![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topsn | Structured version Visualization version GIF version |
Description: The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn 4899). (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
topsn | β’ (π½ β (TopOnβ{π΄}) β π½ = π« {π΄}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topgele 22423 | . . 3 β’ (π½ β (TopOnβ{π΄}) β ({β , {π΄}} β π½ β§ π½ β π« {π΄})) | |
2 | 1 | simprd 496 | . 2 β’ (π½ β (TopOnβ{π΄}) β π½ β π« {π΄}) |
3 | pwsn 4899 | . . 3 β’ π« {π΄} = {β , {π΄}} | |
4 | 1 | simpld 495 | . . 3 β’ (π½ β (TopOnβ{π΄}) β {β , {π΄}} β π½) |
5 | 3, 4 | eqsstrid 4029 | . 2 β’ (π½ β (TopOnβ{π΄}) β π« {π΄} β π½) |
6 | 2, 5 | eqssd 3998 | 1 β’ (π½ β (TopOnβ{π΄}) β π½ = π« {π΄}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3947 β c0 4321 π« cpw 4601 {csn 4627 {cpr 4629 βcfv 6540 TopOnctopon 22403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-top 22387 df-topon 22404 |
This theorem is referenced by: restsn2 22666 rrxtopn0 44995 |
Copyright terms: Public domain | W3C validator |