MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topsn Structured version   Visualization version   GIF version

Theorem topsn 22824
Description: The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn 4872). (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topsn (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴})

Proof of Theorem topsn
StepHypRef Expression
1 topgele 22823 . . 3 (𝐽 ∈ (TopOn‘{𝐴}) → ({∅, {𝐴}} ⊆ 𝐽𝐽 ⊆ 𝒫 {𝐴}))
21simprd 495 . 2 (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 ⊆ 𝒫 {𝐴})
3 pwsn 4872 . . 3 𝒫 {𝐴} = {∅, {𝐴}}
41simpld 494 . . 3 (𝐽 ∈ (TopOn‘{𝐴}) → {∅, {𝐴}} ⊆ 𝐽)
53, 4eqsstrid 3993 . 2 (𝐽 ∈ (TopOn‘{𝐴}) → 𝒫 {𝐴} ⊆ 𝐽)
62, 5eqssd 3972 1 (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3922  c0 4304  𝒫 cpw 4571  {csn 4597  {cpr 4599  cfv 6519  TopOnctopon 22803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-iota 6472  df-fun 6521  df-fv 6527  df-top 22787  df-topon 22804
This theorem is referenced by:  restsn2  23064  rrxtopn0  46264
  Copyright terms: Public domain W3C validator