Step | Hyp | Ref
| Expression |
1 | | cvmlift2.b |
. 2
⊢ 𝐵 = ∪
𝐶 |
2 | | iitop 24052 |
. . 3
⊢ II ∈
Top |
3 | | iiuni 24053 |
. . 3
⊢ (0[,]1) =
∪ II |
4 | 2, 2, 3, 3 | txunii 22753 |
. 2
⊢ ((0[,]1)
× (0[,]1)) = ∪ (II ×t
II) |
5 | | cvmlift2lem10.s |
. 2
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) |
6 | | cvmlift2.f |
. 2
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
7 | | cvmlift2.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn
𝐽)) |
8 | | cvmlift2.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
9 | | cvmlift2.i |
. . 3
⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) |
10 | | cvmlift2.h |
. . 3
⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) |
11 | | cvmlift2.k |
. . 3
⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) |
12 | 1, 6, 7, 8, 9, 10,
11 | cvmlift2lem5 33278 |
. 2
⊢ (𝜑 → 𝐾:((0[,]1) × (0[,]1))⟶𝐵) |
13 | 1, 6, 7, 8, 9, 10,
11 | cvmlift2lem7 33280 |
. . 3
⊢ (𝜑 → (𝐹 ∘ 𝐾) = 𝐺) |
14 | 13, 7 | eqeltrd 2840 |
. 2
⊢ (𝜑 → (𝐹 ∘ 𝐾) ∈ ((II ×t II) Cn
𝐽)) |
15 | 2, 2 | txtopi 22750 |
. . 3
⊢ (II
×t II) ∈ Top |
16 | 15 | a1i 11 |
. 2
⊢ (𝜑 → (II ×t
II) ∈ Top) |
17 | | cvmlift2lem9.3 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ II) |
18 | | elssuni 4872 |
. . . . . 6
⊢ (𝑈 ∈ II → 𝑈 ⊆ ∪ II) |
19 | 18, 3 | sseqtrrdi 3973 |
. . . . 5
⊢ (𝑈 ∈ II → 𝑈 ⊆
(0[,]1)) |
20 | 17, 19 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑈 ⊆ (0[,]1)) |
21 | | cvmlift2lem9.7 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
22 | 20, 21 | sseldd 3923 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (0[,]1)) |
23 | | cvmlift2lem9.4 |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ II) |
24 | | elssuni 4872 |
. . . . . 6
⊢ (𝑉 ∈ II → 𝑉 ⊆ ∪ II) |
25 | 24, 3 | sseqtrrdi 3973 |
. . . . 5
⊢ (𝑉 ∈ II → 𝑉 ⊆
(0[,]1)) |
26 | 23, 25 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑉 ⊆ (0[,]1)) |
27 | | cvmlift2lem9.8 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
28 | 26, 27 | sseldd 3923 |
. . 3
⊢ (𝜑 → 𝑌 ∈ (0[,]1)) |
29 | | opelxpi 5627 |
. . 3
⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) →
〈𝑋, 𝑌〉 ∈ ((0[,]1) ×
(0[,]1))) |
30 | 22, 28, 29 | syl2anc 584 |
. 2
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((0[,]1) ×
(0[,]1))) |
31 | | cvmlift2lem9.2 |
. 2
⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝑀)) |
32 | 12, 22, 28 | fovrnd 7453 |
. . . 4
⊢ (𝜑 → (𝑋𝐾𝑌) ∈ 𝐵) |
33 | | fvco3 6876 |
. . . . . . . 8
⊢ ((𝐾:((0[,]1) ×
(0[,]1))⟶𝐵 ∧
〈𝑋, 𝑌〉 ∈ ((0[,]1) × (0[,]1)))
→ ((𝐹 ∘ 𝐾)‘〈𝑋, 𝑌〉) = (𝐹‘(𝐾‘〈𝑋, 𝑌〉))) |
34 | 12, 30, 33 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ∘ 𝐾)‘〈𝑋, 𝑌〉) = (𝐹‘(𝐾‘〈𝑋, 𝑌〉))) |
35 | 13 | fveq1d 6785 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ∘ 𝐾)‘〈𝑋, 𝑌〉) = (𝐺‘〈𝑋, 𝑌〉)) |
36 | 34, 35 | eqtr3d 2781 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(𝐾‘〈𝑋, 𝑌〉)) = (𝐺‘〈𝑋, 𝑌〉)) |
37 | | df-ov 7287 |
. . . . . . 7
⊢ (𝑋𝐾𝑌) = (𝐾‘〈𝑋, 𝑌〉) |
38 | 37 | fveq2i 6786 |
. . . . . 6
⊢ (𝐹‘(𝑋𝐾𝑌)) = (𝐹‘(𝐾‘〈𝑋, 𝑌〉)) |
39 | | df-ov 7287 |
. . . . . 6
⊢ (𝑋𝐺𝑌) = (𝐺‘〈𝑋, 𝑌〉) |
40 | 36, 38, 39 | 3eqtr4g 2804 |
. . . . 5
⊢ (𝜑 → (𝐹‘(𝑋𝐾𝑌)) = (𝑋𝐺𝑌)) |
41 | | cvmlift2lem9.1 |
. . . . 5
⊢ (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀) |
42 | 40, 41 | eqeltrd 2840 |
. . . 4
⊢ (𝜑 → (𝐹‘(𝑋𝐾𝑌)) ∈ 𝑀) |
43 | | cvmlift2lem9.w |
. . . . 5
⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝑋𝐾𝑌) ∈ 𝑏) |
44 | 5, 1, 43 | cvmsiota 33248 |
. . . 4
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑀) ∧ (𝑋𝐾𝑌) ∈ 𝐵 ∧ (𝐹‘(𝑋𝐾𝑌)) ∈ 𝑀)) → (𝑊 ∈ 𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊)) |
45 | 6, 31, 32, 42, 44 | syl13anc 1371 |
. . 3
⊢ (𝜑 → (𝑊 ∈ 𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊)) |
46 | 37 | eleq1i 2830 |
. . . 4
⊢ ((𝑋𝐾𝑌) ∈ 𝑊 ↔ (𝐾‘〈𝑋, 𝑌〉) ∈ 𝑊) |
47 | 46 | anbi2i 623 |
. . 3
⊢ ((𝑊 ∈ 𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊) ↔ (𝑊 ∈ 𝑇 ∧ (𝐾‘〈𝑋, 𝑌〉) ∈ 𝑊)) |
48 | 45, 47 | sylib 217 |
. 2
⊢ (𝜑 → (𝑊 ∈ 𝑇 ∧ (𝐾‘〈𝑋, 𝑌〉) ∈ 𝑊)) |
49 | | xpss12 5605 |
. . 3
⊢ ((𝑈 ⊆ (0[,]1) ∧ 𝑉 ⊆ (0[,]1)) → (𝑈 × 𝑉) ⊆ ((0[,]1) ×
(0[,]1))) |
50 | 20, 26, 49 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑈 × 𝑉) ⊆ ((0[,]1) ×
(0[,]1))) |
51 | | snidg 4596 |
. . . . . . 7
⊢ (𝑚 ∈ 𝑈 → 𝑚 ∈ {𝑚}) |
52 | 51 | ad2antrl 725 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 𝑚 ∈ {𝑚}) |
53 | | simprr 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 𝑛 ∈ 𝑉) |
54 | | ovres 7447 |
. . . . . 6
⊢ ((𝑚 ∈ {𝑚} ∧ 𝑛 ∈ 𝑉) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) = (𝑚𝐾𝑛)) |
55 | 52, 53, 54 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) = (𝑚𝐾𝑛)) |
56 | | eqid 2739 |
. . . . . . . 8
⊢ ∪ ((II ×t II) ↾t ({𝑚} × 𝑉)) = ∪ ((II
×t II) ↾t ({𝑚} × 𝑉)) |
57 | 2 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → II ∈ Top) |
58 | | snex 5355 |
. . . . . . . . . . 11
⊢ {𝑚} ∈ V |
59 | 58 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → {𝑚} ∈ V) |
60 | 23 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 𝑉 ∈ II) |
61 | | txrest 22791 |
. . . . . . . . . 10
⊢ (((II
∈ Top ∧ II ∈ Top) ∧ ({𝑚} ∈ V ∧ 𝑉 ∈ II)) → ((II ×t
II) ↾t ({𝑚} × 𝑉)) = ((II ↾t {𝑚}) ×t (II
↾t 𝑉))) |
62 | 57, 57, 59, 60, 61 | syl22anc 836 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ((II ×t II)
↾t ({𝑚}
× 𝑉)) = ((II
↾t {𝑚})
×t (II ↾t 𝑉))) |
63 | | iitopon 24051 |
. . . . . . . . . . . 12
⊢ II ∈
(TopOn‘(0[,]1)) |
64 | 20 | sselda 3922 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑈) → 𝑚 ∈ (0[,]1)) |
65 | 64 | adantrr 714 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 𝑚 ∈ (0[,]1)) |
66 | | restsn2 22331 |
. . . . . . . . . . . 12
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ 𝑚 ∈ (0[,]1)) → (II
↾t {𝑚}) =
𝒫 {𝑚}) |
67 | 63, 65, 66 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (II ↾t {𝑚}) = 𝒫 {𝑚}) |
68 | | pwsn 4832 |
. . . . . . . . . . . 12
⊢ 𝒫
{𝑚} = {∅, {𝑚}} |
69 | | indisconn 22578 |
. . . . . . . . . . . 12
⊢ {∅,
{𝑚}} ∈
Conn |
70 | 68, 69 | eqeltri 2836 |
. . . . . . . . . . 11
⊢ 𝒫
{𝑚} ∈
Conn |
71 | 67, 70 | eqeltrdi 2848 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (II ↾t {𝑚}) ∈ Conn) |
72 | | cvmlift2lem9.6 |
. . . . . . . . . . 11
⊢ (𝜑 → (II ↾t
𝑉) ∈
Conn) |
73 | 72 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (II ↾t 𝑉) ∈ Conn) |
74 | | txconn 22849 |
. . . . . . . . . 10
⊢ (((II
↾t {𝑚})
∈ Conn ∧ (II ↾t 𝑉) ∈ Conn) → ((II
↾t {𝑚})
×t (II ↾t 𝑉)) ∈ Conn) |
75 | 71, 73, 74 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ((II ↾t {𝑚}) ×t (II
↾t 𝑉))
∈ Conn) |
76 | 62, 75 | eqeltrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ((II ×t II)
↾t ({𝑚}
× 𝑉)) ∈
Conn) |
77 | 1, 6, 7, 8, 9, 10,
11 | cvmlift2lem6 33279 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (0[,]1)) → (𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II
×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶)) |
78 | 65, 77 | syldan 591 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II
×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶)) |
79 | 26 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 𝑉 ⊆ (0[,]1)) |
80 | | xpss2 5610 |
. . . . . . . . . . . . 13
⊢ (𝑉 ⊆ (0[,]1) → ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1))) |
81 | 79, 80 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1))) |
82 | 65 | snssd 4743 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → {𝑚} ⊆ (0[,]1)) |
83 | | xpss1 5609 |
. . . . . . . . . . . . . 14
⊢ ({𝑚} ⊆ (0[,]1) → ({𝑚} × (0[,]1)) ⊆
((0[,]1) × (0[,]1))) |
84 | 82, 83 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ({𝑚} × (0[,]1)) ⊆ ((0[,]1) ×
(0[,]1))) |
85 | 4 | restuni 22322 |
. . . . . . . . . . . . 13
⊢ (((II
×t II) ∈ Top ∧ ({𝑚} × (0[,]1)) ⊆ ((0[,]1) ×
(0[,]1))) → ({𝑚}
× (0[,]1)) = ∪ ((II ×t II)
↾t ({𝑚}
× (0[,]1)))) |
86 | 15, 84, 85 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ({𝑚} × (0[,]1)) = ∪ ((II ×t II) ↾t ({𝑚} ×
(0[,]1)))) |
87 | 81, 86 | sseqtrd 3962 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ({𝑚} × 𝑉) ⊆ ∪ ((II
×t II) ↾t ({𝑚} × (0[,]1)))) |
88 | | eqid 2739 |
. . . . . . . . . . . 12
⊢ ∪ ((II ×t II) ↾t ({𝑚} × (0[,]1))) = ∪ ((II ×t II) ↾t ({𝑚} ×
(0[,]1))) |
89 | 88 | cnrest 22445 |
. . . . . . . . . . 11
⊢ (((𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II
×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶) ∧ ({𝑚} × 𝑉) ⊆ ∪ ((II
×t II) ↾t ({𝑚} × (0[,]1)))) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) ∈ ((((II ×t II)
↾t ({𝑚}
× (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶)) |
90 | 78, 87, 89 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) ∈ ((((II ×t II)
↾t ({𝑚}
× (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶)) |
91 | 81 | resabs1d 5925 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) = (𝐾 ↾ ({𝑚} × 𝑉))) |
92 | 15 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (II ×t II) ∈
Top) |
93 | | ovex 7317 |
. . . . . . . . . . . . . 14
⊢ (0[,]1)
∈ V |
94 | 58, 93 | xpex 7612 |
. . . . . . . . . . . . 13
⊢ ({𝑚} × (0[,]1)) ∈
V |
95 | 94 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ({𝑚} × (0[,]1)) ∈ V) |
96 | | restabs 22325 |
. . . . . . . . . . . 12
⊢ (((II
×t II) ∈ Top ∧ ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)) ∧ ({𝑚} × (0[,]1)) ∈ V) → (((II
×t II) ↾t ({𝑚} × (0[,]1))) ↾t
({𝑚} × 𝑉)) = ((II ×t
II) ↾t ({𝑚} × 𝑉))) |
97 | 92, 81, 95, 96 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (((II ×t II)
↾t ({𝑚}
× (0[,]1))) ↾t ({𝑚} × 𝑉)) = ((II ×t II)
↾t ({𝑚}
× 𝑉))) |
98 | 97 | oveq1d 7299 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ((((II ×t II)
↾t ({𝑚}
× (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶) = (((II ×t II)
↾t ({𝑚}
× 𝑉)) Cn 𝐶)) |
99 | 90, 91, 98 | 3eltr3d 2854 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II)
↾t ({𝑚}
× 𝑉)) Cn 𝐶)) |
100 | | cvmtop1 33231 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
101 | 6, 100 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ Top) |
102 | 101 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 𝐶 ∈ Top) |
103 | 1 | toptopon 22075 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵)) |
104 | 102, 103 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 𝐶 ∈ (TopOn‘𝐵)) |
105 | | df-ima 5603 |
. . . . . . . . . . 11
⊢ (𝐾 “ ({𝑚} × 𝑉)) = ran (𝐾 ↾ ({𝑚} × 𝑉)) |
106 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 𝑚 ∈ 𝑈) |
107 | 106 | snssd 4743 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → {𝑚} ⊆ 𝑈) |
108 | | xpss1 5609 |
. . . . . . . . . . . . 13
⊢ ({𝑚} ⊆ 𝑈 → ({𝑚} × 𝑉) ⊆ (𝑈 × 𝑉)) |
109 | | imass2 6013 |
. . . . . . . . . . . . 13
⊢ (({𝑚} × 𝑉) ⊆ (𝑈 × 𝑉) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉))) |
110 | 107, 108,
109 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉))) |
111 | | cvmlift2lem9.9 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 × 𝑉) ⊆ (◡𝐺 “ 𝑀)) |
112 | | imaco 6159 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝐾 ∘ ◡𝐹) “ 𝑀) = (◡𝐾 “ (◡𝐹 “ 𝑀)) |
113 | | cnvco 5797 |
. . . . . . . . . . . . . . . . . 18
⊢ ◡(𝐹 ∘ 𝐾) = (◡𝐾 ∘ ◡𝐹) |
114 | 13 | cnveqd 5787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ◡(𝐹 ∘ 𝐾) = ◡𝐺) |
115 | 113, 114 | eqtr3id 2793 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (◡𝐾 ∘ ◡𝐹) = ◡𝐺) |
116 | 115 | imaeq1d 5971 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((◡𝐾 ∘ ◡𝐹) “ 𝑀) = (◡𝐺 “ 𝑀)) |
117 | 112, 116 | eqtr3id 2793 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (◡𝐾 “ (◡𝐹 “ 𝑀)) = (◡𝐺 “ 𝑀)) |
118 | 111, 117 | sseqtrrd 3963 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 × 𝑉) ⊆ (◡𝐾 “ (◡𝐹 “ 𝑀))) |
119 | 12 | ffund 6613 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Fun 𝐾) |
120 | 12 | fdmd 6620 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom 𝐾 = ((0[,]1) ×
(0[,]1))) |
121 | 50, 120 | sseqtrrd 3963 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 × 𝑉) ⊆ dom 𝐾) |
122 | | funimass3 6940 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐾 ∧ (𝑈 × 𝑉) ⊆ dom 𝐾) → ((𝐾 “ (𝑈 × 𝑉)) ⊆ (◡𝐹 “ 𝑀) ↔ (𝑈 × 𝑉) ⊆ (◡𝐾 “ (◡𝐹 “ 𝑀)))) |
123 | 119, 121,
122 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐾 “ (𝑈 × 𝑉)) ⊆ (◡𝐹 “ 𝑀) ↔ (𝑈 × 𝑉) ⊆ (◡𝐾 “ (◡𝐹 “ 𝑀)))) |
124 | 118, 123 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 “ (𝑈 × 𝑉)) ⊆ (◡𝐹 “ 𝑀)) |
125 | 124 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝐾 “ (𝑈 × 𝑉)) ⊆ (◡𝐹 “ 𝑀)) |
126 | 110, 125 | sstrd 3932 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (◡𝐹 “ 𝑀)) |
127 | 105, 126 | eqsstrrid 3971 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ran (𝐾 ↾ ({𝑚} × 𝑉)) ⊆ (◡𝐹 “ 𝑀)) |
128 | | cnvimass 5992 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ 𝑀) ⊆ dom 𝐹 |
129 | | cvmcn 33233 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) |
130 | 6, 129 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ (𝐶 Cn 𝐽)) |
131 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝐽 =
∪ 𝐽 |
132 | 1, 131 | cnf 22406 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵⟶∪ 𝐽) |
133 | | fdm 6618 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐵⟶∪ 𝐽 → dom 𝐹 = 𝐵) |
134 | 130, 132,
133 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝐹 = 𝐵) |
135 | 128, 134 | sseqtrid 3974 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 “ 𝑀) ⊆ 𝐵) |
136 | 135 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (◡𝐹 “ 𝑀) ⊆ 𝐵) |
137 | | cnrest2 22446 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ ({𝑚} × 𝑉)) ⊆ (◡𝐹 “ 𝑀) ∧ (◡𝐹 “ 𝑀) ⊆ 𝐵) → ((𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II)
↾t ({𝑚}
× 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II)
↾t ({𝑚}
× 𝑉)) Cn (𝐶 ↾t (◡𝐹 “ 𝑀))))) |
138 | 104, 127,
136, 137 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II)
↾t ({𝑚}
× 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II)
↾t ({𝑚}
× 𝑉)) Cn (𝐶 ↾t (◡𝐹 “ 𝑀))))) |
139 | 99, 138 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II)
↾t ({𝑚}
× 𝑉)) Cn (𝐶 ↾t (◡𝐹 “ 𝑀)))) |
140 | 5 | cvmsss 33238 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ (𝑆‘𝑀) → 𝑇 ⊆ 𝐶) |
141 | 31, 140 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ⊆ 𝐶) |
142 | 45 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ 𝑇) |
143 | 141, 142 | sseldd 3923 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ 𝐶) |
144 | | elssuni 4872 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ 𝑇 → 𝑊 ⊆ ∪ 𝑇) |
145 | 142, 144 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ⊆ ∪ 𝑇) |
146 | 5 | cvmsuni 33240 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ (𝑆‘𝑀) → ∪ 𝑇 = (◡𝐹 “ 𝑀)) |
147 | 31, 146 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ 𝑇 =
(◡𝐹 “ 𝑀)) |
148 | 145, 147 | sseqtrd 3962 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ⊆ (◡𝐹 “ 𝑀)) |
149 | 5 | cvmsrcl 33235 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ (𝑆‘𝑀) → 𝑀 ∈ 𝐽) |
150 | 31, 149 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ 𝐽) |
151 | | cnima 22425 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ 𝑀 ∈ 𝐽) → (◡𝐹 “ 𝑀) ∈ 𝐶) |
152 | 130, 150,
151 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 “ 𝑀) ∈ 𝐶) |
153 | | restopn2 22337 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ Top ∧ (◡𝐹 “ 𝑀) ∈ 𝐶) → (𝑊 ∈ (𝐶 ↾t (◡𝐹 “ 𝑀)) ↔ (𝑊 ∈ 𝐶 ∧ 𝑊 ⊆ (◡𝐹 “ 𝑀)))) |
154 | 101, 152,
153 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑊 ∈ (𝐶 ↾t (◡𝐹 “ 𝑀)) ↔ (𝑊 ∈ 𝐶 ∧ 𝑊 ⊆ (◡𝐹 “ 𝑀)))) |
155 | 143, 148,
154 | mpbir2and 710 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ (𝐶 ↾t (◡𝐹 “ 𝑀))) |
156 | 155 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 𝑊 ∈ (𝐶 ↾t (◡𝐹 “ 𝑀))) |
157 | 5 | cvmscld 33244 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑀) ∧ 𝑊 ∈ 𝑇) → 𝑊 ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑀)))) |
158 | 6, 31, 142, 157 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑀)))) |
159 | 158 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 𝑊 ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑀)))) |
160 | | cvmlift2lem9.10 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
161 | 160 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 𝑍 ∈ 𝑉) |
162 | | opelxpi 5627 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ {𝑚} ∧ 𝑍 ∈ 𝑉) → 〈𝑚, 𝑍〉 ∈ ({𝑚} × 𝑉)) |
163 | 52, 161, 162 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 〈𝑚, 𝑍〉 ∈ ({𝑚} × 𝑉)) |
164 | 81, 84 | sstrd 3932 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ({𝑚} × 𝑉) ⊆ ((0[,]1) ×
(0[,]1))) |
165 | 4 | restuni 22322 |
. . . . . . . . . 10
⊢ (((II
×t II) ∈ Top ∧ ({𝑚} × 𝑉) ⊆ ((0[,]1) × (0[,]1))) →
({𝑚} × 𝑉) = ∪
((II ×t II) ↾t ({𝑚} × 𝑉))) |
166 | 15, 164, 165 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ({𝑚} × 𝑉) = ∪ ((II
×t II) ↾t ({𝑚} × 𝑉))) |
167 | 163, 166 | eleqtrd 2842 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 〈𝑚, 𝑍〉 ∈ ∪
((II ×t II) ↾t ({𝑚} × 𝑉))) |
168 | | df-ov 7287 |
. . . . . . . . . 10
⊢ (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = ((𝐾 ↾ ({𝑚} × 𝑉))‘〈𝑚, 𝑍〉) |
169 | | ovres 7447 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ {𝑚} ∧ 𝑍 ∈ 𝑉) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚𝐾𝑍)) |
170 | 52, 161, 169 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚𝐾𝑍)) |
171 | | snidg 4596 |
. . . . . . . . . . . . . 14
⊢ (𝑍 ∈ 𝑉 → 𝑍 ∈ {𝑍}) |
172 | 160, 171 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
173 | 172 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → 𝑍 ∈ {𝑍}) |
174 | | ovres 7447 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ 𝑈 ∧ 𝑍 ∈ {𝑍}) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑚𝐾𝑍)) |
175 | 106, 173,
174 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑚𝐾𝑍)) |
176 | 170, 175 | eqtr4d 2782 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍)) |
177 | 168, 176 | eqtr3id 2793 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉))‘〈𝑚, 𝑍〉) = (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍)) |
178 | | eqid 2739 |
. . . . . . . . . . . . 13
⊢ ∪ ((II ×t II) ↾t (𝑈 × {𝑍})) = ∪ ((II
×t II) ↾t (𝑈 × {𝑍})) |
179 | 2 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → II ∈
Top) |
180 | | snex 5355 |
. . . . . . . . . . . . . . . 16
⊢ {𝑍} ∈ V |
181 | 180 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → {𝑍} ∈ V) |
182 | | txrest 22791 |
. . . . . . . . . . . . . . 15
⊢ (((II
∈ Top ∧ II ∈ Top) ∧ (𝑈 ∈ II ∧ {𝑍} ∈ V)) → ((II ×t
II) ↾t (𝑈
× {𝑍})) = ((II
↾t 𝑈)
×t (II ↾t {𝑍}))) |
183 | 179, 179,
17, 181, 182 | syl22anc 836 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((II ×t
II) ↾t (𝑈
× {𝑍})) = ((II
↾t 𝑈)
×t (II ↾t {𝑍}))) |
184 | | cvmlift2lem9.5 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (II ↾t
𝑈) ∈
Conn) |
185 | 26, 160 | sseldd 3923 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑍 ∈ (0[,]1)) |
186 | | restsn2 22331 |
. . . . . . . . . . . . . . . . 17
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ 𝑍 ∈ (0[,]1)) → (II
↾t {𝑍}) =
𝒫 {𝑍}) |
187 | 63, 185, 186 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (II ↾t
{𝑍}) = 𝒫 {𝑍}) |
188 | | pwsn 4832 |
. . . . . . . . . . . . . . . . 17
⊢ 𝒫
{𝑍} = {∅, {𝑍}} |
189 | | indisconn 22578 |
. . . . . . . . . . . . . . . . 17
⊢ {∅,
{𝑍}} ∈
Conn |
190 | 188, 189 | eqeltri 2836 |
. . . . . . . . . . . . . . . 16
⊢ 𝒫
{𝑍} ∈
Conn |
191 | 187, 190 | eqeltrdi 2848 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (II ↾t
{𝑍}) ∈
Conn) |
192 | | txconn 22849 |
. . . . . . . . . . . . . . 15
⊢ (((II
↾t 𝑈)
∈ Conn ∧ (II ↾t {𝑍}) ∈ Conn) → ((II
↾t 𝑈)
×t (II ↾t {𝑍})) ∈ Conn) |
193 | 184, 191,
192 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((II ↾t
𝑈) ×t (II
↾t {𝑍}))
∈ Conn) |
194 | 183, 193 | eqeltrd 2840 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((II ×t
II) ↾t (𝑈
× {𝑍})) ∈
Conn) |
195 | | cvmlift2lem9.11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II)
↾t (𝑈
× {𝑍})) Cn 𝐶)) |
196 | 101, 103 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐶 ∈ (TopOn‘𝐵)) |
197 | | df-ima 5603 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 “ (𝑈 × {𝑍})) = ran (𝐾 ↾ (𝑈 × {𝑍})) |
198 | 160 | snssd 4743 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → {𝑍} ⊆ 𝑉) |
199 | | xpss2 5610 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑍} ⊆ 𝑉 → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉)) |
200 | | imass2 6013 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉) → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐾 “ (𝑈 × 𝑉))) |
201 | 198, 199,
200 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐾 “ (𝑈 × 𝑉))) |
202 | 201, 124 | sstrd 3932 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾 “ (𝑈 × {𝑍})) ⊆ (◡𝐹 “ 𝑀)) |
203 | 197, 202 | eqsstrrid 3971 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ran (𝐾 ↾ (𝑈 × {𝑍})) ⊆ (◡𝐹 “ 𝑀)) |
204 | | cnrest2 22446 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ (𝑈 × {𝑍})) ⊆ (◡𝐹 “ 𝑀) ∧ (◡𝐹 “ 𝑀) ⊆ 𝐵) → ((𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II)
↾t (𝑈
× {𝑍})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II)
↾t (𝑈
× {𝑍})) Cn (𝐶 ↾t (◡𝐹 “ 𝑀))))) |
205 | 196, 203,
135, 204 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II)
↾t (𝑈
× {𝑍})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II)
↾t (𝑈
× {𝑍})) Cn (𝐶 ↾t (◡𝐹 “ 𝑀))))) |
206 | 195, 205 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II)
↾t (𝑈
× {𝑍})) Cn (𝐶 ↾t (◡𝐹 “ 𝑀)))) |
207 | | opelxpi 5627 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑍 ∈ {𝑍}) → 〈𝑋, 𝑍〉 ∈ (𝑈 × {𝑍})) |
208 | 21, 172, 207 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 〈𝑋, 𝑍〉 ∈ (𝑈 × {𝑍})) |
209 | 185 | snssd 4743 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {𝑍} ⊆ (0[,]1)) |
210 | | xpss12 5605 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ⊆ (0[,]1) ∧ {𝑍} ⊆ (0[,]1)) → (𝑈 × {𝑍}) ⊆ ((0[,]1) ×
(0[,]1))) |
211 | 20, 209, 210 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑈 × {𝑍}) ⊆ ((0[,]1) ×
(0[,]1))) |
212 | 4 | restuni 22322 |
. . . . . . . . . . . . . . 15
⊢ (((II
×t II) ∈ Top ∧ (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1))) →
(𝑈 × {𝑍}) = ∪ ((II ×t II) ↾t (𝑈 × {𝑍}))) |
213 | 15, 211, 212 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑈 × {𝑍}) = ∪ ((II
×t II) ↾t (𝑈 × {𝑍}))) |
214 | 208, 213 | eleqtrd 2842 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 〈𝑋, 𝑍〉 ∈ ∪
((II ×t II) ↾t (𝑈 × {𝑍}))) |
215 | | df-ov 7287 |
. . . . . . . . . . . . . . 15
⊢ (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = ((𝐾 ↾ (𝑈 × {𝑍}))‘〈𝑋, 𝑍〉) |
216 | | ovres 7447 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑍 ∈ {𝑍}) → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋𝐾𝑍)) |
217 | 21, 172, 216 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋𝐾𝑍)) |
218 | | snidg 4596 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ {𝑋}) |
219 | 21, 218 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ {𝑋}) |
220 | | ovres 7447 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∈ {𝑋} ∧ 𝑍 ∈ 𝑉) → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) = (𝑋𝐾𝑍)) |
221 | 219, 160,
220 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) = (𝑋𝐾𝑍)) |
222 | 217, 221 | eqtr4d 2782 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍)) |
223 | 215, 222 | eqtr3id 2793 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍}))‘〈𝑋, 𝑍〉) = (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍)) |
224 | | eqid 2739 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ ((II ×t II) ↾t ({𝑋} × 𝑉)) = ∪ ((II
×t II) ↾t ({𝑋} × 𝑉)) |
225 | | snex 5355 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑋} ∈ V |
226 | 225 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → {𝑋} ∈ V) |
227 | | txrest 22791 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((II
∈ Top ∧ II ∈ Top) ∧ ({𝑋} ∈ V ∧ 𝑉 ∈ II)) → ((II ×t
II) ↾t ({𝑋} × 𝑉)) = ((II ↾t {𝑋}) ×t (II
↾t 𝑉))) |
228 | 179, 179,
226, 23, 227 | syl22anc 836 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((II ×t
II) ↾t ({𝑋} × 𝑉)) = ((II ↾t {𝑋}) ×t (II
↾t 𝑉))) |
229 | | restsn2 22331 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ 𝑋 ∈ (0[,]1)) → (II
↾t {𝑋}) =
𝒫 {𝑋}) |
230 | 63, 22, 229 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (II ↾t
{𝑋}) = 𝒫 {𝑋}) |
231 | | pwsn 4832 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝒫
{𝑋} = {∅, {𝑋}} |
232 | | indisconn 22578 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {∅,
{𝑋}} ∈
Conn |
233 | 231, 232 | eqeltri 2836 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝒫
{𝑋} ∈
Conn |
234 | 230, 233 | eqeltrdi 2848 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (II ↾t
{𝑋}) ∈
Conn) |
235 | | txconn 22849 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((II
↾t {𝑋})
∈ Conn ∧ (II ↾t 𝑉) ∈ Conn) → ((II
↾t {𝑋})
×t (II ↾t 𝑉)) ∈ Conn) |
236 | 234, 72, 235 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((II ↾t
{𝑋}) ×t
(II ↾t 𝑉))
∈ Conn) |
237 | 228, 236 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((II ×t
II) ↾t ({𝑋} × 𝑉)) ∈ Conn) |
238 | 1, 6, 7, 8, 9, 10,
11 | cvmlift2lem6 33279 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II
×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶)) |
239 | 22, 238 | mpdan 684 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II
×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶)) |
240 | | xpss2 5610 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑉 ⊆ (0[,]1) → ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1))) |
241 | 23, 25, 240 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1))) |
242 | 22 | snssd 4743 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → {𝑋} ⊆ (0[,]1)) |
243 | | xpss1 5609 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({𝑋} ⊆ (0[,]1) → ({𝑋} × (0[,]1)) ⊆
((0[,]1) × (0[,]1))) |
244 | 242, 243 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ({𝑋} × (0[,]1)) ⊆ ((0[,]1) ×
(0[,]1))) |
245 | 4 | restuni 22322 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((II
×t II) ∈ Top ∧ ({𝑋} × (0[,]1)) ⊆ ((0[,]1) ×
(0[,]1))) → ({𝑋}
× (0[,]1)) = ∪ ((II ×t II)
↾t ({𝑋}
× (0[,]1)))) |
246 | 15, 244, 245 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ({𝑋} × (0[,]1)) = ∪ ((II ×t II) ↾t ({𝑋} ×
(0[,]1)))) |
247 | 241, 246 | sseqtrd 3962 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ({𝑋} × 𝑉) ⊆ ∪ ((II
×t II) ↾t ({𝑋} × (0[,]1)))) |
248 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∪ ((II ×t II) ↾t ({𝑋} × (0[,]1))) = ∪ ((II ×t II) ↾t ({𝑋} ×
(0[,]1))) |
249 | 248 | cnrest 22445 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II
×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶) ∧ ({𝑋} × 𝑉) ⊆ ∪ ((II
×t II) ↾t ({𝑋} × (0[,]1)))) → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) ∈ ((((II ×t II)
↾t ({𝑋}
× (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶)) |
250 | 239, 247,
249 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) ∈ ((((II ×t II)
↾t ({𝑋}
× (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶)) |
251 | 241 | resabs1d 5925 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) = (𝐾 ↾ ({𝑋} × 𝑉))) |
252 | 225, 93 | xpex 7612 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({𝑋} × (0[,]1)) ∈
V |
253 | 252 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ({𝑋} × (0[,]1)) ∈
V) |
254 | | restabs 22325 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((II
×t II) ∈ Top ∧ ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)) ∧ ({𝑋} × (0[,]1)) ∈ V) → (((II
×t II) ↾t ({𝑋} × (0[,]1))) ↾t
({𝑋} × 𝑉)) = ((II ×t
II) ↾t ({𝑋} × 𝑉))) |
255 | 16, 241, 253, 254 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((II ×t
II) ↾t ({𝑋} × (0[,]1))) ↾t
({𝑋} × 𝑉)) = ((II ×t
II) ↾t ({𝑋} × 𝑉))) |
256 | 255 | oveq1d 7299 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((((II ×t
II) ↾t ({𝑋} × (0[,]1))) ↾t
({𝑋} × 𝑉)) Cn 𝐶) = (((II ×t II)
↾t ({𝑋}
× 𝑉)) Cn 𝐶)) |
257 | 250, 251,
256 | 3eltr3d 2854 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II)
↾t ({𝑋}
× 𝑉)) Cn 𝐶)) |
258 | | df-ima 5603 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐾 “ ({𝑋} × 𝑉)) = ran (𝐾 ↾ ({𝑋} × 𝑉)) |
259 | 21 | snssd 4743 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {𝑋} ⊆ 𝑈) |
260 | | xpss1 5609 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({𝑋} ⊆ 𝑈 → ({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉)) |
261 | | imass2 6013 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉) → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉))) |
262 | 259, 260,
261 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉))) |
263 | 262, 124 | sstrd 3932 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (◡𝐹 “ 𝑀)) |
264 | 258, 263 | eqsstrrid 3971 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ran (𝐾 ↾ ({𝑋} × 𝑉)) ⊆ (◡𝐹 “ 𝑀)) |
265 | | cnrest2 22446 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ ({𝑋} × 𝑉)) ⊆ (◡𝐹 “ 𝑀) ∧ (◡𝐹 “ 𝑀) ⊆ 𝐵) → ((𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II)
↾t ({𝑋}
× 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II)
↾t ({𝑋}
× 𝑉)) Cn (𝐶 ↾t (◡𝐹 “ 𝑀))))) |
266 | 196, 264,
135, 265 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II)
↾t ({𝑋}
× 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II)
↾t ({𝑋}
× 𝑉)) Cn (𝐶 ↾t (◡𝐹 “ 𝑀))))) |
267 | 257, 266 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II)
↾t ({𝑋}
× 𝑉)) Cn (𝐶 ↾t (◡𝐹 “ 𝑀)))) |
268 | | opelxpi 5627 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ {𝑋} ∧ 𝑌 ∈ 𝑉) → 〈𝑋, 𝑌〉 ∈ ({𝑋} × 𝑉)) |
269 | 219, 27, 268 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ({𝑋} × 𝑉)) |
270 | 259, 260 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉)) |
271 | 270, 50 | sstrd 3932 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ({𝑋} × 𝑉) ⊆ ((0[,]1) ×
(0[,]1))) |
272 | 4 | restuni 22322 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((II
×t II) ∈ Top ∧ ({𝑋} × 𝑉) ⊆ ((0[,]1) × (0[,]1))) →
({𝑋} × 𝑉) = ∪
((II ×t II) ↾t ({𝑋} × 𝑉))) |
273 | 15, 271, 272 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ({𝑋} × 𝑉) = ∪ ((II
×t II) ↾t ({𝑋} × 𝑉))) |
274 | 269, 273 | eleqtrd 2842 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ∪
((II ×t II) ↾t ({𝑋} × 𝑉))) |
275 | | df-ov 7287 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = ((𝐾 ↾ ({𝑋} × 𝑉))‘〈𝑋, 𝑌〉) |
276 | | ovres 7447 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑋 ∈ {𝑋} ∧ 𝑌 ∈ 𝑉) → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = (𝑋𝐾𝑌)) |
277 | 219, 27, 276 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = (𝑋𝐾𝑌)) |
278 | 275, 277 | eqtr3id 2793 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉))‘〈𝑋, 𝑌〉) = (𝑋𝐾𝑌)) |
279 | 45 | simprd 496 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑋𝐾𝑌) ∈ 𝑊) |
280 | 278, 279 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉))‘〈𝑋, 𝑌〉) ∈ 𝑊) |
281 | 224, 237,
267, 155, 158, 274, 280 | conncn 22586 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)):∪ ((II
×t II) ↾t ({𝑋} × 𝑉))⟶𝑊) |
282 | 273 | feq2d 6595 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉)):({𝑋} × 𝑉)⟶𝑊 ↔ (𝐾 ↾ ({𝑋} × 𝑉)):∪ ((II
×t II) ↾t ({𝑋} × 𝑉))⟶𝑊)) |
283 | 281, 282 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)):({𝑋} × 𝑉)⟶𝑊) |
284 | 283, 219,
160 | fovrnd 7453 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) ∈ 𝑊) |
285 | 223, 284 | eqeltrd 2840 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍}))‘〈𝑋, 𝑍〉) ∈ 𝑊) |
286 | 178, 194,
206, 155, 158, 214, 285 | conncn 22586 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})):∪ ((II
×t II) ↾t (𝑈 × {𝑍}))⟶𝑊) |
287 | 213 | feq2d 6595 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊 ↔ (𝐾 ↾ (𝑈 × {𝑍})):∪ ((II
×t II) ↾t (𝑈 × {𝑍}))⟶𝑊)) |
288 | 286, 287 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊) |
289 | 288 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊) |
290 | 289, 106,
173 | fovrnd 7453 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) ∈ 𝑊) |
291 | 177, 290 | eqeltrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉))‘〈𝑚, 𝑍〉) ∈ 𝑊) |
292 | 56, 76, 139, 156, 159, 167, 291 | conncn 22586 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)):∪ ((II
×t II) ↾t ({𝑚} × 𝑉))⟶𝑊) |
293 | 166 | feq2d 6595 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉)):({𝑚} × 𝑉)⟶𝑊 ↔ (𝐾 ↾ ({𝑚} × 𝑉)):∪ ((II
×t II) ↾t ({𝑚} × 𝑉))⟶𝑊)) |
294 | 292, 293 | mpbird 256 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)):({𝑚} × 𝑉)⟶𝑊) |
295 | 294, 52, 53 | fovrnd 7453 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) ∈ 𝑊) |
296 | 55, 295 | eqeltrrd 2841 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉)) → (𝑚𝐾𝑛) ∈ 𝑊) |
297 | 296 | ralrimivva 3124 |
. . 3
⊢ (𝜑 → ∀𝑚 ∈ 𝑈 ∀𝑛 ∈ 𝑉 (𝑚𝐾𝑛) ∈ 𝑊) |
298 | | funimassov 7458 |
. . . 4
⊢ ((Fun
𝐾 ∧ (𝑈 × 𝑉) ⊆ dom 𝐾) → ((𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊 ↔ ∀𝑚 ∈ 𝑈 ∀𝑛 ∈ 𝑉 (𝑚𝐾𝑛) ∈ 𝑊)) |
299 | 119, 121,
298 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊 ↔ ∀𝑚 ∈ 𝑈 ∀𝑛 ∈ 𝑉 (𝑚𝐾𝑛) ∈ 𝑊)) |
300 | 297, 299 | mpbird 256 |
. 2
⊢ (𝜑 → (𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊) |
301 | 1, 4, 5, 6, 12, 14, 16, 30, 31, 48, 50, 300 | cvmlift2lem9a 33274 |
1
⊢ (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II)
↾t (𝑈
× 𝑉)) Cn 𝐶)) |