![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topsn | Structured version Visualization version GIF version |
Description: The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn 4896). (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
topsn | β’ (π½ β (TopOnβ{π΄}) β π½ = π« {π΄}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topgele 22825 | . . 3 β’ (π½ β (TopOnβ{π΄}) β ({β , {π΄}} β π½ β§ π½ β π« {π΄})) | |
2 | 1 | simprd 495 | . 2 β’ (π½ β (TopOnβ{π΄}) β π½ β π« {π΄}) |
3 | pwsn 4896 | . . 3 β’ π« {π΄} = {β , {π΄}} | |
4 | 1 | simpld 494 | . . 3 β’ (π½ β (TopOnβ{π΄}) β {β , {π΄}} β π½) |
5 | 3, 4 | eqsstrid 4026 | . 2 β’ (π½ β (TopOnβ{π΄}) β π« {π΄} β π½) |
6 | 2, 5 | eqssd 3995 | 1 β’ (π½ β (TopOnβ{π΄}) β π½ = π« {π΄}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 β wss 3945 β c0 4318 π« cpw 4598 {csn 4624 {cpr 4626 βcfv 6542 TopOnctopon 22805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-top 22789 df-topon 22806 |
This theorem is referenced by: restsn2 23068 rrxtopn0 45675 |
Copyright terms: Public domain | W3C validator |