (𝜑𝑈 ∈ II)
cvmlift2lem9.4 (𝜑𝑉 ∈ II)
cvmlift2lem9.5 (𝜑 → (II ↾t 𝑈) ∈ Conn)
cvmlift2lem9.6 (𝜑 → (II ↾t 𝑉) ∈ Conn)
cvmlift2lem9.7 (𝜑𝑋𝑈)
cvmlift2lem9.8 (𝜑𝑌𝑉)
cvmlift2lem9.9 (𝜑 → (𝑈 × 𝑉) ⊆ (𝐺𝑀))
cvmlift2lem9.10 (𝜑𝑍𝑉)
cvmlift2lem9.11 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶))
cvmlift2lem9.w 𝑊 = (𝑏𝑇 (𝑋𝐾𝑌) ∈ 𝑏)
Assertion
Ref Expression
cvmlift2lem9 (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
Distinct variable groups:   𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑥,𝑦,𝑧,𝐹   𝜑,𝑏,𝑓,𝑥,𝑦,𝑧   𝑀,𝑏,𝑐,𝑑,𝑘,𝑠,𝑥,𝑦,𝑧   𝑆,𝑏,𝑓,𝑥,𝑦,𝑧   𝐽,𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑥,𝑦,𝑧   𝑇,𝑏,𝑐,𝑑,𝑠   𝑧,𝑈   𝐺,𝑏,𝑐,𝑓,𝑘,𝑥,𝑦,𝑧   𝑊,𝑐,𝑑   𝐻,𝑏,𝑐,𝑓,𝑥,𝑦,𝑧   𝑋,𝑏,𝑐,𝑑,𝑓,𝑘,𝑥,𝑦,𝑧   𝑧,𝑍   𝐶,𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑥,𝑦,𝑧   𝑃,𝑓,𝑘,𝑥,𝑦,𝑧   𝐵,𝑏,𝑐,𝑑,𝑥,𝑦,𝑧   𝑌,𝑏,𝑐,𝑑,𝑓,𝑘,𝑥,𝑦,𝑧   𝐾,𝑏,𝑐,𝑑,𝑓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑓,𝑘,𝑠)   𝑃(𝑠,𝑏,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑘)   𝑈(𝑥,𝑦,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐺(𝑠,𝑑)   𝐻(𝑘,𝑠,𝑑)   𝐾(𝑘,𝑠)   𝑀(𝑓)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑘,𝑠,𝑏)   𝑋(𝑠)   𝑌(𝑠)   𝑍(𝑥,𝑦,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)

Proof of Theorem cvmlift2lem9
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . 2 𝐵 = 𝐶
2 iitop 24824 . . 3 II ∈ Top
3 iiuni 24825 . . 3 (0[,]1) = II
42, 2, 3, 3txunii 23531 . 2 ((0[,]1) × (0[,]1)) = (II ×t II)
5 cvmlift2lem10.s . 2 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
6 cvmlift2.f . 2 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
7 cvmlift2.g . . 3 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
8 cvmlift2.p . . 3 (𝜑𝑃𝐵)
9 cvmlift2.i . . 3 (𝜑 → (𝐹𝑃) = (0𝐺0))
10 cvmlift2.h . . 3 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
11 cvmlift2.k . . 3 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
121, 6, 7, 8, 9, 10, 11cvmlift2lem5 35329 . 2 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
131, 6, 7, 8, 9, 10, 11cvmlift2lem7 35331 . . 3 (𝜑 → (𝐹𝐾) = 𝐺)
1413, 7eqeltrd 2834 . 2 (𝜑 → (𝐹𝐾) ∈ ((II ×t II) Cn 𝐽))
152, 2txtopi 23528 . . 3 (II ×t II) ∈ Top
1615a1i 11 . 2 (𝜑 → (II ×t II) ∈ Top)
17 cvmlift2lem9.3 . . . . 5 (𝜑𝑈 ∈ II)
18 elssuni 4913 . . . . . 6 (𝑈 ∈ II → 𝑈 II)
1918, 3sseqtrrdi 4000 . . . . 5 (𝑈 ∈ II → 𝑈 ⊆ (0[,]1))
2017, 19syl 17 . . . 4 (𝜑𝑈 ⊆ (0[,]1))
21 cvmlift2lem9.7 . . . 4 (𝜑𝑋𝑈)
2220, 21sseldd 3959 . . 3 (𝜑𝑋 ∈ (0[,]1))
23 cvmlift2lem9.4 . . . . 5 (𝜑𝑉 ∈ II)
24 elssuni 4913 . . . . . 6 (𝑉 ∈ II → 𝑉 II)
2524, 3sseqtrrdi 4000 . . . . 5 (𝑉 ∈ II → 𝑉 ⊆ (0[,]1))
2623, 25syl 17 . . . 4 (𝜑𝑉 ⊆ (0[,]1))
27 cvmlift2lem9.8 . . . 4 (𝜑𝑌𝑉)
2826, 27sseldd 3959 . . 3 (𝜑𝑌 ∈ (0[,]1))
29 opelxpi 5691 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
3022, 28, 29syl2anc 584 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
31 cvmlift2lem9.2 . 2 (𝜑𝑇 ∈ (𝑆𝑀))
3212, 22, 28fovcdmd 7579 . . . 4 (𝜑 → (𝑋𝐾𝑌) ∈ 𝐵)
33 fvco3 6978 . . . . . . . 8 ((𝐾:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐾)‘⟨𝑋, 𝑌⟩) = (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩)))
3412, 30, 33syl2anc 584 . . . . . . 7 (𝜑 → ((𝐹𝐾)‘⟨𝑋, 𝑌⟩) = (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩)))
3513fveq1d 6878 . . . . . . 7 (𝜑 → ((𝐹𝐾)‘⟨𝑋, 𝑌⟩) = (𝐺‘⟨𝑋, 𝑌⟩))
3634, 35eqtr3d 2772 . . . . . 6 (𝜑 → (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩)) = (𝐺‘⟨𝑋, 𝑌⟩))
37 df-ov 7408 . . . . . . 7 (𝑋𝐾𝑌) = (𝐾‘⟨𝑋, 𝑌⟩)
3837fveq2i 6879 . . . . . 6 (𝐹‘(𝑋𝐾𝑌)) = (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩))
39 df-ov 7408 . . . . . 6 (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩)
4036, 38, 393eqtr4g 2795 . . . . 5 (𝜑 → (𝐹‘(𝑋𝐾𝑌)) = (𝑋𝐺𝑌))
41 cvmlift2lem9.1 . . . . 5 (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀)
4240, 41eqeltrd 2834 . . . 4 (𝜑 → (𝐹‘(𝑋𝐾𝑌)) ∈ 𝑀)
43 cvmlift2lem9.w . . . . 5 𝑊 = (𝑏𝑇 (𝑋𝐾𝑌) ∈ 𝑏)
445, 1, 43cvmsiota 35299 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑀) ∧ (𝑋𝐾𝑌) ∈ 𝐵 ∧ (𝐹‘(𝑋𝐾𝑌)) ∈ 𝑀)) → (𝑊𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊))
456, 31, 32, 42, 44syl13anc 1374 . . 3 (𝜑 → (𝑊𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊))
4637eleq1i 2825 . . . 4 ((𝑋𝐾𝑌) ∈ 𝑊 ↔ (𝐾‘⟨𝑋, 𝑌⟩) ∈ 𝑊)
4746anbi2i 623 . . 3 ((𝑊𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊) ↔ (𝑊𝑇 ∧ (𝐾‘⟨𝑋, 𝑌⟩) ∈ 𝑊))
4845, 47sylib 218 . 2 (𝜑 → (𝑊𝑇 ∧ (𝐾‘⟨𝑋, 𝑌⟩) ∈ 𝑊))
49 xpss12 5669 . . 3 ((𝑈 ⊆ (0[,]1) ∧ 𝑉 ⊆ (0[,]1)) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
5020, 26, 49syl2anc 584 . 2 (𝜑 → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
51 snidg 4636 . . . . . . 7 (𝑚𝑈𝑚 ∈ {𝑚})
5251ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑚 ∈ {𝑚})
53 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑛𝑉)
54 ovres 7573 . . . . . 6 ((𝑚 ∈ {𝑚} ∧ 𝑛𝑉) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) = (𝑚𝐾𝑛))
5552, 53, 54syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) = (𝑚𝐾𝑛))
56 eqid 2735 . . . . . . . 8 ((II ×t II) ↾t ({𝑚} × 𝑉)) = ((II ×t II) ↾t ({𝑚} × 𝑉))
572a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → II ∈ Top)
58 snex 5406 . . . . . . . . . . 11 {𝑚} ∈ V
5958a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → {𝑚} ∈ V)
6023adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑉 ∈ II)
61 txrest 23569 . . . . . . . . . 10 (((II ∈ Top ∧ II ∈ Top) ∧ ({𝑚} ∈ V ∧ 𝑉 ∈ II)) → ((II ×t II) ↾t ({𝑚} × 𝑉)) = ((II ↾t {𝑚}) ×t (II ↾t 𝑉)))
6257, 57, 59, 60, 61syl22anc 838 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((II ×t II) ↾t ({𝑚} × 𝑉)) = ((II ↾t {𝑚}) ×t (II ↾t 𝑉)))
63 iitopon 24823 . . . . . . . . . . . 12 II ∈ (TopOn‘(0[,]1))
6420sselda 3958 . . . . . . . . . . . . 13 ((𝜑𝑚𝑈) → 𝑚 ∈ (0[,]1))
6564adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑚 ∈ (0[,]1))
66 restsn2 23109 . . . . . . . . . . . 12 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝑚 ∈ (0[,]1)) → (II ↾t {𝑚}) = 𝒫 {𝑚})
6763, 65, 66sylancr 587 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ↾t {𝑚}) = 𝒫 {𝑚})
68 pwsn 4876 . . . . . . . . . . . 12 𝒫 {𝑚} = {∅, {𝑚}}
69 indisconn 23356 . . . . . . . . . . . 12 {∅, {𝑚}} ∈ Conn
7068, 69eqeltri 2830 . . . . . . . . . . 11 𝒫 {𝑚} ∈ Conn
7167, 70eqeltrdi 2842 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ↾t {𝑚}) ∈ Conn)
72 cvmlift2lem9.6 . . . . . . . . . . 11 (𝜑 → (II ↾t 𝑉) ∈ Conn)
7372adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ↾t 𝑉) ∈ Conn)
74 txconn 23627 . . . . . . . . . 10 (((II ↾t {𝑚}) ∈ Conn ∧ (II ↾t 𝑉) ∈ Conn) → ((II ↾t {𝑚}) ×t (II ↾t 𝑉)) ∈ Conn)
7571, 73, 74syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((II ↾t {𝑚}) ×t (II ↾t 𝑉)) ∈ Conn)
7662, 75eqeltrd 2834 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((II ×t II) ↾t ({𝑚} × 𝑉)) ∈ Conn)
771, 6, 7, 8, 9, 10, 11cvmlift2lem6 35330 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0[,]1)) → (𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶))
7865, 77syldan 591 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶))
7926adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑉 ⊆ (0[,]1))
80 xpss2 5674 . . . . . . . . . . . . 13 (𝑉 ⊆ (0[,]1) → ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)))
8179, 80syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)))
8265snssd 4785 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → {𝑚} ⊆ (0[,]1))
83 xpss1 5673 . . . . . . . . . . . . . 14 ({𝑚} ⊆ (0[,]1) → ({𝑚} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
8482, 83syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
854restuni 23100 . . . . . . . . . . . . 13 (((II ×t II) ∈ Top ∧ ({𝑚} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1))) → ({𝑚} × (0[,]1)) = ((II ×t II) ↾t ({𝑚} × (0[,]1))))
8615, 84, 85sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × (0[,]1)) = ((II ×t II) ↾t ({𝑚} × (0[,]1))))
8781, 86sseqtrd 3995 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑚} × (0[,]1))))
88 eqid 2735 . . . . . . . . . . . 12 ((II ×t II) ↾t ({𝑚} × (0[,]1))) = ((II ×t II) ↾t ({𝑚} × (0[,]1)))
8988cnrest 23223 . . . . . . . . . . 11 (((𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶) ∧ ({𝑚} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑚} × (0[,]1)))) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
9078, 87, 89syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
9181resabs1d 5995 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) = (𝐾 ↾ ({𝑚} × 𝑉)))
9215a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ×t II) ∈ Top)
93 ovex 7438 . . . . . . . . . . . . . 14 (0[,]1) ∈ V
9458, 93xpex 7747 . . . . . . . . . . . . 13 ({𝑚} × (0[,]1)) ∈ V
9594a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × (0[,]1)) ∈ V)
96 restabs 23103 . . . . . . . . . . . 12 (((II ×t II) ∈ Top ∧ ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)) ∧ ({𝑚} × (0[,]1)) ∈ V) → (((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
9792, 81, 95, 96syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
9897oveq1d 7420 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶) = (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
9990, 91, 983eltr3d 2848 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
100 cvmtop1 35282 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
1016, 100syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ Top)
102101adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝐶 ∈ Top)
1031toptopon 22855 . . . . . . . . . . 11 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
104102, 103sylib 218 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝐶 ∈ (TopOn‘𝐵))
105 df-ima 5667 . . . . . . . . . . 11 (𝐾 “ ({𝑚} × 𝑉)) = ran (𝐾 ↾ ({𝑚} × 𝑉))
106 simprl 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑚𝑈)
107106snssd 4785 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → {𝑚} ⊆ 𝑈)
108 xpss1 5673 . . . . . . . . . . . . 13 ({𝑚} ⊆ 𝑈 → ({𝑚} × 𝑉) ⊆ (𝑈 × 𝑉))
109 imass2 6089 . . . . . . . . . . . . 13 (({𝑚} × 𝑉) ⊆ (𝑈 × 𝑉) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
110107, 108, 1093syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
111 cvmlift2lem9.9 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 × 𝑉) ⊆ (𝐺𝑀))
112 imaco 6240 . . . . . . . . . . . . . . . 16 ((𝐾𝐹) “ 𝑀) = (𝐾 “ (𝐹𝑀))
113 cnvco 5865 . . . . . . . . . . . . . . . . . 18 (𝐹𝐾) = (𝐾𝐹)
11413cnveqd 5855 . . . . . . . . . . . . . . . . . 18 (𝜑(𝐹𝐾) = 𝐺)
115113, 114eqtr3id 2784 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾𝐹) = 𝐺)
116115imaeq1d 6046 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾𝐹) “ 𝑀) = (𝐺𝑀))
117112, 116eqtr3id 2784 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 “ (𝐹𝑀)) = (𝐺𝑀))
118111, 117sseqtrrd 3996 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 × 𝑉) ⊆ (𝐾 “ (𝐹𝑀)))
11912ffund 6710 . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐾)
12012fdmd 6716 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐾 = ((0[,]1) × (0[,]1)))
12150, 120sseqtrrd 3996 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 × 𝑉) ⊆ dom 𝐾)
122 funimass3 7044 . . . . . . . . . . . . . . 15 ((Fun 𝐾 ∧ (𝑈 × 𝑉) ⊆ dom 𝐾) → ((𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀) ↔ (𝑈 × 𝑉) ⊆ (𝐾 “ (𝐹𝑀))))
123119, 121, 122syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀) ↔ (𝑈 × 𝑉) ⊆ (𝐾 “ (𝐹𝑀))))
124118, 123mpbird 257 . . . . . . . . . . . . 13 (𝜑 → (𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀))
125124adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀))
126110, 125sstrd 3969 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐹𝑀))
127105, 126eqsstrrid 3998 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ran (𝐾 ↾ ({𝑚} × 𝑉)) ⊆ (𝐹𝑀))
128 cnvimass 6069 . . . . . . . . . . . 12 (𝐹𝑀) ⊆ dom 𝐹
129 cvmcn 35284 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
1306, 129syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
131 eqid 2735 . . . . . . . . . . . . . 14 𝐽 = 𝐽
1321, 131cnf 23184 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
133 fdm 6715 . . . . . . . . . . . . 13 (𝐹:𝐵 𝐽 → dom 𝐹 = 𝐵)
134130, 132, 1333syl 18 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐵)
135128, 134sseqtrid 4001 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ⊆ 𝐵)
136135adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐹𝑀) ⊆ 𝐵)
137 cnrest2 23224 . . . . . . . . . 10 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ ({𝑚} × 𝑉)) ⊆ (𝐹𝑀) ∧ (𝐹𝑀) ⊆ 𝐵) → ((𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
138104, 127, 136, 137syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
13999, 138mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn (𝐶t (𝐹𝑀))))
1405cvmsss 35289 . . . . . . . . . . . 12 (𝑇 ∈ (𝑆𝑀) → 𝑇𝐶)
14131, 140syl 17 . . . . . . . . . . 11 (𝜑𝑇𝐶)
14245simpld 494 . . . . . . . . . . 11 (𝜑𝑊𝑇)
143141, 142sseldd 3959 . . . . . . . . . 10 (𝜑𝑊𝐶)
144 elssuni 4913 . . . . . . . . . . . 12 (𝑊𝑇𝑊 𝑇)
145142, 144syl 17 . . . . . . . . . . 11 (𝜑𝑊 𝑇)
1465cvmsuni 35291 . . . . . . . . . . . 12 (𝑇 ∈ (𝑆𝑀) → 𝑇 = (𝐹𝑀))
14731, 146syl 17 . . . . . . . . . . 11 (𝜑 𝑇 = (𝐹𝑀))
148145, 147sseqtrd 3995 . . . . . . . . . 10 (𝜑𝑊 ⊆ (𝐹𝑀))
1495cvmsrcl 35286 . . . . . . . . . . . . 13 (𝑇 ∈ (𝑆𝑀) → 𝑀𝐽)
15031, 149syl 17 . . . . . . . . . . . 12 (𝜑𝑀𝐽)
151 cnima 23203 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ 𝑀𝐽) → (𝐹𝑀) ∈ 𝐶)
152130, 150, 151syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ∈ 𝐶)
153 restopn2 23115 . . . . . . . . . . 11 ((𝐶 ∈ Top ∧ (𝐹𝑀) ∈ 𝐶) → (𝑊 ∈ (𝐶t (𝐹𝑀)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝑀))))
154101, 152, 153syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ (𝐶t (𝐹𝑀)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝑀))))
155143, 148, 154mpbir2and 713 . . . . . . . . 9 (𝜑𝑊 ∈ (𝐶t (𝐹𝑀)))
156155adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑊 ∈ (𝐶t (𝐹𝑀)))
1575cvmscld 35295 . . . . . . . . . 10 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑀) ∧ 𝑊𝑇) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑀))))
1586, 31, 142, 157syl3anc 1373 . . . . . . . . 9 (𝜑𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑀))))
159158adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑀))))
160 cvmlift2lem9.10 . . . . . . . . . . 11 (𝜑𝑍𝑉)
161160adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑍𝑉)
162 opelxpi 5691 . . . . . . . . . 10 ((𝑚 ∈ {𝑚} ∧ 𝑍𝑉) → ⟨𝑚, 𝑍⟩ ∈ ({𝑚} × 𝑉))
16352, 161, 162syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ⟨𝑚, 𝑍⟩ ∈ ({𝑚} × 𝑉))
16481, 84sstrd 3969 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
1654restuni 23100 . . . . . . . . . 10 (((II ×t II) ∈ Top ∧ ({𝑚} × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → ({𝑚} × 𝑉) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
16615, 164, 165sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
167163, 166eleqtrd 2836 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ⟨𝑚, 𝑍⟩ ∈ ((II ×t II) ↾t ({𝑚} × 𝑉)))
168 df-ov 7408 . . . . . . . . . 10 (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = ((𝐾 ↾ ({𝑚} × 𝑉))‘⟨𝑚, 𝑍⟩)
169 ovres 7573 . . . . . . . . . . . 12 ((𝑚 ∈ {𝑚} ∧ 𝑍𝑉) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚𝐾𝑍))
17052, 161, 169syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚𝐾𝑍))
171 snidg 4636 . . . . . . . . . . . . . 14 (𝑍𝑉𝑍 ∈ {𝑍})
172160, 171syl 17 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ {𝑍})
173172adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑍 ∈ {𝑍})
174 ovres 7573 . . . . . . . . . . . 12 ((𝑚𝑈𝑍 ∈ {𝑍}) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑚𝐾𝑍))
175106, 173, 174syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑚𝐾𝑍))
176170, 175eqtr4d 2773 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍))
177168, 176eqtr3id 2784 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉))‘⟨𝑚, 𝑍⟩) = (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍))
178 eqid 2735 . . . . . . . . . . . . 13 ((II ×t II) ↾t (𝑈 × {𝑍})) = ((II ×t II) ↾t (𝑈 × {𝑍}))
1792a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → II ∈ Top)
180 snex 5406 . . . . . . . . . . . . . . . 16 {𝑍} ∈ V
181180a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑍} ∈ V)
182 txrest 23569 . . . . . . . . . . . . . . 15 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑈 ∈ II ∧ {𝑍} ∈ V)) → ((II ×t II) ↾t (𝑈 × {𝑍})) = ((II ↾t 𝑈) ×t (II ↾t {𝑍})))
183179, 179, 17, 181, 182syl22anc 838 . . . . . . . . . . . . . 14 (𝜑 → ((II ×t II) ↾t (𝑈 × {𝑍})) = ((II ↾t 𝑈) ×t (II ↾t {𝑍})))
184 cvmlift2lem9.5 . . . . . . . . . . . . . . 15 (𝜑 → (II ↾t 𝑈) ∈ Conn)
18526, 160sseldd 3959 . . . . . . . . . . . . . . . . 17 (𝜑𝑍 ∈ (0[,]1))
186 restsn2 23109 . . . . . . . . . . . . . . . . 17 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝑍 ∈ (0[,]1)) → (II ↾t {𝑍}) = 𝒫 {𝑍})
18763, 185, 186sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (II ↾t {𝑍}) = 𝒫 {𝑍})
188 pwsn 4876 . . . . . . . . . . . . . . . . 17 𝒫 {𝑍} = {∅, {𝑍}}
189 indisconn 23356 . . . . . . . . . . . . . . . . 17 {∅, {𝑍}} ∈ Conn
190188, 189eqeltri 2830 . . . . . . . . . . . . . . . 16 𝒫 {𝑍} ∈ Conn
191187, 190eqeltrdi 2842 . . . . . . . . . . . . . . 15 (𝜑 → (II ↾t {𝑍}) ∈ Conn)
192 txconn 23627 . . . . . . . . . . . . . . 15 (((II ↾t 𝑈) ∈ Conn ∧ (II ↾t {𝑍}) ∈ Conn) → ((II ↾t 𝑈) ×t (II ↾t {𝑍})) ∈ Conn)
193184, 191, 192syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((II ↾t 𝑈) ×t (II ↾t {𝑍})) ∈ Conn)
194183, 193eqeltrd 2834 . . . . . . . . . . . . 13 (𝜑 → ((II ×t II) ↾t (𝑈 × {𝑍})) ∈ Conn)
195 cvmlift2lem9.11 . . . . . . . . . . . . . 14 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶))
196101, 103sylib 218 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ (TopOn‘𝐵))
197 df-ima 5667 . . . . . . . . . . . . . . . 16 (𝐾 “ (𝑈 × {𝑍})) = ran (𝐾 ↾ (𝑈 × {𝑍}))
198160snssd 4785 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑍} ⊆ 𝑉)
199 xpss2 5674 . . . . . . . . . . . . . . . . . 18 ({𝑍} ⊆ 𝑉 → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
200 imass2 6089 . . . . . . . . . . . . . . . . . 18 ((𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉) → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐾 “ (𝑈 × 𝑉)))
201198, 199, 2003syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐾 “ (𝑈 × 𝑉)))
202201, 124sstrd 3969 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐹𝑀))
203197, 202eqsstrrid 3998 . . . . . . . . . . . . . . 15 (𝜑 → ran (𝐾 ↾ (𝑈 × {𝑍})) ⊆ (𝐹𝑀))
204 cnrest2 23224 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ (𝑈 × {𝑍})) ⊆ (𝐹𝑀) ∧ (𝐹𝑀) ⊆ 𝐵) → ((𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn (𝐶t (𝐹𝑀)))))
205196, 203, 135, 204syl3anc 1373 . . . . . . . . . . . . . 14 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn (𝐶t (𝐹𝑀)))))
206195, 205mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn (𝐶t (𝐹𝑀))))
207 opelxpi 5691 . . . . . . . . . . . . . . 15 ((𝑋𝑈𝑍 ∈ {𝑍}) → ⟨𝑋, 𝑍⟩ ∈ (𝑈 × {𝑍}))
20821, 172, 207syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ⟨𝑋, 𝑍⟩ ∈ (𝑈 × {𝑍}))
209185snssd 4785 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑍} ⊆ (0[,]1))
210 xpss12 5669 . . . . . . . . . . . . . . . 16 ((𝑈 ⊆ (0[,]1) ∧ {𝑍} ⊆ (0[,]1)) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
21120, 209, 210syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
2124restuni 23100 . . . . . . . . . . . . . . 15 (((II ×t II) ∈ Top ∧ (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1))) → (𝑈 × {𝑍}) = ((II ×t II) ↾t (𝑈 × {𝑍})))
21315, 211, 212sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 × {𝑍}) = ((II ×t II) ↾t (𝑈 × {𝑍})))
214208, 213eleqtrd 2836 . . . . . . . . . . . . 13 (𝜑 → ⟨𝑋, 𝑍⟩ ∈ ((II ×t II) ↾t (𝑈 × {𝑍})))
215 df-ov 7408 . . . . . . . . . . . . . . 15 (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = ((𝐾 ↾ (𝑈 × {𝑍}))‘⟨𝑋, 𝑍⟩)
216 ovres 7573 . . . . . . . . . . . . . . . . 17 ((𝑋𝑈𝑍 ∈ {𝑍}) → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋𝐾𝑍))
21721, 172, 216syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋𝐾𝑍))
218 snidg 4636 . . . . . . . . . . . . . . . . . 18 (𝑋𝑈𝑋 ∈ {𝑋})
21921, 218syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ {𝑋})
220 ovres 7573 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ {𝑋} ∧ 𝑍𝑉) → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) = (𝑋𝐾𝑍))
221219, 160, 220syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) = (𝑋𝐾𝑍))
222217, 221eqtr4d 2773 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍))
223215, 222eqtr3id 2784 . . . . . . . . . . . . . 14 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍}))‘⟨𝑋, 𝑍⟩) = (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍))
224 eqid 2735 . . . . . . . . . . . . . . . . 17 ((II ×t II) ↾t ({𝑋} × 𝑉)) = ((II ×t II) ↾t ({𝑋} × 𝑉))
225 snex 5406 . . . . . . . . . . . . . . . . . . . 20 {𝑋} ∈ V
226225a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑋} ∈ V)
227 txrest 23569 . . . . . . . . . . . . . . . . . . 19 (((II ∈ Top ∧ II ∈ Top) ∧ ({𝑋} ∈ V ∧ 𝑉 ∈ II)) → ((II ×t II) ↾t ({𝑋} × 𝑉)) = ((II ↾t {𝑋}) ×t (II ↾t 𝑉)))
228179, 179, 226, 23, 227syl22anc 838 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((II ×t II) ↾t ({𝑋} × 𝑉)) = ((II ↾t {𝑋}) ×t (II ↾t 𝑉)))
229 restsn2 23109 . . . . . . . . . . . . . . . . . . . . 21 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝑋 ∈ (0[,]1)) → (II ↾t {𝑋}) = 𝒫 {𝑋})
23063, 22, 229sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (II ↾t {𝑋}) = 𝒫 {𝑋})
231 pwsn 4876 . . . . . . . . . . . . . . . . . . . . 21 𝒫 {𝑋} = {∅, {𝑋}}
232 indisconn 23356 . . . . . . . . . . . . . . . . . . . . 21 {∅, {𝑋}} ∈ Conn
233231, 232eqeltri 2830 . . . . . . . . . . . . . . . . . . . 20 𝒫 {𝑋} ∈ Conn
234230, 233eqeltrdi 2842 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (II ↾t {𝑋}) ∈ Conn)
235 txconn 23627 . . . . . . . . . . . . . . . . . . 19 (((II ↾t {𝑋}) ∈ Conn ∧ (II ↾t 𝑉) ∈ Conn) → ((II ↾t {𝑋}) ×t (II ↾t 𝑉)) ∈ Conn)
236234, 72, 235syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((II ↾t {𝑋}) ×t (II ↾t 𝑉)) ∈ Conn)
237228, 236eqeltrd 2834 . . . . . . . . . . . . . . . . 17 (𝜑 → ((II ×t II) ↾t ({𝑋} × 𝑉)) ∈ Conn)
2381, 6, 7, 8, 9, 10, 11cvmlift2lem6 35330 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
23922, 238mpdan 687 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
240 xpss2 5674 . . . . . . . . . . . . . . . . . . . . . 22 (𝑉 ⊆ (0[,]1) → ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)))
24123, 25, 2403syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)))
24222snssd 4785 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑋} ⊆ (0[,]1))
243 xpss1 5673 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑋} ⊆ (0[,]1) → ({𝑋} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
244242, 243syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ({𝑋} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
2454restuni 23100 . . . . . . . . . . . . . . . . . . . . . 22 (((II ×t II) ∈ Top ∧ ({𝑋} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1))) → ({𝑋} × (0[,]1)) = ((II ×t II) ↾t ({𝑋} × (0[,]1))))
24615, 244, 245sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ({𝑋} × (0[,]1)) = ((II ×t II) ↾t ({𝑋} × (0[,]1))))
247241, 246sseqtrd 3995 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ({𝑋} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑋} × (0[,]1))))
248 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 ((II ×t II) ↾t ({𝑋} × (0[,]1))) = ((II ×t II) ↾t ({𝑋} × (0[,]1)))
249248cnrest 23223 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶) ∧ ({𝑋} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑋} × (0[,]1)))) → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
250239, 247, 249syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
251241resabs1d 5995 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) = (𝐾 ↾ ({𝑋} × 𝑉)))
252225, 93xpex 7747 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑋} × (0[,]1)) ∈ V
253252a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ({𝑋} × (0[,]1)) ∈ V)
254 restabs 23103 . . . . . . . . . . . . . . . . . . . . 21 (((II ×t II) ∈ Top ∧ ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)) ∧ ({𝑋} × (0[,]1)) ∈ V) → (((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
25516, 241, 253, 254syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
256255oveq1d 7420 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶) = (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
257250, 251, 2563eltr3d 2848 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
258 df-ima 5667 . . . . . . . . . . . . . . . . . . . 20 (𝐾 “ ({𝑋} × 𝑉)) = ran (𝐾 ↾ ({𝑋} × 𝑉))
25921snssd 4785 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → {𝑋} ⊆ 𝑈)
260 xpss1 5673 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑋} ⊆ 𝑈 → ({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉))
261 imass2 6089 . . . . . . . . . . . . . . . . . . . . . 22 (({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉) → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
262259, 260, 2613syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
263262, 124sstrd 3969 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐹𝑀))
264258, 263eqsstrrid 3998 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝐾 ↾ ({𝑋} × 𝑉)) ⊆ (𝐹𝑀))
265 cnrest2 23224 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ ({𝑋} × 𝑉)) ⊆ (𝐹𝑀) ∧ (𝐹𝑀) ⊆ 𝐵) → ((𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
266196, 264, 135, 265syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
267257, 266mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn (𝐶t (𝐹𝑀))))
268 opelxpi 5691 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ {𝑋} ∧ 𝑌𝑉) → ⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝑉))
269219, 27, 268syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝑉))
270259, 260syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉))
271270, 50sstrd 3969 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ({𝑋} × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
2724restuni 23100 . . . . . . . . . . . . . . . . . . 19 (((II ×t II) ∈ Top ∧ ({𝑋} × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → ({𝑋} × 𝑉) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
27315, 271, 272sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → ({𝑋} × 𝑉) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
274269, 273eleqtrd 2836 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((II ×t II) ↾t ({𝑋} × 𝑉)))
275 df-ov 7408 . . . . . . . . . . . . . . . . . . 19 (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = ((𝐾 ↾ ({𝑋} × 𝑉))‘⟨𝑋, 𝑌⟩)
276 ovres 7573 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ {𝑋} ∧ 𝑌𝑉) → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = (𝑋𝐾𝑌))
277219, 27, 276syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = (𝑋𝐾𝑌))
278275, 277eqtr3id 2784 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉))‘⟨𝑋, 𝑌⟩) = (𝑋𝐾𝑌))
27945simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋𝐾𝑌) ∈ 𝑊)
280278, 279eqeltrd 2834 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉))‘⟨𝑋, 𝑌⟩) ∈ 𝑊)
281224, 237, 267, 155, 158, 274, 280conncn 23364 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)): ((II ×t II) ↾t ({𝑋} × 𝑉))⟶𝑊)
282273feq2d 6692 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉)):({𝑋} × 𝑉)⟶𝑊 ↔ (𝐾 ↾ ({𝑋} × 𝑉)): ((II ×t II) ↾t ({𝑋} × 𝑉))⟶𝑊))
283281, 282mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)):({𝑋} × 𝑉)⟶𝑊)
284283, 219, 160fovcdmd 7579 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) ∈ 𝑊)
285223, 284eqeltrd 2834 . . . . . . . . . . . . 13 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍}))‘⟨𝑋, 𝑍⟩) ∈ 𝑊)
286178, 194, 206, 155, 158, 214, 285conncn 23364 . . . . . . . . . . . 12 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})): ((II ×t II) ↾t (𝑈 × {𝑍}))⟶𝑊)
287213feq2d 6692 . . . . . . . . . . . 12 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊 ↔ (𝐾 ↾ (𝑈 × {𝑍})): ((II ×t II) ↾t (𝑈 × {𝑍}))⟶𝑊))
288286, 287mpbird 257 . . . . . . . . . . 11 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊)
289288adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊)
290289, 106, 173fovcdmd 7579 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) ∈ 𝑊)
291177, 290eqeltrd 2834 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉))‘⟨𝑚, 𝑍⟩) ∈ 𝑊)
29256, 76, 139, 156, 159, 167, 291conncn 23364 . . . . . . 7 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)): ((II ×t II) ↾t ({𝑚} × 𝑉))⟶𝑊)
293166feq2d 6692 . . . . . . 7 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉)):({𝑚} × 𝑉)⟶𝑊 ↔ (𝐾 ↾ ({𝑚} × 𝑉)): ((II ×t II) ↾t ({𝑚} × 𝑉))⟶𝑊))
294292, 293mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)):({𝑚} × 𝑉)⟶𝑊)
295294, 52, 53fovcdmd 7579 . . . . 5 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) ∈ 𝑊)
29655, 295eqeltrrd 2835 . . . 4 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚𝐾𝑛) ∈ 𝑊)
297296ralrimivva 3187 . . 3 (𝜑 → ∀𝑚𝑈𝑛𝑉 (𝑚𝐾𝑛) ∈ 𝑊)
298 funimassov 7584 . . . 4 ((Fun 𝐾 ∧ (𝑈 × 𝑉) ⊆ dom 𝐾) → ((𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊 ↔ ∀𝑚𝑈𝑛𝑉 (𝑚𝐾𝑛) ∈ 𝑊))
299119, 121, 298syl2anc 584 . . 3 (𝜑 → ((𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊 ↔ ∀𝑚𝑈𝑛𝑉 (𝑚𝐾𝑛) ∈ 𝑊))
300297, 299mpbird 257 . 2 (𝜑 → (𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊)
3011, 4, 5, 6, 12, 14, 16, 30, 31, 48, 50, 300cvmlift2lem9a 35325 1 (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  {cpr 4603  cop 4607   cuni 4883  cmpt 5201   × cxp 5652  ccnv 5653  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  ccom 5658  Fun wfun 6525  wf 6527  cfv 6531  crio 7361  (class class class)co 7405  cmpo 7407  0cc0 11129  1c1 11130  [,]cicc 13365  t crest 17434  Topctop 22831  TopOnctopon 22848  Clsdccld 22954   Cn ccn 23162  Conncconn 23349   ×t ctx 23498  Homeochmeo 23691  IIcii 24819   CovMap ccvm 35277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-ec 8721  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-cn 23165  df-cnp 23166  df-cmp 23325  df-conn 23350  df-lly 23404  df-nlly 23405  df-tx 23500  df-hmeo 23693  df-xms 24259  df-ms 24260  df-tms 24261  df-ii 24821  df-cncf 24822  df-htpy 24920  df-phtpy 24921  df-phtpc 24942  df-pconn 35243  df-sconn 35244  df-cvm 35278
This theorem is referenced by:  cvmlift2lem10  35334
  Copyright terms: Public domain W3C validator