Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem9 Structured version   Visualization version   GIF version

Theorem cvmlift2lem9 34371
Description: Lemma for cvmlift2 34376. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2lem10.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem9.1 (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀)
cvmlift2lem9.2 (𝜑𝑇 ∈ (𝑆𝑀))
cvmlift2lem9.3 (𝜑𝑈 ∈ II)
cvmlift2lem9.4 (𝜑𝑉 ∈ II)
cvmlift2lem9.5 (𝜑 → (II ↾t 𝑈) ∈ Conn)
cvmlift2lem9.6 (𝜑 → (II ↾t 𝑉) ∈ Conn)
cvmlift2lem9.7 (𝜑𝑋𝑈)
cvmlift2lem9.8 (𝜑𝑌𝑉)
cvmlift2lem9.9 (𝜑 → (𝑈 × 𝑉) ⊆ (𝐺𝑀))
cvmlift2lem9.10 (𝜑𝑍𝑉)
cvmlift2lem9.11 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶))
cvmlift2lem9.w 𝑊 = (𝑏𝑇 (𝑋𝐾𝑌) ∈ 𝑏)
Assertion
Ref Expression
cvmlift2lem9 (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
Distinct variable groups:   𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑥,𝑦,𝑧,𝐹   𝜑,𝑏,𝑓,𝑥,𝑦,𝑧   𝑀,𝑏,𝑐,𝑑,𝑘,𝑠,𝑥,𝑦,𝑧   𝑆,𝑏,𝑓,𝑥,𝑦,𝑧   𝐽,𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑥,𝑦,𝑧   𝑇,𝑏,𝑐,𝑑,𝑠   𝑧,𝑈   𝐺,𝑏,𝑐,𝑓,𝑘,𝑥,𝑦,𝑧   𝑊,𝑐,𝑑   𝐻,𝑏,𝑐,𝑓,𝑥,𝑦,𝑧   𝑋,𝑏,𝑐,𝑑,𝑓,𝑘,𝑥,𝑦,𝑧   𝑧,𝑍   𝐶,𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑥,𝑦,𝑧   𝑃,𝑓,𝑘,𝑥,𝑦,𝑧   𝐵,𝑏,𝑐,𝑑,𝑥,𝑦,𝑧   𝑌,𝑏,𝑐,𝑑,𝑓,𝑘,𝑥,𝑦,𝑧   𝐾,𝑏,𝑐,𝑑,𝑓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑓,𝑘,𝑠)   𝑃(𝑠,𝑏,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑘)   𝑈(𝑥,𝑦,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐺(𝑠,𝑑)   𝐻(𝑘,𝑠,𝑑)   𝐾(𝑘,𝑠)   𝑀(𝑓)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑘,𝑠,𝑏)   𝑋(𝑠)   𝑌(𝑠)   𝑍(𝑥,𝑦,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)

Proof of Theorem cvmlift2lem9
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . 2 𝐵 = 𝐶
2 iitop 24403 . . 3 II ∈ Top
3 iiuni 24404 . . 3 (0[,]1) = II
42, 2, 3, 3txunii 23104 . 2 ((0[,]1) × (0[,]1)) = (II ×t II)
5 cvmlift2lem10.s . 2 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
6 cvmlift2.f . 2 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
7 cvmlift2.g . . 3 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
8 cvmlift2.p . . 3 (𝜑𝑃𝐵)
9 cvmlift2.i . . 3 (𝜑 → (𝐹𝑃) = (0𝐺0))
10 cvmlift2.h . . 3 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
11 cvmlift2.k . . 3 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
121, 6, 7, 8, 9, 10, 11cvmlift2lem5 34367 . 2 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
131, 6, 7, 8, 9, 10, 11cvmlift2lem7 34369 . . 3 (𝜑 → (𝐹𝐾) = 𝐺)
1413, 7eqeltrd 2833 . 2 (𝜑 → (𝐹𝐾) ∈ ((II ×t II) Cn 𝐽))
152, 2txtopi 23101 . . 3 (II ×t II) ∈ Top
1615a1i 11 . 2 (𝜑 → (II ×t II) ∈ Top)
17 cvmlift2lem9.3 . . . . 5 (𝜑𝑈 ∈ II)
18 elssuni 4941 . . . . . 6 (𝑈 ∈ II → 𝑈 II)
1918, 3sseqtrrdi 4033 . . . . 5 (𝑈 ∈ II → 𝑈 ⊆ (0[,]1))
2017, 19syl 17 . . . 4 (𝜑𝑈 ⊆ (0[,]1))
21 cvmlift2lem9.7 . . . 4 (𝜑𝑋𝑈)
2220, 21sseldd 3983 . . 3 (𝜑𝑋 ∈ (0[,]1))
23 cvmlift2lem9.4 . . . . 5 (𝜑𝑉 ∈ II)
24 elssuni 4941 . . . . . 6 (𝑉 ∈ II → 𝑉 II)
2524, 3sseqtrrdi 4033 . . . . 5 (𝑉 ∈ II → 𝑉 ⊆ (0[,]1))
2623, 25syl 17 . . . 4 (𝜑𝑉 ⊆ (0[,]1))
27 cvmlift2lem9.8 . . . 4 (𝜑𝑌𝑉)
2826, 27sseldd 3983 . . 3 (𝜑𝑌 ∈ (0[,]1))
29 opelxpi 5713 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
3022, 28, 29syl2anc 584 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
31 cvmlift2lem9.2 . 2 (𝜑𝑇 ∈ (𝑆𝑀))
3212, 22, 28fovcdmd 7581 . . . 4 (𝜑 → (𝑋𝐾𝑌) ∈ 𝐵)
33 fvco3 6990 . . . . . . . 8 ((𝐾:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐾)‘⟨𝑋, 𝑌⟩) = (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩)))
3412, 30, 33syl2anc 584 . . . . . . 7 (𝜑 → ((𝐹𝐾)‘⟨𝑋, 𝑌⟩) = (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩)))
3513fveq1d 6893 . . . . . . 7 (𝜑 → ((𝐹𝐾)‘⟨𝑋, 𝑌⟩) = (𝐺‘⟨𝑋, 𝑌⟩))
3634, 35eqtr3d 2774 . . . . . 6 (𝜑 → (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩)) = (𝐺‘⟨𝑋, 𝑌⟩))
37 df-ov 7414 . . . . . . 7 (𝑋𝐾𝑌) = (𝐾‘⟨𝑋, 𝑌⟩)
3837fveq2i 6894 . . . . . 6 (𝐹‘(𝑋𝐾𝑌)) = (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩))
39 df-ov 7414 . . . . . 6 (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩)
4036, 38, 393eqtr4g 2797 . . . . 5 (𝜑 → (𝐹‘(𝑋𝐾𝑌)) = (𝑋𝐺𝑌))
41 cvmlift2lem9.1 . . . . 5 (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀)
4240, 41eqeltrd 2833 . . . 4 (𝜑 → (𝐹‘(𝑋𝐾𝑌)) ∈ 𝑀)
43 cvmlift2lem9.w . . . . 5 𝑊 = (𝑏𝑇 (𝑋𝐾𝑌) ∈ 𝑏)
445, 1, 43cvmsiota 34337 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑀) ∧ (𝑋𝐾𝑌) ∈ 𝐵 ∧ (𝐹‘(𝑋𝐾𝑌)) ∈ 𝑀)) → (𝑊𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊))
456, 31, 32, 42, 44syl13anc 1372 . . 3 (𝜑 → (𝑊𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊))
4637eleq1i 2824 . . . 4 ((𝑋𝐾𝑌) ∈ 𝑊 ↔ (𝐾‘⟨𝑋, 𝑌⟩) ∈ 𝑊)
4746anbi2i 623 . . 3 ((𝑊𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊) ↔ (𝑊𝑇 ∧ (𝐾‘⟨𝑋, 𝑌⟩) ∈ 𝑊))
4845, 47sylib 217 . 2 (𝜑 → (𝑊𝑇 ∧ (𝐾‘⟨𝑋, 𝑌⟩) ∈ 𝑊))
49 xpss12 5691 . . 3 ((𝑈 ⊆ (0[,]1) ∧ 𝑉 ⊆ (0[,]1)) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
5020, 26, 49syl2anc 584 . 2 (𝜑 → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
51 snidg 4662 . . . . . . 7 (𝑚𝑈𝑚 ∈ {𝑚})
5251ad2antrl 726 . . . . . 6 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑚 ∈ {𝑚})
53 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑛𝑉)
54 ovres 7575 . . . . . 6 ((𝑚 ∈ {𝑚} ∧ 𝑛𝑉) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) = (𝑚𝐾𝑛))
5552, 53, 54syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) = (𝑚𝐾𝑛))
56 eqid 2732 . . . . . . . 8 ((II ×t II) ↾t ({𝑚} × 𝑉)) = ((II ×t II) ↾t ({𝑚} × 𝑉))
572a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → II ∈ Top)
58 snex 5431 . . . . . . . . . . 11 {𝑚} ∈ V
5958a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → {𝑚} ∈ V)
6023adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑉 ∈ II)
61 txrest 23142 . . . . . . . . . 10 (((II ∈ Top ∧ II ∈ Top) ∧ ({𝑚} ∈ V ∧ 𝑉 ∈ II)) → ((II ×t II) ↾t ({𝑚} × 𝑉)) = ((II ↾t {𝑚}) ×t (II ↾t 𝑉)))
6257, 57, 59, 60, 61syl22anc 837 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((II ×t II) ↾t ({𝑚} × 𝑉)) = ((II ↾t {𝑚}) ×t (II ↾t 𝑉)))
63 iitopon 24402 . . . . . . . . . . . 12 II ∈ (TopOn‘(0[,]1))
6420sselda 3982 . . . . . . . . . . . . 13 ((𝜑𝑚𝑈) → 𝑚 ∈ (0[,]1))
6564adantrr 715 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑚 ∈ (0[,]1))
66 restsn2 22682 . . . . . . . . . . . 12 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝑚 ∈ (0[,]1)) → (II ↾t {𝑚}) = 𝒫 {𝑚})
6763, 65, 66sylancr 587 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ↾t {𝑚}) = 𝒫 {𝑚})
68 pwsn 4900 . . . . . . . . . . . 12 𝒫 {𝑚} = {∅, {𝑚}}
69 indisconn 22929 . . . . . . . . . . . 12 {∅, {𝑚}} ∈ Conn
7068, 69eqeltri 2829 . . . . . . . . . . 11 𝒫 {𝑚} ∈ Conn
7167, 70eqeltrdi 2841 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ↾t {𝑚}) ∈ Conn)
72 cvmlift2lem9.6 . . . . . . . . . . 11 (𝜑 → (II ↾t 𝑉) ∈ Conn)
7372adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ↾t 𝑉) ∈ Conn)
74 txconn 23200 . . . . . . . . . 10 (((II ↾t {𝑚}) ∈ Conn ∧ (II ↾t 𝑉) ∈ Conn) → ((II ↾t {𝑚}) ×t (II ↾t 𝑉)) ∈ Conn)
7571, 73, 74syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((II ↾t {𝑚}) ×t (II ↾t 𝑉)) ∈ Conn)
7662, 75eqeltrd 2833 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((II ×t II) ↾t ({𝑚} × 𝑉)) ∈ Conn)
771, 6, 7, 8, 9, 10, 11cvmlift2lem6 34368 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0[,]1)) → (𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶))
7865, 77syldan 591 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶))
7926adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑉 ⊆ (0[,]1))
80 xpss2 5696 . . . . . . . . . . . . 13 (𝑉 ⊆ (0[,]1) → ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)))
8179, 80syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)))
8265snssd 4812 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → {𝑚} ⊆ (0[,]1))
83 xpss1 5695 . . . . . . . . . . . . . 14 ({𝑚} ⊆ (0[,]1) → ({𝑚} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
8482, 83syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
854restuni 22673 . . . . . . . . . . . . 13 (((II ×t II) ∈ Top ∧ ({𝑚} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1))) → ({𝑚} × (0[,]1)) = ((II ×t II) ↾t ({𝑚} × (0[,]1))))
8615, 84, 85sylancr 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × (0[,]1)) = ((II ×t II) ↾t ({𝑚} × (0[,]1))))
8781, 86sseqtrd 4022 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑚} × (0[,]1))))
88 eqid 2732 . . . . . . . . . . . 12 ((II ×t II) ↾t ({𝑚} × (0[,]1))) = ((II ×t II) ↾t ({𝑚} × (0[,]1)))
8988cnrest 22796 . . . . . . . . . . 11 (((𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶) ∧ ({𝑚} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑚} × (0[,]1)))) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
9078, 87, 89syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
9181resabs1d 6012 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) = (𝐾 ↾ ({𝑚} × 𝑉)))
9215a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ×t II) ∈ Top)
93 ovex 7444 . . . . . . . . . . . . . 14 (0[,]1) ∈ V
9458, 93xpex 7742 . . . . . . . . . . . . 13 ({𝑚} × (0[,]1)) ∈ V
9594a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × (0[,]1)) ∈ V)
96 restabs 22676 . . . . . . . . . . . 12 (((II ×t II) ∈ Top ∧ ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)) ∧ ({𝑚} × (0[,]1)) ∈ V) → (((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
9792, 81, 95, 96syl3anc 1371 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
9897oveq1d 7426 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶) = (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
9990, 91, 983eltr3d 2847 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
100 cvmtop1 34320 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
1016, 100syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ Top)
102101adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝐶 ∈ Top)
1031toptopon 22426 . . . . . . . . . . 11 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
104102, 103sylib 217 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝐶 ∈ (TopOn‘𝐵))
105 df-ima 5689 . . . . . . . . . . 11 (𝐾 “ ({𝑚} × 𝑉)) = ran (𝐾 ↾ ({𝑚} × 𝑉))
106 simprl 769 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑚𝑈)
107106snssd 4812 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → {𝑚} ⊆ 𝑈)
108 xpss1 5695 . . . . . . . . . . . . 13 ({𝑚} ⊆ 𝑈 → ({𝑚} × 𝑉) ⊆ (𝑈 × 𝑉))
109 imass2 6101 . . . . . . . . . . . . 13 (({𝑚} × 𝑉) ⊆ (𝑈 × 𝑉) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
110107, 108, 1093syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
111 cvmlift2lem9.9 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 × 𝑉) ⊆ (𝐺𝑀))
112 imaco 6250 . . . . . . . . . . . . . . . 16 ((𝐾𝐹) “ 𝑀) = (𝐾 “ (𝐹𝑀))
113 cnvco 5885 . . . . . . . . . . . . . . . . . 18 (𝐹𝐾) = (𝐾𝐹)
11413cnveqd 5875 . . . . . . . . . . . . . . . . . 18 (𝜑(𝐹𝐾) = 𝐺)
115113, 114eqtr3id 2786 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾𝐹) = 𝐺)
116115imaeq1d 6058 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾𝐹) “ 𝑀) = (𝐺𝑀))
117112, 116eqtr3id 2786 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 “ (𝐹𝑀)) = (𝐺𝑀))
118111, 117sseqtrrd 4023 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 × 𝑉) ⊆ (𝐾 “ (𝐹𝑀)))
11912ffund 6721 . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐾)
12012fdmd 6728 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐾 = ((0[,]1) × (0[,]1)))
12150, 120sseqtrrd 4023 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 × 𝑉) ⊆ dom 𝐾)
122 funimass3 7055 . . . . . . . . . . . . . . 15 ((Fun 𝐾 ∧ (𝑈 × 𝑉) ⊆ dom 𝐾) → ((𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀) ↔ (𝑈 × 𝑉) ⊆ (𝐾 “ (𝐹𝑀))))
123119, 121, 122syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀) ↔ (𝑈 × 𝑉) ⊆ (𝐾 “ (𝐹𝑀))))
124118, 123mpbird 256 . . . . . . . . . . . . 13 (𝜑 → (𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀))
125124adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀))
126110, 125sstrd 3992 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐹𝑀))
127105, 126eqsstrrid 4031 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ran (𝐾 ↾ ({𝑚} × 𝑉)) ⊆ (𝐹𝑀))
128 cnvimass 6080 . . . . . . . . . . . 12 (𝐹𝑀) ⊆ dom 𝐹
129 cvmcn 34322 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
1306, 129syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
131 eqid 2732 . . . . . . . . . . . . . 14 𝐽 = 𝐽
1321, 131cnf 22757 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
133 fdm 6726 . . . . . . . . . . . . 13 (𝐹:𝐵 𝐽 → dom 𝐹 = 𝐵)
134130, 132, 1333syl 18 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐵)
135128, 134sseqtrid 4034 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ⊆ 𝐵)
136135adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐹𝑀) ⊆ 𝐵)
137 cnrest2 22797 . . . . . . . . . 10 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ ({𝑚} × 𝑉)) ⊆ (𝐹𝑀) ∧ (𝐹𝑀) ⊆ 𝐵) → ((𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
138104, 127, 136, 137syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
13999, 138mpbid 231 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn (𝐶t (𝐹𝑀))))
1405cvmsss 34327 . . . . . . . . . . . 12 (𝑇 ∈ (𝑆𝑀) → 𝑇𝐶)
14131, 140syl 17 . . . . . . . . . . 11 (𝜑𝑇𝐶)
14245simpld 495 . . . . . . . . . . 11 (𝜑𝑊𝑇)
143141, 142sseldd 3983 . . . . . . . . . 10 (𝜑𝑊𝐶)
144 elssuni 4941 . . . . . . . . . . . 12 (𝑊𝑇𝑊 𝑇)
145142, 144syl 17 . . . . . . . . . . 11 (𝜑𝑊 𝑇)
1465cvmsuni 34329 . . . . . . . . . . . 12 (𝑇 ∈ (𝑆𝑀) → 𝑇 = (𝐹𝑀))
14731, 146syl 17 . . . . . . . . . . 11 (𝜑 𝑇 = (𝐹𝑀))
148145, 147sseqtrd 4022 . . . . . . . . . 10 (𝜑𝑊 ⊆ (𝐹𝑀))
1495cvmsrcl 34324 . . . . . . . . . . . . 13 (𝑇 ∈ (𝑆𝑀) → 𝑀𝐽)
15031, 149syl 17 . . . . . . . . . . . 12 (𝜑𝑀𝐽)
151 cnima 22776 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ 𝑀𝐽) → (𝐹𝑀) ∈ 𝐶)
152130, 150, 151syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ∈ 𝐶)
153 restopn2 22688 . . . . . . . . . . 11 ((𝐶 ∈ Top ∧ (𝐹𝑀) ∈ 𝐶) → (𝑊 ∈ (𝐶t (𝐹𝑀)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝑀))))
154101, 152, 153syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ (𝐶t (𝐹𝑀)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝑀))))
155143, 148, 154mpbir2and 711 . . . . . . . . 9 (𝜑𝑊 ∈ (𝐶t (𝐹𝑀)))
156155adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑊 ∈ (𝐶t (𝐹𝑀)))
1575cvmscld 34333 . . . . . . . . . 10 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑀) ∧ 𝑊𝑇) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑀))))
1586, 31, 142, 157syl3anc 1371 . . . . . . . . 9 (𝜑𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑀))))
159158adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑀))))
160 cvmlift2lem9.10 . . . . . . . . . . 11 (𝜑𝑍𝑉)
161160adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑍𝑉)
162 opelxpi 5713 . . . . . . . . . 10 ((𝑚 ∈ {𝑚} ∧ 𝑍𝑉) → ⟨𝑚, 𝑍⟩ ∈ ({𝑚} × 𝑉))
16352, 161, 162syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ⟨𝑚, 𝑍⟩ ∈ ({𝑚} × 𝑉))
16481, 84sstrd 3992 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
1654restuni 22673 . . . . . . . . . 10 (((II ×t II) ∈ Top ∧ ({𝑚} × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → ({𝑚} × 𝑉) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
16615, 164, 165sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
167163, 166eleqtrd 2835 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ⟨𝑚, 𝑍⟩ ∈ ((II ×t II) ↾t ({𝑚} × 𝑉)))
168 df-ov 7414 . . . . . . . . . 10 (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = ((𝐾 ↾ ({𝑚} × 𝑉))‘⟨𝑚, 𝑍⟩)
169 ovres 7575 . . . . . . . . . . . 12 ((𝑚 ∈ {𝑚} ∧ 𝑍𝑉) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚𝐾𝑍))
17052, 161, 169syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚𝐾𝑍))
171 snidg 4662 . . . . . . . . . . . . . 14 (𝑍𝑉𝑍 ∈ {𝑍})
172160, 171syl 17 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ {𝑍})
173172adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑍 ∈ {𝑍})
174 ovres 7575 . . . . . . . . . . . 12 ((𝑚𝑈𝑍 ∈ {𝑍}) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑚𝐾𝑍))
175106, 173, 174syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑚𝐾𝑍))
176170, 175eqtr4d 2775 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍))
177168, 176eqtr3id 2786 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉))‘⟨𝑚, 𝑍⟩) = (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍))
178 eqid 2732 . . . . . . . . . . . . 13 ((II ×t II) ↾t (𝑈 × {𝑍})) = ((II ×t II) ↾t (𝑈 × {𝑍}))
1792a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → II ∈ Top)
180 snex 5431 . . . . . . . . . . . . . . . 16 {𝑍} ∈ V
181180a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑍} ∈ V)
182 txrest 23142 . . . . . . . . . . . . . . 15 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑈 ∈ II ∧ {𝑍} ∈ V)) → ((II ×t II) ↾t (𝑈 × {𝑍})) = ((II ↾t 𝑈) ×t (II ↾t {𝑍})))
183179, 179, 17, 181, 182syl22anc 837 . . . . . . . . . . . . . 14 (𝜑 → ((II ×t II) ↾t (𝑈 × {𝑍})) = ((II ↾t 𝑈) ×t (II ↾t {𝑍})))
184 cvmlift2lem9.5 . . . . . . . . . . . . . . 15 (𝜑 → (II ↾t 𝑈) ∈ Conn)
18526, 160sseldd 3983 . . . . . . . . . . . . . . . . 17 (𝜑𝑍 ∈ (0[,]1))
186 restsn2 22682 . . . . . . . . . . . . . . . . 17 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝑍 ∈ (0[,]1)) → (II ↾t {𝑍}) = 𝒫 {𝑍})
18763, 185, 186sylancr 587 . . . . . . . . . . . . . . . 16 (𝜑 → (II ↾t {𝑍}) = 𝒫 {𝑍})
188 pwsn 4900 . . . . . . . . . . . . . . . . 17 𝒫 {𝑍} = {∅, {𝑍}}
189 indisconn 22929 . . . . . . . . . . . . . . . . 17 {∅, {𝑍}} ∈ Conn
190188, 189eqeltri 2829 . . . . . . . . . . . . . . . 16 𝒫 {𝑍} ∈ Conn
191187, 190eqeltrdi 2841 . . . . . . . . . . . . . . 15 (𝜑 → (II ↾t {𝑍}) ∈ Conn)
192 txconn 23200 . . . . . . . . . . . . . . 15 (((II ↾t 𝑈) ∈ Conn ∧ (II ↾t {𝑍}) ∈ Conn) → ((II ↾t 𝑈) ×t (II ↾t {𝑍})) ∈ Conn)
193184, 191, 192syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((II ↾t 𝑈) ×t (II ↾t {𝑍})) ∈ Conn)
194183, 193eqeltrd 2833 . . . . . . . . . . . . 13 (𝜑 → ((II ×t II) ↾t (𝑈 × {𝑍})) ∈ Conn)
195 cvmlift2lem9.11 . . . . . . . . . . . . . 14 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶))
196101, 103sylib 217 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ (TopOn‘𝐵))
197 df-ima 5689 . . . . . . . . . . . . . . . 16 (𝐾 “ (𝑈 × {𝑍})) = ran (𝐾 ↾ (𝑈 × {𝑍}))
198160snssd 4812 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑍} ⊆ 𝑉)
199 xpss2 5696 . . . . . . . . . . . . . . . . . 18 ({𝑍} ⊆ 𝑉 → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
200 imass2 6101 . . . . . . . . . . . . . . . . . 18 ((𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉) → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐾 “ (𝑈 × 𝑉)))
201198, 199, 2003syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐾 “ (𝑈 × 𝑉)))
202201, 124sstrd 3992 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐹𝑀))
203197, 202eqsstrrid 4031 . . . . . . . . . . . . . . 15 (𝜑 → ran (𝐾 ↾ (𝑈 × {𝑍})) ⊆ (𝐹𝑀))
204 cnrest2 22797 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ (𝑈 × {𝑍})) ⊆ (𝐹𝑀) ∧ (𝐹𝑀) ⊆ 𝐵) → ((𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn (𝐶t (𝐹𝑀)))))
205196, 203, 135, 204syl3anc 1371 . . . . . . . . . . . . . 14 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn (𝐶t (𝐹𝑀)))))
206195, 205mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn (𝐶t (𝐹𝑀))))
207 opelxpi 5713 . . . . . . . . . . . . . . 15 ((𝑋𝑈𝑍 ∈ {𝑍}) → ⟨𝑋, 𝑍⟩ ∈ (𝑈 × {𝑍}))
20821, 172, 207syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ⟨𝑋, 𝑍⟩ ∈ (𝑈 × {𝑍}))
209185snssd 4812 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑍} ⊆ (0[,]1))
210 xpss12 5691 . . . . . . . . . . . . . . . 16 ((𝑈 ⊆ (0[,]1) ∧ {𝑍} ⊆ (0[,]1)) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
21120, 209, 210syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
2124restuni 22673 . . . . . . . . . . . . . . 15 (((II ×t II) ∈ Top ∧ (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1))) → (𝑈 × {𝑍}) = ((II ×t II) ↾t (𝑈 × {𝑍})))
21315, 211, 212sylancr 587 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 × {𝑍}) = ((II ×t II) ↾t (𝑈 × {𝑍})))
214208, 213eleqtrd 2835 . . . . . . . . . . . . 13 (𝜑 → ⟨𝑋, 𝑍⟩ ∈ ((II ×t II) ↾t (𝑈 × {𝑍})))
215 df-ov 7414 . . . . . . . . . . . . . . 15 (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = ((𝐾 ↾ (𝑈 × {𝑍}))‘⟨𝑋, 𝑍⟩)
216 ovres 7575 . . . . . . . . . . . . . . . . 17 ((𝑋𝑈𝑍 ∈ {𝑍}) → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋𝐾𝑍))
21721, 172, 216syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋𝐾𝑍))
218 snidg 4662 . . . . . . . . . . . . . . . . . 18 (𝑋𝑈𝑋 ∈ {𝑋})
21921, 218syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ {𝑋})
220 ovres 7575 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ {𝑋} ∧ 𝑍𝑉) → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) = (𝑋𝐾𝑍))
221219, 160, 220syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) = (𝑋𝐾𝑍))
222217, 221eqtr4d 2775 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍))
223215, 222eqtr3id 2786 . . . . . . . . . . . . . 14 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍}))‘⟨𝑋, 𝑍⟩) = (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍))
224 eqid 2732 . . . . . . . . . . . . . . . . 17 ((II ×t II) ↾t ({𝑋} × 𝑉)) = ((II ×t II) ↾t ({𝑋} × 𝑉))
225 snex 5431 . . . . . . . . . . . . . . . . . . . 20 {𝑋} ∈ V
226225a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑋} ∈ V)
227 txrest 23142 . . . . . . . . . . . . . . . . . . 19 (((II ∈ Top ∧ II ∈ Top) ∧ ({𝑋} ∈ V ∧ 𝑉 ∈ II)) → ((II ×t II) ↾t ({𝑋} × 𝑉)) = ((II ↾t {𝑋}) ×t (II ↾t 𝑉)))
228179, 179, 226, 23, 227syl22anc 837 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((II ×t II) ↾t ({𝑋} × 𝑉)) = ((II ↾t {𝑋}) ×t (II ↾t 𝑉)))
229 restsn2 22682 . . . . . . . . . . . . . . . . . . . . 21 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝑋 ∈ (0[,]1)) → (II ↾t {𝑋}) = 𝒫 {𝑋})
23063, 22, 229sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (II ↾t {𝑋}) = 𝒫 {𝑋})
231 pwsn 4900 . . . . . . . . . . . . . . . . . . . . 21 𝒫 {𝑋} = {∅, {𝑋}}
232 indisconn 22929 . . . . . . . . . . . . . . . . . . . . 21 {∅, {𝑋}} ∈ Conn
233231, 232eqeltri 2829 . . . . . . . . . . . . . . . . . . . 20 𝒫 {𝑋} ∈ Conn
234230, 233eqeltrdi 2841 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (II ↾t {𝑋}) ∈ Conn)
235 txconn 23200 . . . . . . . . . . . . . . . . . . 19 (((II ↾t {𝑋}) ∈ Conn ∧ (II ↾t 𝑉) ∈ Conn) → ((II ↾t {𝑋}) ×t (II ↾t 𝑉)) ∈ Conn)
236234, 72, 235syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((II ↾t {𝑋}) ×t (II ↾t 𝑉)) ∈ Conn)
237228, 236eqeltrd 2833 . . . . . . . . . . . . . . . . 17 (𝜑 → ((II ×t II) ↾t ({𝑋} × 𝑉)) ∈ Conn)
2381, 6, 7, 8, 9, 10, 11cvmlift2lem6 34368 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
23922, 238mpdan 685 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
240 xpss2 5696 . . . . . . . . . . . . . . . . . . . . . 22 (𝑉 ⊆ (0[,]1) → ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)))
24123, 25, 2403syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)))
24222snssd 4812 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑋} ⊆ (0[,]1))
243 xpss1 5695 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑋} ⊆ (0[,]1) → ({𝑋} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
244242, 243syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ({𝑋} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
2454restuni 22673 . . . . . . . . . . . . . . . . . . . . . 22 (((II ×t II) ∈ Top ∧ ({𝑋} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1))) → ({𝑋} × (0[,]1)) = ((II ×t II) ↾t ({𝑋} × (0[,]1))))
24615, 244, 245sylancr 587 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ({𝑋} × (0[,]1)) = ((II ×t II) ↾t ({𝑋} × (0[,]1))))
247241, 246sseqtrd 4022 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ({𝑋} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑋} × (0[,]1))))
248 eqid 2732 . . . . . . . . . . . . . . . . . . . . 21 ((II ×t II) ↾t ({𝑋} × (0[,]1))) = ((II ×t II) ↾t ({𝑋} × (0[,]1)))
249248cnrest 22796 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶) ∧ ({𝑋} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑋} × (0[,]1)))) → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
250239, 247, 249syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
251241resabs1d 6012 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) = (𝐾 ↾ ({𝑋} × 𝑉)))
252225, 93xpex 7742 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑋} × (0[,]1)) ∈ V
253252a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ({𝑋} × (0[,]1)) ∈ V)
254 restabs 22676 . . . . . . . . . . . . . . . . . . . . 21 (((II ×t II) ∈ Top ∧ ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)) ∧ ({𝑋} × (0[,]1)) ∈ V) → (((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
25516, 241, 253, 254syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
256255oveq1d 7426 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶) = (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
257250, 251, 2563eltr3d 2847 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
258 df-ima 5689 . . . . . . . . . . . . . . . . . . . 20 (𝐾 “ ({𝑋} × 𝑉)) = ran (𝐾 ↾ ({𝑋} × 𝑉))
25921snssd 4812 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → {𝑋} ⊆ 𝑈)
260 xpss1 5695 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑋} ⊆ 𝑈 → ({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉))
261 imass2 6101 . . . . . . . . . . . . . . . . . . . . . 22 (({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉) → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
262259, 260, 2613syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
263262, 124sstrd 3992 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐹𝑀))
264258, 263eqsstrrid 4031 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝐾 ↾ ({𝑋} × 𝑉)) ⊆ (𝐹𝑀))
265 cnrest2 22797 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ ({𝑋} × 𝑉)) ⊆ (𝐹𝑀) ∧ (𝐹𝑀) ⊆ 𝐵) → ((𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
266196, 264, 135, 265syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
267257, 266mpbid 231 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn (𝐶t (𝐹𝑀))))
268 opelxpi 5713 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ {𝑋} ∧ 𝑌𝑉) → ⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝑉))
269219, 27, 268syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝑉))
270259, 260syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉))
271270, 50sstrd 3992 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ({𝑋} × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
2724restuni 22673 . . . . . . . . . . . . . . . . . . 19 (((II ×t II) ∈ Top ∧ ({𝑋} × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → ({𝑋} × 𝑉) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
27315, 271, 272sylancr 587 . . . . . . . . . . . . . . . . . 18 (𝜑 → ({𝑋} × 𝑉) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
274269, 273eleqtrd 2835 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((II ×t II) ↾t ({𝑋} × 𝑉)))
275 df-ov 7414 . . . . . . . . . . . . . . . . . . 19 (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = ((𝐾 ↾ ({𝑋} × 𝑉))‘⟨𝑋, 𝑌⟩)
276 ovres 7575 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ {𝑋} ∧ 𝑌𝑉) → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = (𝑋𝐾𝑌))
277219, 27, 276syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = (𝑋𝐾𝑌))
278275, 277eqtr3id 2786 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉))‘⟨𝑋, 𝑌⟩) = (𝑋𝐾𝑌))
27945simprd 496 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋𝐾𝑌) ∈ 𝑊)
280278, 279eqeltrd 2833 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉))‘⟨𝑋, 𝑌⟩) ∈ 𝑊)
281224, 237, 267, 155, 158, 274, 280conncn 22937 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)): ((II ×t II) ↾t ({𝑋} × 𝑉))⟶𝑊)
282273feq2d 6703 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉)):({𝑋} × 𝑉)⟶𝑊 ↔ (𝐾 ↾ ({𝑋} × 𝑉)): ((II ×t II) ↾t ({𝑋} × 𝑉))⟶𝑊))
283281, 282mpbird 256 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)):({𝑋} × 𝑉)⟶𝑊)
284283, 219, 160fovcdmd 7581 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) ∈ 𝑊)
285223, 284eqeltrd 2833 . . . . . . . . . . . . 13 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍}))‘⟨𝑋, 𝑍⟩) ∈ 𝑊)
286178, 194, 206, 155, 158, 214, 285conncn 22937 . . . . . . . . . . . 12 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})): ((II ×t II) ↾t (𝑈 × {𝑍}))⟶𝑊)
287213feq2d 6703 . . . . . . . . . . . 12 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊 ↔ (𝐾 ↾ (𝑈 × {𝑍})): ((II ×t II) ↾t (𝑈 × {𝑍}))⟶𝑊))
288286, 287mpbird 256 . . . . . . . . . . 11 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊)
289288adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊)
290289, 106, 173fovcdmd 7581 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) ∈ 𝑊)
291177, 290eqeltrd 2833 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉))‘⟨𝑚, 𝑍⟩) ∈ 𝑊)
29256, 76, 139, 156, 159, 167, 291conncn 22937 . . . . . . 7 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)): ((II ×t II) ↾t ({𝑚} × 𝑉))⟶𝑊)
293166feq2d 6703 . . . . . . 7 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉)):({𝑚} × 𝑉)⟶𝑊 ↔ (𝐾 ↾ ({𝑚} × 𝑉)): ((II ×t II) ↾t ({𝑚} × 𝑉))⟶𝑊))
294292, 293mpbird 256 . . . . . 6 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)):({𝑚} × 𝑉)⟶𝑊)
295294, 52, 53fovcdmd 7581 . . . . 5 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) ∈ 𝑊)
29655, 295eqeltrrd 2834 . . . 4 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚𝐾𝑛) ∈ 𝑊)
297296ralrimivva 3200 . . 3 (𝜑 → ∀𝑚𝑈𝑛𝑉 (𝑚𝐾𝑛) ∈ 𝑊)
298 funimassov 7586 . . . 4 ((Fun 𝐾 ∧ (𝑈 × 𝑉) ⊆ dom 𝐾) → ((𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊 ↔ ∀𝑚𝑈𝑛𝑉 (𝑚𝐾𝑛) ∈ 𝑊))
299119, 121, 298syl2anc 584 . . 3 (𝜑 → ((𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊 ↔ ∀𝑚𝑈𝑛𝑉 (𝑚𝐾𝑛) ∈ 𝑊))
300297, 299mpbird 256 . 2 (𝜑 → (𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊)
3011, 4, 5, 6, 12, 14, 16, 30, 31, 48, 50, 300cvmlift2lem9a 34363 1 (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  {crab 3432  Vcvv 3474  cdif 3945  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628  {cpr 4630  cop 4634   cuni 4908  cmpt 5231   × cxp 5674  ccnv 5675  dom cdm 5676  ran crn 5677  cres 5678  cima 5679  ccom 5680  Fun wfun 6537  wf 6539  cfv 6543  crio 7366  (class class class)co 7411  cmpo 7413  0cc0 11112  1c1 11113  [,]cicc 13329  t crest 17368  Topctop 22402  TopOnctopon 22419  Clsdccld 22527   Cn ccn 22735  Conncconn 22922   ×t ctx 23071  Homeochmeo 23264  IIcii 24398   CovMap ccvm 34315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-ec 8707  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-dec 12680  df-uz 12825  df-q 12935  df-rp 12977  df-xneg 13094  df-xadd 13095  df-xmul 13096  df-ioo 13330  df-ico 13332  df-icc 13333  df-fz 13487  df-fzo 13630  df-fl 13759  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-sum 15635  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-starv 17214  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-ds 17221  df-unif 17222  df-hom 17223  df-cco 17224  df-rest 17370  df-topn 17371  df-0g 17389  df-gsum 17390  df-topgen 17391  df-pt 17392  df-prds 17395  df-xrs 17450  df-qtop 17455  df-imas 17456  df-xps 17458  df-mre 17532  df-mrc 17533  df-acs 17535  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-submnd 18674  df-mulg 18953  df-cntz 19183  df-cmn 19652  df-psmet 20942  df-xmet 20943  df-met 20944  df-bl 20945  df-mopn 20946  df-cnfld 20951  df-top 22403  df-topon 22420  df-topsp 22442  df-bases 22456  df-cld 22530  df-ntr 22531  df-cls 22532  df-nei 22609  df-cn 22738  df-cnp 22739  df-cmp 22898  df-conn 22923  df-lly 22977  df-nlly 22978  df-tx 23073  df-hmeo 23266  df-xms 23833  df-ms 23834  df-tms 23835  df-ii 24400  df-htpy 24493  df-phtpy 24494  df-phtpc 24515  df-pconn 34281  df-sconn 34282  df-cvm 34316
This theorem is referenced by:  cvmlift2lem10  34372
  Copyright terms: Public domain W3C validator