MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topsn Structured version   Visualization version   GIF version

Theorem topsn 22818
Description: The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn 4864). (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topsn (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴})

Proof of Theorem topsn
StepHypRef Expression
1 topgele 22817 . . 3 (𝐽 ∈ (TopOn‘{𝐴}) → ({∅, {𝐴}} ⊆ 𝐽𝐽 ⊆ 𝒫 {𝐴}))
21simprd 495 . 2 (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 ⊆ 𝒫 {𝐴})
3 pwsn 4864 . . 3 𝒫 {𝐴} = {∅, {𝐴}}
41simpld 494 . . 3 (𝐽 ∈ (TopOn‘{𝐴}) → {∅, {𝐴}} ⊆ 𝐽)
53, 4eqsstrid 3985 . 2 (𝐽 ∈ (TopOn‘{𝐴}) → 𝒫 {𝐴} ⊆ 𝐽)
62, 5eqssd 3964 1 (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589  {cpr 4591  cfv 6511  TopOnctopon 22797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-top 22781  df-topon 22798
This theorem is referenced by:  restsn2  23058  rrxtopn0  46291
  Copyright terms: Public domain W3C validator