MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topsn Structured version   Visualization version   GIF version

Theorem topsn 22866
Description: The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn 4853). (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
topsn (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴})

Proof of Theorem topsn
StepHypRef Expression
1 topgele 22865 . . 3 (𝐽 ∈ (TopOn‘{𝐴}) → ({∅, {𝐴}} ⊆ 𝐽𝐽 ⊆ 𝒫 {𝐴}))
21simprd 495 . 2 (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 ⊆ 𝒫 {𝐴})
3 pwsn 4853 . . 3 𝒫 {𝐴} = {∅, {𝐴}}
41simpld 494 . . 3 (𝐽 ∈ (TopOn‘{𝐴}) → {∅, {𝐴}} ⊆ 𝐽)
53, 4eqsstrid 3969 . 2 (𝐽 ∈ (TopOn‘{𝐴}) → 𝒫 {𝐴} ⊆ 𝐽)
62, 5eqssd 3948 1 (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wss 3898  c0 4282  𝒫 cpw 4551  {csn 4577  {cpr 4579  cfv 6489  TopOnctopon 22845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-top 22829  df-topon 22846
This theorem is referenced by:  restsn2  23106  rrxtopn0  46453
  Copyright terms: Public domain W3C validator