| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > topsn | Structured version Visualization version GIF version | ||
| Description: The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn 4864). (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| Ref | Expression |
|---|---|
| topsn | ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topgele 22817 | . . 3 ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → ({∅, {𝐴}} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 {𝐴})) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 ⊆ 𝒫 {𝐴}) |
| 3 | pwsn 4864 | . . 3 ⊢ 𝒫 {𝐴} = {∅, {𝐴}} | |
| 4 | 1 | simpld 494 | . . 3 ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → {∅, {𝐴}} ⊆ 𝐽) |
| 5 | 3, 4 | eqsstrid 3985 | . 2 ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → 𝒫 {𝐴} ⊆ 𝐽) |
| 6 | 2, 5 | eqssd 3964 | 1 ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 {csn 4589 {cpr 4591 ‘cfv 6511 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-top 22781 df-topon 22798 |
| This theorem is referenced by: restsn2 23058 rrxtopn0 46291 |
| Copyright terms: Public domain | W3C validator |