Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsalrel Structured version   Visualization version   GIF version

Theorem qsalrel 40141
Description: The quotient set is equal to the singleton of 𝐴 when all elements are related and 𝐴 is nonempty. (Contributed by SN, 8-Jun-2023.)
Hypotheses
Ref Expression
qsalrel.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 𝑦)
qsalrel.2 (𝜑 Er 𝐴)
qsalrel.3 (𝜑𝑁𝐴)
Assertion
Ref Expression
qsalrel (𝜑 → (𝐴 / ) = {𝐴})
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥, ,𝑦   𝑦,𝑁
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem qsalrel
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dfqs2 40138 . 2 (𝐴 / ) = ran (𝑎𝐴 ↦ [𝑎] )
2 qsalrel.2 . . . . . . 7 (𝜑 Er 𝐴)
32adantr 480 . . . . . 6 ((𝜑𝑎𝐴) → Er 𝐴)
4 qsalrel.1 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 𝑦)
54ralrimivva 3114 . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦𝐴 𝑥 𝑦)
65adantr 480 . . . . . . 7 ((𝜑𝑎𝐴) → ∀𝑥𝐴𝑦𝐴 𝑥 𝑦)
7 simpr 484 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑎𝐴)
8 breq1 5073 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 𝑦𝑎 𝑦))
98ralbidv 3120 . . . . . . . . . 10 (𝑥 = 𝑎 → (∀𝑦𝐴 𝑥 𝑦 ↔ ∀𝑦𝐴 𝑎 𝑦))
109adantl 481 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑥 = 𝑎) → (∀𝑦𝐴 𝑥 𝑦 ↔ ∀𝑦𝐴 𝑎 𝑦))
117, 10rspcdv 3543 . . . . . . . 8 ((𝜑𝑎𝐴) → (∀𝑥𝐴𝑦𝐴 𝑥 𝑦 → ∀𝑦𝐴 𝑎 𝑦))
12 qsalrel.3 . . . . . . . . . 10 (𝜑𝑁𝐴)
13 breq2 5074 . . . . . . . . . . 11 (𝑦 = 𝑁 → (𝑎 𝑦𝑎 𝑁))
1413adantl 481 . . . . . . . . . 10 ((𝜑𝑦 = 𝑁) → (𝑎 𝑦𝑎 𝑁))
1512, 14rspcdv 3543 . . . . . . . . 9 (𝜑 → (∀𝑦𝐴 𝑎 𝑦𝑎 𝑁))
1615adantr 480 . . . . . . . 8 ((𝜑𝑎𝐴) → (∀𝑦𝐴 𝑎 𝑦𝑎 𝑁))
1711, 16syld 47 . . . . . . 7 ((𝜑𝑎𝐴) → (∀𝑥𝐴𝑦𝐴 𝑥 𝑦𝑎 𝑁))
186, 17mpd 15 . . . . . 6 ((𝜑𝑎𝐴) → 𝑎 𝑁)
193, 18erthi 8507 . . . . 5 ((𝜑𝑎𝐴) → [𝑎] = [𝑁] )
2019mpteq2dva 5170 . . . 4 (𝜑 → (𝑎𝐴 ↦ [𝑎] ) = (𝑎𝐴 ↦ [𝑁] ))
2120rneqd 5836 . . 3 (𝜑 → ran (𝑎𝐴 ↦ [𝑎] ) = ran (𝑎𝐴 ↦ [𝑁] ))
22 eqid 2738 . . . 4 (𝑎𝐴 ↦ [𝑁] ) = (𝑎𝐴 ↦ [𝑁] )
2312ne0d 4266 . . . 4 (𝜑𝐴 ≠ ∅)
2422, 23rnmptc 7064 . . 3 (𝜑 → ran (𝑎𝐴 ↦ [𝑁] ) = {[𝑁] })
252ecss 8502 . . . . 5 (𝜑 → [𝑁] 𝐴)
263, 18ersym 8468 . . . . . 6 ((𝜑𝑎𝐴) → 𝑁 𝑎)
2712adantr 480 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑁𝐴)
28 elecg 8499 . . . . . . 7 ((𝑎𝐴𝑁𝐴) → (𝑎 ∈ [𝑁] 𝑁 𝑎))
297, 27, 28syl2anc 583 . . . . . 6 ((𝜑𝑎𝐴) → (𝑎 ∈ [𝑁] 𝑁 𝑎))
3026, 29mpbird 256 . . . . 5 ((𝜑𝑎𝐴) → 𝑎 ∈ [𝑁] )
3125, 30eqelssd 3938 . . . 4 (𝜑 → [𝑁] = 𝐴)
3231sneqd 4570 . . 3 (𝜑 → {[𝑁] } = {𝐴})
3321, 24, 323eqtrd 2782 . 2 (𝜑 → ran (𝑎𝐴 ↦ [𝑎] ) = {𝐴})
341, 33syl5eq 2791 1 (𝜑 → (𝐴 / ) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {csn 4558   class class class wbr 5070  cmpt 5153  ran crn 5581   Er wer 8453  [cec 8454   / cqs 8455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-er 8456  df-ec 8458  df-qs 8462
This theorem is referenced by:  0prjspn  40386
  Copyright terms: Public domain W3C validator