![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > topsn | Structured version Visualization version GIF version |
Description: The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn 4906). (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
topsn | ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topgele 22958 | . . 3 ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → ({∅, {𝐴}} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 {𝐴})) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 ⊆ 𝒫 {𝐴}) |
3 | pwsn 4906 | . . 3 ⊢ 𝒫 {𝐴} = {∅, {𝐴}} | |
4 | 1 | simpld 494 | . . 3 ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → {∅, {𝐴}} ⊆ 𝐽) |
5 | 3, 4 | eqsstrid 4045 | . 2 ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → 𝒫 {𝐴} ⊆ 𝐽) |
6 | 2, 5 | eqssd 4014 | 1 ⊢ (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 ⊆ wss 3964 ∅c0 4340 𝒫 cpw 4606 {csn 4632 {cpr 4634 ‘cfv 6566 TopOnctopon 22938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-iota 6519 df-fun 6568 df-fv 6574 df-top 22922 df-topon 22939 |
This theorem is referenced by: restsn2 23201 rrxtopn0 46260 |
Copyright terms: Public domain | W3C validator |