Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem9 Structured version   Visualization version   GIF version

Theorem cvmlift2lem9 31892
Description: Lemma for cvmlift2 31897. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2lem10.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem9.1 (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀)
cvmlift2lem9.2 (𝜑𝑇 ∈ (𝑆𝑀))
cvmlift2lem9.3 (𝜑𝑈 ∈ II)
cvmlift2lem9.4 (𝜑𝑉 ∈ II)
cvmlift2lem9.5 (𝜑 → (II ↾t 𝑈) ∈ Conn)
cvmlift2lem9.6 (𝜑 → (II ↾t 𝑉) ∈ Conn)
cvmlift2lem9.7 (𝜑𝑋𝑈)
cvmlift2lem9.8 (𝜑𝑌𝑉)
cvmlift2lem9.9 (𝜑 → (𝑈 × 𝑉) ⊆ (𝐺𝑀))
cvmlift2lem9.10 (𝜑𝑍𝑉)
cvmlift2lem9.11 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶))
cvmlift2lem9.w 𝑊 = (𝑏𝑇 (𝑋𝐾𝑌) ∈ 𝑏)
Assertion
Ref Expression
cvmlift2lem9 (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
Distinct variable groups:   𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑥,𝑦,𝑧,𝐹   𝜑,𝑏,𝑓,𝑥,𝑦,𝑧   𝑀,𝑏,𝑐,𝑑,𝑘,𝑠,𝑥,𝑦,𝑧   𝑆,𝑏,𝑓,𝑥,𝑦,𝑧   𝐽,𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑥,𝑦,𝑧   𝑇,𝑏,𝑐,𝑑,𝑠   𝑧,𝑈   𝐺,𝑏,𝑐,𝑓,𝑘,𝑥,𝑦,𝑧   𝑊,𝑐,𝑑   𝐻,𝑏,𝑐,𝑓,𝑥,𝑦,𝑧   𝑋,𝑏,𝑐,𝑑,𝑓,𝑘,𝑥,𝑦,𝑧   𝑧,𝑍   𝐶,𝑏,𝑐,𝑑,𝑓,𝑘,𝑠,𝑥,𝑦,𝑧   𝑃,𝑓,𝑘,𝑥,𝑦,𝑧   𝐵,𝑏,𝑐,𝑑,𝑥,𝑦,𝑧   𝑌,𝑏,𝑐,𝑑,𝑓,𝑘,𝑥,𝑦,𝑧   𝐾,𝑏,𝑐,𝑑,𝑓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑓,𝑘,𝑠)   𝑃(𝑠,𝑏,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑘)   𝑈(𝑥,𝑦,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)   𝐺(𝑠,𝑑)   𝐻(𝑘,𝑠,𝑑)   𝐾(𝑘,𝑠)   𝑀(𝑓)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑘,𝑠,𝑏)   𝑋(𝑠)   𝑌(𝑠)   𝑍(𝑥,𝑦,𝑓,𝑘,𝑠,𝑏,𝑐,𝑑)

Proof of Theorem cvmlift2lem9
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . 2 𝐵 = 𝐶
2 iitop 23091 . . 3 II ∈ Top
3 iiuni 23092 . . 3 (0[,]1) = II
42, 2, 3, 3txunii 21805 . 2 ((0[,]1) × (0[,]1)) = (II ×t II)
5 cvmlift2lem10.s . 2 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
6 cvmlift2.f . 2 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
7 cvmlift2.g . . 3 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
8 cvmlift2.p . . 3 (𝜑𝑃𝐵)
9 cvmlift2.i . . 3 (𝜑 → (𝐹𝑃) = (0𝐺0))
10 cvmlift2.h . . 3 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
11 cvmlift2.k . . 3 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
121, 6, 7, 8, 9, 10, 11cvmlift2lem5 31888 . 2 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
131, 6, 7, 8, 9, 10, 11cvmlift2lem7 31890 . . 3 (𝜑 → (𝐹𝐾) = 𝐺)
1413, 7eqeltrd 2859 . 2 (𝜑 → (𝐹𝐾) ∈ ((II ×t II) Cn 𝐽))
152, 2txtopi 21802 . . 3 (II ×t II) ∈ Top
1615a1i 11 . 2 (𝜑 → (II ×t II) ∈ Top)
17 cvmlift2lem9.3 . . . . 5 (𝜑𝑈 ∈ II)
18 elssuni 4702 . . . . . 6 (𝑈 ∈ II → 𝑈 II)
1918, 3syl6sseqr 3871 . . . . 5 (𝑈 ∈ II → 𝑈 ⊆ (0[,]1))
2017, 19syl 17 . . . 4 (𝜑𝑈 ⊆ (0[,]1))
21 cvmlift2lem9.7 . . . 4 (𝜑𝑋𝑈)
2220, 21sseldd 3822 . . 3 (𝜑𝑋 ∈ (0[,]1))
23 cvmlift2lem9.4 . . . . 5 (𝜑𝑉 ∈ II)
24 elssuni 4702 . . . . . 6 (𝑉 ∈ II → 𝑉 II)
2524, 3syl6sseqr 3871 . . . . 5 (𝑉 ∈ II → 𝑉 ⊆ (0[,]1))
2623, 25syl 17 . . . 4 (𝜑𝑉 ⊆ (0[,]1))
27 cvmlift2lem9.8 . . . 4 (𝜑𝑌𝑉)
2826, 27sseldd 3822 . . 3 (𝜑𝑌 ∈ (0[,]1))
29 opelxpi 5392 . . 3 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
3022, 28, 29syl2anc 579 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
31 cvmlift2lem9.2 . 2 (𝜑𝑇 ∈ (𝑆𝑀))
3212, 22, 28fovrnd 7083 . . . 4 (𝜑 → (𝑋𝐾𝑌) ∈ 𝐵)
33 fvco3 6535 . . . . . . . 8 ((𝐾:((0[,]1) × (0[,]1))⟶𝐵 ∧ ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝐹𝐾)‘⟨𝑋, 𝑌⟩) = (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩)))
3412, 30, 33syl2anc 579 . . . . . . 7 (𝜑 → ((𝐹𝐾)‘⟨𝑋, 𝑌⟩) = (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩)))
3513fveq1d 6448 . . . . . . 7 (𝜑 → ((𝐹𝐾)‘⟨𝑋, 𝑌⟩) = (𝐺‘⟨𝑋, 𝑌⟩))
3634, 35eqtr3d 2816 . . . . . 6 (𝜑 → (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩)) = (𝐺‘⟨𝑋, 𝑌⟩))
37 df-ov 6925 . . . . . . 7 (𝑋𝐾𝑌) = (𝐾‘⟨𝑋, 𝑌⟩)
3837fveq2i 6449 . . . . . 6 (𝐹‘(𝑋𝐾𝑌)) = (𝐹‘(𝐾‘⟨𝑋, 𝑌⟩))
39 df-ov 6925 . . . . . 6 (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩)
4036, 38, 393eqtr4g 2839 . . . . 5 (𝜑 → (𝐹‘(𝑋𝐾𝑌)) = (𝑋𝐺𝑌))
41 cvmlift2lem9.1 . . . . 5 (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀)
4240, 41eqeltrd 2859 . . . 4 (𝜑 → (𝐹‘(𝑋𝐾𝑌)) ∈ 𝑀)
43 cvmlift2lem9.w . . . . 5 𝑊 = (𝑏𝑇 (𝑋𝐾𝑌) ∈ 𝑏)
445, 1, 43cvmsiota 31858 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑀) ∧ (𝑋𝐾𝑌) ∈ 𝐵 ∧ (𝐹‘(𝑋𝐾𝑌)) ∈ 𝑀)) → (𝑊𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊))
456, 31, 32, 42, 44syl13anc 1440 . . 3 (𝜑 → (𝑊𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊))
4637eleq1i 2850 . . . 4 ((𝑋𝐾𝑌) ∈ 𝑊 ↔ (𝐾‘⟨𝑋, 𝑌⟩) ∈ 𝑊)
4746anbi2i 616 . . 3 ((𝑊𝑇 ∧ (𝑋𝐾𝑌) ∈ 𝑊) ↔ (𝑊𝑇 ∧ (𝐾‘⟨𝑋, 𝑌⟩) ∈ 𝑊))
4845, 47sylib 210 . 2 (𝜑 → (𝑊𝑇 ∧ (𝐾‘⟨𝑋, 𝑌⟩) ∈ 𝑊))
49 xpss12 5370 . . 3 ((𝑈 ⊆ (0[,]1) ∧ 𝑉 ⊆ (0[,]1)) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
5020, 26, 49syl2anc 579 . 2 (𝜑 → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
51 snidg 4428 . . . . . . 7 (𝑚𝑈𝑚 ∈ {𝑚})
5251ad2antrl 718 . . . . . 6 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑚 ∈ {𝑚})
53 simprr 763 . . . . . 6 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑛𝑉)
54 ovres 7077 . . . . . 6 ((𝑚 ∈ {𝑚} ∧ 𝑛𝑉) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) = (𝑚𝐾𝑛))
5552, 53, 54syl2anc 579 . . . . 5 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) = (𝑚𝐾𝑛))
56 eqid 2778 . . . . . . . 8 ((II ×t II) ↾t ({𝑚} × 𝑉)) = ((II ×t II) ↾t ({𝑚} × 𝑉))
572a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → II ∈ Top)
58 snex 5140 . . . . . . . . . . 11 {𝑚} ∈ V
5958a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → {𝑚} ∈ V)
6023adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑉 ∈ II)
61 txrest 21843 . . . . . . . . . 10 (((II ∈ Top ∧ II ∈ Top) ∧ ({𝑚} ∈ V ∧ 𝑉 ∈ II)) → ((II ×t II) ↾t ({𝑚} × 𝑉)) = ((II ↾t {𝑚}) ×t (II ↾t 𝑉)))
6257, 57, 59, 60, 61syl22anc 829 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((II ×t II) ↾t ({𝑚} × 𝑉)) = ((II ↾t {𝑚}) ×t (II ↾t 𝑉)))
63 iitopon 23090 . . . . . . . . . . . 12 II ∈ (TopOn‘(0[,]1))
6420sselda 3821 . . . . . . . . . . . . 13 ((𝜑𝑚𝑈) → 𝑚 ∈ (0[,]1))
6564adantrr 707 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑚 ∈ (0[,]1))
66 restsn2 21383 . . . . . . . . . . . 12 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝑚 ∈ (0[,]1)) → (II ↾t {𝑚}) = 𝒫 {𝑚})
6763, 65, 66sylancr 581 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ↾t {𝑚}) = 𝒫 {𝑚})
68 pwsn 4663 . . . . . . . . . . . 12 𝒫 {𝑚} = {∅, {𝑚}}
69 indisconn 21630 . . . . . . . . . . . 12 {∅, {𝑚}} ∈ Conn
7068, 69eqeltri 2855 . . . . . . . . . . 11 𝒫 {𝑚} ∈ Conn
7167, 70syl6eqel 2867 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ↾t {𝑚}) ∈ Conn)
72 cvmlift2lem9.6 . . . . . . . . . . 11 (𝜑 → (II ↾t 𝑉) ∈ Conn)
7372adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ↾t 𝑉) ∈ Conn)
74 txconn 21901 . . . . . . . . . 10 (((II ↾t {𝑚}) ∈ Conn ∧ (II ↾t 𝑉) ∈ Conn) → ((II ↾t {𝑚}) ×t (II ↾t 𝑉)) ∈ Conn)
7571, 73, 74syl2anc 579 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((II ↾t {𝑚}) ×t (II ↾t 𝑉)) ∈ Conn)
7662, 75eqeltrd 2859 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((II ×t II) ↾t ({𝑚} × 𝑉)) ∈ Conn)
771, 6, 7, 8, 9, 10, 11cvmlift2lem6 31889 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (0[,]1)) → (𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶))
7865, 77syldan 585 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶))
7926adantr 474 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑉 ⊆ (0[,]1))
80 xpss2 5375 . . . . . . . . . . . . 13 (𝑉 ⊆ (0[,]1) → ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)))
8179, 80syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)))
8265snssd 4571 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → {𝑚} ⊆ (0[,]1))
83 xpss1 5374 . . . . . . . . . . . . . 14 ({𝑚} ⊆ (0[,]1) → ({𝑚} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
8482, 83syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
854restuni 21374 . . . . . . . . . . . . 13 (((II ×t II) ∈ Top ∧ ({𝑚} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1))) → ({𝑚} × (0[,]1)) = ((II ×t II) ↾t ({𝑚} × (0[,]1))))
8615, 84, 85sylancr 581 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × (0[,]1)) = ((II ×t II) ↾t ({𝑚} × (0[,]1))))
8781, 86sseqtrd 3860 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑚} × (0[,]1))))
88 eqid 2778 . . . . . . . . . . . 12 ((II ×t II) ↾t ({𝑚} × (0[,]1))) = ((II ×t II) ↾t ({𝑚} × (0[,]1)))
8988cnrest 21497 . . . . . . . . . . 11 (((𝐾 ↾ ({𝑚} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑚} × (0[,]1))) Cn 𝐶) ∧ ({𝑚} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑚} × (0[,]1)))) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
9078, 87, 89syl2anc 579 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
9181resabs1d 5677 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × (0[,]1))) ↾ ({𝑚} × 𝑉)) = (𝐾 ↾ ({𝑚} × 𝑉)))
9215a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (II ×t II) ∈ Top)
93 ovex 6954 . . . . . . . . . . . . . 14 (0[,]1) ∈ V
9458, 93xpex 7240 . . . . . . . . . . . . 13 ({𝑚} × (0[,]1)) ∈ V
9594a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × (0[,]1)) ∈ V)
96 restabs 21377 . . . . . . . . . . . 12 (((II ×t II) ∈ Top ∧ ({𝑚} × 𝑉) ⊆ ({𝑚} × (0[,]1)) ∧ ({𝑚} × (0[,]1)) ∈ V) → (((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
9792, 81, 95, 96syl3anc 1439 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
9897oveq1d 6937 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((((II ×t II) ↾t ({𝑚} × (0[,]1))) ↾t ({𝑚} × 𝑉)) Cn 𝐶) = (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
9990, 91, 983eltr3d 2873 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶))
100 cvmtop1 31841 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
1016, 100syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ Top)
102101adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝐶 ∈ Top)
1031toptopon 21129 . . . . . . . . . . 11 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
104102, 103sylib 210 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝐶 ∈ (TopOn‘𝐵))
105 df-ima 5368 . . . . . . . . . . 11 (𝐾 “ ({𝑚} × 𝑉)) = ran (𝐾 ↾ ({𝑚} × 𝑉))
106 simprl 761 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑚𝑈)
107106snssd 4571 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → {𝑚} ⊆ 𝑈)
108 xpss1 5374 . . . . . . . . . . . . 13 ({𝑚} ⊆ 𝑈 → ({𝑚} × 𝑉) ⊆ (𝑈 × 𝑉))
109 imass2 5755 . . . . . . . . . . . . 13 (({𝑚} × 𝑉) ⊆ (𝑈 × 𝑉) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
110107, 108, 1093syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
111 cvmlift2lem9.9 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 × 𝑉) ⊆ (𝐺𝑀))
112 imaco 5894 . . . . . . . . . . . . . . . 16 ((𝐾𝐹) “ 𝑀) = (𝐾 “ (𝐹𝑀))
113 cnvco 5553 . . . . . . . . . . . . . . . . . 18 (𝐹𝐾) = (𝐾𝐹)
11413cnveqd 5543 . . . . . . . . . . . . . . . . . 18 (𝜑(𝐹𝐾) = 𝐺)
115113, 114syl5eqr 2828 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾𝐹) = 𝐺)
116115imaeq1d 5719 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾𝐹) “ 𝑀) = (𝐺𝑀))
117112, 116syl5eqr 2828 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 “ (𝐹𝑀)) = (𝐺𝑀))
118111, 117sseqtr4d 3861 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 × 𝑉) ⊆ (𝐾 “ (𝐹𝑀)))
11912ffund 6295 . . . . . . . . . . . . . . 15 (𝜑 → Fun 𝐾)
12012fdmd 6300 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐾 = ((0[,]1) × (0[,]1)))
12150, 120sseqtr4d 3861 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 × 𝑉) ⊆ dom 𝐾)
122 funimass3 6596 . . . . . . . . . . . . . . 15 ((Fun 𝐾 ∧ (𝑈 × 𝑉) ⊆ dom 𝐾) → ((𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀) ↔ (𝑈 × 𝑉) ⊆ (𝐾 “ (𝐹𝑀))))
123119, 121, 122syl2anc 579 . . . . . . . . . . . . . 14 (𝜑 → ((𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀) ↔ (𝑈 × 𝑉) ⊆ (𝐾 “ (𝐹𝑀))))
124118, 123mpbird 249 . . . . . . . . . . . . 13 (𝜑 → (𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀))
125124adantr 474 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 “ (𝑈 × 𝑉)) ⊆ (𝐹𝑀))
126110, 125sstrd 3831 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 “ ({𝑚} × 𝑉)) ⊆ (𝐹𝑀))
127105, 126syl5eqssr 3869 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ran (𝐾 ↾ ({𝑚} × 𝑉)) ⊆ (𝐹𝑀))
128 cnvimass 5739 . . . . . . . . . . . 12 (𝐹𝑀) ⊆ dom 𝐹
129 cvmcn 31843 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
1306, 129syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
131 eqid 2778 . . . . . . . . . . . . . 14 𝐽 = 𝐽
1321, 131cnf 21458 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵 𝐽)
133 fdm 6299 . . . . . . . . . . . . 13 (𝐹:𝐵 𝐽 → dom 𝐹 = 𝐵)
134130, 132, 1333syl 18 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝐵)
135128, 134syl5sseq 3872 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ⊆ 𝐵)
136135adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐹𝑀) ⊆ 𝐵)
137 cnrest2 21498 . . . . . . . . . 10 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ ({𝑚} × 𝑉)) ⊆ (𝐹𝑀) ∧ (𝐹𝑀) ⊆ 𝐵) → ((𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
138104, 127, 136, 137syl3anc 1439 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
13999, 138mpbid 224 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑚} × 𝑉)) Cn (𝐶t (𝐹𝑀))))
1405cvmsss 31848 . . . . . . . . . . . 12 (𝑇 ∈ (𝑆𝑀) → 𝑇𝐶)
14131, 140syl 17 . . . . . . . . . . 11 (𝜑𝑇𝐶)
14245simpld 490 . . . . . . . . . . 11 (𝜑𝑊𝑇)
143141, 142sseldd 3822 . . . . . . . . . 10 (𝜑𝑊𝐶)
144 elssuni 4702 . . . . . . . . . . . 12 (𝑊𝑇𝑊 𝑇)
145142, 144syl 17 . . . . . . . . . . 11 (𝜑𝑊 𝑇)
1465cvmsuni 31850 . . . . . . . . . . . 12 (𝑇 ∈ (𝑆𝑀) → 𝑇 = (𝐹𝑀))
14731, 146syl 17 . . . . . . . . . . 11 (𝜑 𝑇 = (𝐹𝑀))
148145, 147sseqtrd 3860 . . . . . . . . . 10 (𝜑𝑊 ⊆ (𝐹𝑀))
1495cvmsrcl 31845 . . . . . . . . . . . . 13 (𝑇 ∈ (𝑆𝑀) → 𝑀𝐽)
15031, 149syl 17 . . . . . . . . . . . 12 (𝜑𝑀𝐽)
151 cnima 21477 . . . . . . . . . . . 12 ((𝐹 ∈ (𝐶 Cn 𝐽) ∧ 𝑀𝐽) → (𝐹𝑀) ∈ 𝐶)
152130, 150, 151syl2anc 579 . . . . . . . . . . 11 (𝜑 → (𝐹𝑀) ∈ 𝐶)
153 restopn2 21389 . . . . . . . . . . 11 ((𝐶 ∈ Top ∧ (𝐹𝑀) ∈ 𝐶) → (𝑊 ∈ (𝐶t (𝐹𝑀)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝑀))))
154101, 152, 153syl2anc 579 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ (𝐶t (𝐹𝑀)) ↔ (𝑊𝐶𝑊 ⊆ (𝐹𝑀))))
155143, 148, 154mpbir2and 703 . . . . . . . . 9 (𝜑𝑊 ∈ (𝐶t (𝐹𝑀)))
156155adantr 474 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑊 ∈ (𝐶t (𝐹𝑀)))
1575cvmscld 31854 . . . . . . . . . 10 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑀) ∧ 𝑊𝑇) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑀))))
1586, 31, 142, 157syl3anc 1439 . . . . . . . . 9 (𝜑𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑀))))
159158adantr 474 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑊 ∈ (Clsd‘(𝐶t (𝐹𝑀))))
160 cvmlift2lem9.10 . . . . . . . . . . 11 (𝜑𝑍𝑉)
161160adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑍𝑉)
162 opelxpi 5392 . . . . . . . . . 10 ((𝑚 ∈ {𝑚} ∧ 𝑍𝑉) → ⟨𝑚, 𝑍⟩ ∈ ({𝑚} × 𝑉))
16352, 161, 162syl2anc 579 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ⟨𝑚, 𝑍⟩ ∈ ({𝑚} × 𝑉))
16481, 84sstrd 3831 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
1654restuni 21374 . . . . . . . . . 10 (((II ×t II) ∈ Top ∧ ({𝑚} × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → ({𝑚} × 𝑉) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
16615, 164, 165sylancr 581 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ({𝑚} × 𝑉) = ((II ×t II) ↾t ({𝑚} × 𝑉)))
167163, 166eleqtrd 2861 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ⟨𝑚, 𝑍⟩ ∈ ((II ×t II) ↾t ({𝑚} × 𝑉)))
168 df-ov 6925 . . . . . . . . . 10 (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = ((𝐾 ↾ ({𝑚} × 𝑉))‘⟨𝑚, 𝑍⟩)
169 ovres 7077 . . . . . . . . . . . 12 ((𝑚 ∈ {𝑚} ∧ 𝑍𝑉) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚𝐾𝑍))
17052, 161, 169syl2anc 579 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚𝐾𝑍))
171 snidg 4428 . . . . . . . . . . . . . 14 (𝑍𝑉𝑍 ∈ {𝑍})
172160, 171syl 17 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ {𝑍})
173172adantr 474 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → 𝑍 ∈ {𝑍})
174 ovres 7077 . . . . . . . . . . . 12 ((𝑚𝑈𝑍 ∈ {𝑍}) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑚𝐾𝑍))
175106, 173, 174syl2anc 579 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑚𝐾𝑍))
176170, 175eqtr4d 2817 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑍) = (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍))
177168, 176syl5eqr 2828 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉))‘⟨𝑚, 𝑍⟩) = (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍))
178 eqid 2778 . . . . . . . . . . . . 13 ((II ×t II) ↾t (𝑈 × {𝑍})) = ((II ×t II) ↾t (𝑈 × {𝑍}))
1792a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → II ∈ Top)
180 snex 5140 . . . . . . . . . . . . . . . 16 {𝑍} ∈ V
181180a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑍} ∈ V)
182 txrest 21843 . . . . . . . . . . . . . . 15 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑈 ∈ II ∧ {𝑍} ∈ V)) → ((II ×t II) ↾t (𝑈 × {𝑍})) = ((II ↾t 𝑈) ×t (II ↾t {𝑍})))
183179, 179, 17, 181, 182syl22anc 829 . . . . . . . . . . . . . 14 (𝜑 → ((II ×t II) ↾t (𝑈 × {𝑍})) = ((II ↾t 𝑈) ×t (II ↾t {𝑍})))
184 cvmlift2lem9.5 . . . . . . . . . . . . . . 15 (𝜑 → (II ↾t 𝑈) ∈ Conn)
18526, 160sseldd 3822 . . . . . . . . . . . . . . . . 17 (𝜑𝑍 ∈ (0[,]1))
186 restsn2 21383 . . . . . . . . . . . . . . . . 17 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝑍 ∈ (0[,]1)) → (II ↾t {𝑍}) = 𝒫 {𝑍})
18763, 185, 186sylancr 581 . . . . . . . . . . . . . . . 16 (𝜑 → (II ↾t {𝑍}) = 𝒫 {𝑍})
188 pwsn 4663 . . . . . . . . . . . . . . . . 17 𝒫 {𝑍} = {∅, {𝑍}}
189 indisconn 21630 . . . . . . . . . . . . . . . . 17 {∅, {𝑍}} ∈ Conn
190188, 189eqeltri 2855 . . . . . . . . . . . . . . . 16 𝒫 {𝑍} ∈ Conn
191187, 190syl6eqel 2867 . . . . . . . . . . . . . . 15 (𝜑 → (II ↾t {𝑍}) ∈ Conn)
192 txconn 21901 . . . . . . . . . . . . . . 15 (((II ↾t 𝑈) ∈ Conn ∧ (II ↾t {𝑍}) ∈ Conn) → ((II ↾t 𝑈) ×t (II ↾t {𝑍})) ∈ Conn)
193184, 191, 192syl2anc 579 . . . . . . . . . . . . . 14 (𝜑 → ((II ↾t 𝑈) ×t (II ↾t {𝑍})) ∈ Conn)
194183, 193eqeltrd 2859 . . . . . . . . . . . . 13 (𝜑 → ((II ×t II) ↾t (𝑈 × {𝑍})) ∈ Conn)
195 cvmlift2lem9.11 . . . . . . . . . . . . . 14 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶))
196101, 103sylib 210 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ (TopOn‘𝐵))
197 df-ima 5368 . . . . . . . . . . . . . . . 16 (𝐾 “ (𝑈 × {𝑍})) = ran (𝐾 ↾ (𝑈 × {𝑍}))
198160snssd 4571 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑍} ⊆ 𝑉)
199 xpss2 5375 . . . . . . . . . . . . . . . . . 18 ({𝑍} ⊆ 𝑉 → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
200 imass2 5755 . . . . . . . . . . . . . . . . . 18 ((𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉) → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐾 “ (𝑈 × 𝑉)))
201198, 199, 2003syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐾 “ (𝑈 × 𝑉)))
202201, 124sstrd 3831 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 “ (𝑈 × {𝑍})) ⊆ (𝐹𝑀))
203197, 202syl5eqssr 3869 . . . . . . . . . . . . . . 15 (𝜑 → ran (𝐾 ↾ (𝑈 × {𝑍})) ⊆ (𝐹𝑀))
204 cnrest2 21498 . . . . . . . . . . . . . . 15 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ (𝑈 × {𝑍})) ⊆ (𝐹𝑀) ∧ (𝐹𝑀) ⊆ 𝐵) → ((𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn (𝐶t (𝐹𝑀)))))
205196, 203, 135, 204syl3anc 1439 . . . . . . . . . . . . . 14 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn (𝐶t (𝐹𝑀)))))
206195, 205mpbid 224 . . . . . . . . . . . . 13 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn (𝐶t (𝐹𝑀))))
207 opelxpi 5392 . . . . . . . . . . . . . . 15 ((𝑋𝑈𝑍 ∈ {𝑍}) → ⟨𝑋, 𝑍⟩ ∈ (𝑈 × {𝑍}))
20821, 172, 207syl2anc 579 . . . . . . . . . . . . . 14 (𝜑 → ⟨𝑋, 𝑍⟩ ∈ (𝑈 × {𝑍}))
209185snssd 4571 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑍} ⊆ (0[,]1))
210 xpss12 5370 . . . . . . . . . . . . . . . 16 ((𝑈 ⊆ (0[,]1) ∧ {𝑍} ⊆ (0[,]1)) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
21120, 209, 210syl2anc 579 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
2124restuni 21374 . . . . . . . . . . . . . . 15 (((II ×t II) ∈ Top ∧ (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1))) → (𝑈 × {𝑍}) = ((II ×t II) ↾t (𝑈 × {𝑍})))
21315, 211, 212sylancr 581 . . . . . . . . . . . . . 14 (𝜑 → (𝑈 × {𝑍}) = ((II ×t II) ↾t (𝑈 × {𝑍})))
214208, 213eleqtrd 2861 . . . . . . . . . . . . 13 (𝜑 → ⟨𝑋, 𝑍⟩ ∈ ((II ×t II) ↾t (𝑈 × {𝑍})))
215 df-ov 6925 . . . . . . . . . . . . . . 15 (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = ((𝐾 ↾ (𝑈 × {𝑍}))‘⟨𝑋, 𝑍⟩)
216 ovres 7077 . . . . . . . . . . . . . . . . 17 ((𝑋𝑈𝑍 ∈ {𝑍}) → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋𝐾𝑍))
21721, 172, 216syl2anc 579 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋𝐾𝑍))
218 snidg 4428 . . . . . . . . . . . . . . . . . 18 (𝑋𝑈𝑋 ∈ {𝑋})
21921, 218syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ {𝑋})
220 ovres 7077 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ {𝑋} ∧ 𝑍𝑉) → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) = (𝑋𝐾𝑍))
221219, 160, 220syl2anc 579 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) = (𝑋𝐾𝑍))
222217, 221eqtr4d 2817 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋(𝐾 ↾ (𝑈 × {𝑍}))𝑍) = (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍))
223215, 222syl5eqr 2828 . . . . . . . . . . . . . 14 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍}))‘⟨𝑋, 𝑍⟩) = (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍))
224 eqid 2778 . . . . . . . . . . . . . . . . 17 ((II ×t II) ↾t ({𝑋} × 𝑉)) = ((II ×t II) ↾t ({𝑋} × 𝑉))
225 snex 5140 . . . . . . . . . . . . . . . . . . . 20 {𝑋} ∈ V
226225a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → {𝑋} ∈ V)
227 txrest 21843 . . . . . . . . . . . . . . . . . . 19 (((II ∈ Top ∧ II ∈ Top) ∧ ({𝑋} ∈ V ∧ 𝑉 ∈ II)) → ((II ×t II) ↾t ({𝑋} × 𝑉)) = ((II ↾t {𝑋}) ×t (II ↾t 𝑉)))
228179, 179, 226, 23, 227syl22anc 829 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((II ×t II) ↾t ({𝑋} × 𝑉)) = ((II ↾t {𝑋}) ×t (II ↾t 𝑉)))
229 restsn2 21383 . . . . . . . . . . . . . . . . . . . . 21 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝑋 ∈ (0[,]1)) → (II ↾t {𝑋}) = 𝒫 {𝑋})
23063, 22, 229sylancr 581 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (II ↾t {𝑋}) = 𝒫 {𝑋})
231 pwsn 4663 . . . . . . . . . . . . . . . . . . . . 21 𝒫 {𝑋} = {∅, {𝑋}}
232 indisconn 21630 . . . . . . . . . . . . . . . . . . . . 21 {∅, {𝑋}} ∈ Conn
233231, 232eqeltri 2855 . . . . . . . . . . . . . . . . . . . 20 𝒫 {𝑋} ∈ Conn
234230, 233syl6eqel 2867 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (II ↾t {𝑋}) ∈ Conn)
235 txconn 21901 . . . . . . . . . . . . . . . . . . 19 (((II ↾t {𝑋}) ∈ Conn ∧ (II ↾t 𝑉) ∈ Conn) → ((II ↾t {𝑋}) ×t (II ↾t 𝑉)) ∈ Conn)
236234, 72, 235syl2anc 579 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((II ↾t {𝑋}) ×t (II ↾t 𝑉)) ∈ Conn)
237228, 236eqeltrd 2859 . . . . . . . . . . . . . . . . 17 (𝜑 → ((II ×t II) ↾t ({𝑋} × 𝑉)) ∈ Conn)
2381, 6, 7, 8, 9, 10, 11cvmlift2lem6 31889 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
23922, 238mpdan 677 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
240 xpss2 5375 . . . . . . . . . . . . . . . . . . . . . 22 (𝑉 ⊆ (0[,]1) → ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)))
24123, 25, 2403syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)))
24222snssd 4571 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → {𝑋} ⊆ (0[,]1))
243 xpss1 5374 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑋} ⊆ (0[,]1) → ({𝑋} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
244242, 243syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ({𝑋} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)))
2454restuni 21374 . . . . . . . . . . . . . . . . . . . . . 22 (((II ×t II) ∈ Top ∧ ({𝑋} × (0[,]1)) ⊆ ((0[,]1) × (0[,]1))) → ({𝑋} × (0[,]1)) = ((II ×t II) ↾t ({𝑋} × (0[,]1))))
24615, 244, 245sylancr 581 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ({𝑋} × (0[,]1)) = ((II ×t II) ↾t ({𝑋} × (0[,]1))))
247241, 246sseqtrd 3860 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ({𝑋} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑋} × (0[,]1))))
248 eqid 2778 . . . . . . . . . . . . . . . . . . . . 21 ((II ×t II) ↾t ({𝑋} × (0[,]1))) = ((II ×t II) ↾t ({𝑋} × (0[,]1)))
249248cnrest 21497 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶) ∧ ({𝑋} × 𝑉) ⊆ ((II ×t II) ↾t ({𝑋} × (0[,]1)))) → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
250239, 247, 249syl2anc 579 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) ∈ ((((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
251241resabs1d 5677 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐾 ↾ ({𝑋} × (0[,]1))) ↾ ({𝑋} × 𝑉)) = (𝐾 ↾ ({𝑋} × 𝑉)))
252225, 93xpex 7240 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑋} × (0[,]1)) ∈ V
253252a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ({𝑋} × (0[,]1)) ∈ V)
254 restabs 21377 . . . . . . . . . . . . . . . . . . . . 21 (((II ×t II) ∈ Top ∧ ({𝑋} × 𝑉) ⊆ ({𝑋} × (0[,]1)) ∧ ({𝑋} × (0[,]1)) ∈ V) → (((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
25516, 241, 253, 254syl3anc 1439 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
256255oveq1d 6937 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((II ×t II) ↾t ({𝑋} × (0[,]1))) ↾t ({𝑋} × 𝑉)) Cn 𝐶) = (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
257250, 251, 2563eltr3d 2873 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶))
258 df-ima 5368 . . . . . . . . . . . . . . . . . . . 20 (𝐾 “ ({𝑋} × 𝑉)) = ran (𝐾 ↾ ({𝑋} × 𝑉))
25921snssd 4571 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → {𝑋} ⊆ 𝑈)
260 xpss1 5374 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑋} ⊆ 𝑈 → ({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉))
261 imass2 5755 . . . . . . . . . . . . . . . . . . . . . 22 (({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉) → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
262259, 260, 2613syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐾 “ (𝑈 × 𝑉)))
263262, 124sstrd 3831 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 “ ({𝑋} × 𝑉)) ⊆ (𝐹𝑀))
264258, 263syl5eqssr 3869 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝐾 ↾ ({𝑋} × 𝑉)) ⊆ (𝐹𝑀))
265 cnrest2 21498 . . . . . . . . . . . . . . . . . . 19 ((𝐶 ∈ (TopOn‘𝐵) ∧ ran (𝐾 ↾ ({𝑋} × 𝑉)) ⊆ (𝐹𝑀) ∧ (𝐹𝑀) ⊆ 𝐵) → ((𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
266196, 264, 135, 265syl3anc 1439 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn 𝐶) ↔ (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn (𝐶t (𝐹𝑀)))))
267257, 266mpbid 224 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)) ∈ (((II ×t II) ↾t ({𝑋} × 𝑉)) Cn (𝐶t (𝐹𝑀))))
268 opelxpi 5392 . . . . . . . . . . . . . . . . . . 19 ((𝑋 ∈ {𝑋} ∧ 𝑌𝑉) → ⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝑉))
269219, 27, 268syl2anc 579 . . . . . . . . . . . . . . . . . 18 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝑉))
270259, 260syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ({𝑋} × 𝑉) ⊆ (𝑈 × 𝑉))
271270, 50sstrd 3831 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ({𝑋} × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
2724restuni 21374 . . . . . . . . . . . . . . . . . . 19 (((II ×t II) ∈ Top ∧ ({𝑋} × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → ({𝑋} × 𝑉) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
27315, 271, 272sylancr 581 . . . . . . . . . . . . . . . . . 18 (𝜑 → ({𝑋} × 𝑉) = ((II ×t II) ↾t ({𝑋} × 𝑉)))
274269, 273eleqtrd 2861 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((II ×t II) ↾t ({𝑋} × 𝑉)))
275 df-ov 6925 . . . . . . . . . . . . . . . . . . 19 (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = ((𝐾 ↾ ({𝑋} × 𝑉))‘⟨𝑋, 𝑌⟩)
276 ovres 7077 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ {𝑋} ∧ 𝑌𝑉) → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = (𝑋𝐾𝑌))
277219, 27, 276syl2anc 579 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑌) = (𝑋𝐾𝑌))
278275, 277syl5eqr 2828 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉))‘⟨𝑋, 𝑌⟩) = (𝑋𝐾𝑌))
27945simprd 491 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑋𝐾𝑌) ∈ 𝑊)
280278, 279eqeltrd 2859 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉))‘⟨𝑋, 𝑌⟩) ∈ 𝑊)
281224, 237, 267, 155, 158, 274, 280conncn 21638 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)): ((II ×t II) ↾t ({𝑋} × 𝑉))⟶𝑊)
282273feq2d 6277 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾 ↾ ({𝑋} × 𝑉)):({𝑋} × 𝑉)⟶𝑊 ↔ (𝐾 ↾ ({𝑋} × 𝑉)): ((II ×t II) ↾t ({𝑋} × 𝑉))⟶𝑊))
283281, 282mpbird 249 . . . . . . . . . . . . . . 15 (𝜑 → (𝐾 ↾ ({𝑋} × 𝑉)):({𝑋} × 𝑉)⟶𝑊)
284283, 219, 160fovrnd 7083 . . . . . . . . . . . . . 14 (𝜑 → (𝑋(𝐾 ↾ ({𝑋} × 𝑉))𝑍) ∈ 𝑊)
285223, 284eqeltrd 2859 . . . . . . . . . . . . 13 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍}))‘⟨𝑋, 𝑍⟩) ∈ 𝑊)
286178, 194, 206, 155, 158, 214, 285conncn 21638 . . . . . . . . . . . 12 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})): ((II ×t II) ↾t (𝑈 × {𝑍}))⟶𝑊)
287213feq2d 6277 . . . . . . . . . . . 12 (𝜑 → ((𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊 ↔ (𝐾 ↾ (𝑈 × {𝑍})): ((II ×t II) ↾t (𝑈 × {𝑍}))⟶𝑊))
288286, 287mpbird 249 . . . . . . . . . . 11 (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊)
289288adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ (𝑈 × {𝑍})):(𝑈 × {𝑍})⟶𝑊)
290289, 106, 173fovrnd 7083 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ (𝑈 × {𝑍}))𝑍) ∈ 𝑊)
291177, 290eqeltrd 2859 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉))‘⟨𝑚, 𝑍⟩) ∈ 𝑊)
29256, 76, 139, 156, 159, 167, 291conncn 21638 . . . . . . 7 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)): ((II ×t II) ↾t ({𝑚} × 𝑉))⟶𝑊)
293166feq2d 6277 . . . . . . 7 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → ((𝐾 ↾ ({𝑚} × 𝑉)):({𝑚} × 𝑉)⟶𝑊 ↔ (𝐾 ↾ ({𝑚} × 𝑉)): ((II ×t II) ↾t ({𝑚} × 𝑉))⟶𝑊))
294292, 293mpbird 249 . . . . . 6 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝐾 ↾ ({𝑚} × 𝑉)):({𝑚} × 𝑉)⟶𝑊)
295294, 52, 53fovrnd 7083 . . . . 5 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚(𝐾 ↾ ({𝑚} × 𝑉))𝑛) ∈ 𝑊)
29655, 295eqeltrrd 2860 . . . 4 ((𝜑 ∧ (𝑚𝑈𝑛𝑉)) → (𝑚𝐾𝑛) ∈ 𝑊)
297296ralrimivva 3153 . . 3 (𝜑 → ∀𝑚𝑈𝑛𝑉 (𝑚𝐾𝑛) ∈ 𝑊)
298 funimassov 7088 . . . 4 ((Fun 𝐾 ∧ (𝑈 × 𝑉) ⊆ dom 𝐾) → ((𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊 ↔ ∀𝑚𝑈𝑛𝑉 (𝑚𝐾𝑛) ∈ 𝑊))
299119, 121, 298syl2anc 579 . . 3 (𝜑 → ((𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊 ↔ ∀𝑚𝑈𝑛𝑉 (𝑚𝐾𝑛) ∈ 𝑊))
300297, 299mpbird 249 . 2 (𝜑 → (𝐾 “ (𝑈 × 𝑉)) ⊆ 𝑊)
3011, 4, 5, 6, 12, 14, 16, 30, 31, 48, 50, 300cvmlift2lem9a 31884 1 (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wral 3090  {crab 3094  Vcvv 3398  cdif 3789  cin 3791  wss 3792  c0 4141  𝒫 cpw 4379  {csn 4398  {cpr 4400  cop 4404   cuni 4671  cmpt 4965   × cxp 5353  ccnv 5354  dom cdm 5355  ran crn 5356  cres 5357  cima 5358  ccom 5359  Fun wfun 6129  wf 6131  cfv 6135  crio 6882  (class class class)co 6922  cmpt2 6924  0cc0 10272  1c1 10273  [,]cicc 12490  t crest 16467  Topctop 21105  TopOnctopon 21122  Clsdccld 21228   Cn ccn 21436  Conncconn 21623   ×t ctx 21772  Homeochmeo 21965  IIcii 23086   CovMap ccvm 31836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-ec 8028  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-cn 21439  df-cnp 21440  df-cmp 21599  df-conn 21624  df-lly 21678  df-nlly 21679  df-tx 21774  df-hmeo 21967  df-xms 22533  df-ms 22534  df-tms 22535  df-ii 23088  df-htpy 23177  df-phtpy 23178  df-phtpc 23199  df-pconn 31802  df-sconn 31803  df-cvm 31837
This theorem is referenced by:  cvmlift2lem10  31893
  Copyright terms: Public domain W3C validator