Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsalrel Structured version   Visualization version   GIF version

Theorem qsalrel 41062
Description: The quotient set is equal to the singleton of 𝐴 when all elements are related and 𝐴 is nonempty. (Contributed by SN, 8-Jun-2023.)
Hypotheses
Ref Expression
qsalrel.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 𝑦)
qsalrel.2 (𝜑 Er 𝐴)
qsalrel.3 (𝜑𝑁𝐴)
Assertion
Ref Expression
qsalrel (𝜑 → (𝐴 / ) = {𝐴})
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥, ,𝑦   𝑦,𝑁
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem qsalrel
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dfqs2 41059 . 2 (𝐴 / ) = ran (𝑎𝐴 ↦ [𝑎] )
2 qsalrel.2 . . . . . . 7 (𝜑 Er 𝐴)
32adantr 482 . . . . . 6 ((𝜑𝑎𝐴) → Er 𝐴)
4 qsalrel.1 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 𝑦)
54ralrimivva 3201 . . . . . . . 8 (𝜑 → ∀𝑥𝐴𝑦𝐴 𝑥 𝑦)
65adantr 482 . . . . . . 7 ((𝜑𝑎𝐴) → ∀𝑥𝐴𝑦𝐴 𝑥 𝑦)
7 simpr 486 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑎𝐴)
8 breq1 5152 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 𝑦𝑎 𝑦))
98ralbidv 3178 . . . . . . . . . 10 (𝑥 = 𝑎 → (∀𝑦𝐴 𝑥 𝑦 ↔ ∀𝑦𝐴 𝑎 𝑦))
109adantl 483 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑥 = 𝑎) → (∀𝑦𝐴 𝑥 𝑦 ↔ ∀𝑦𝐴 𝑎 𝑦))
117, 10rspcdv 3605 . . . . . . . 8 ((𝜑𝑎𝐴) → (∀𝑥𝐴𝑦𝐴 𝑥 𝑦 → ∀𝑦𝐴 𝑎 𝑦))
12 qsalrel.3 . . . . . . . . . 10 (𝜑𝑁𝐴)
13 breq2 5153 . . . . . . . . . . 11 (𝑦 = 𝑁 → (𝑎 𝑦𝑎 𝑁))
1413adantl 483 . . . . . . . . . 10 ((𝜑𝑦 = 𝑁) → (𝑎 𝑦𝑎 𝑁))
1512, 14rspcdv 3605 . . . . . . . . 9 (𝜑 → (∀𝑦𝐴 𝑎 𝑦𝑎 𝑁))
1615adantr 482 . . . . . . . 8 ((𝜑𝑎𝐴) → (∀𝑦𝐴 𝑎 𝑦𝑎 𝑁))
1711, 16syld 47 . . . . . . 7 ((𝜑𝑎𝐴) → (∀𝑥𝐴𝑦𝐴 𝑥 𝑦𝑎 𝑁))
186, 17mpd 15 . . . . . 6 ((𝜑𝑎𝐴) → 𝑎 𝑁)
193, 18erthi 8754 . . . . 5 ((𝜑𝑎𝐴) → [𝑎] = [𝑁] )
2019mpteq2dva 5249 . . . 4 (𝜑 → (𝑎𝐴 ↦ [𝑎] ) = (𝑎𝐴 ↦ [𝑁] ))
2120rneqd 5938 . . 3 (𝜑 → ran (𝑎𝐴 ↦ [𝑎] ) = ran (𝑎𝐴 ↦ [𝑁] ))
22 eqid 2733 . . . 4 (𝑎𝐴 ↦ [𝑁] ) = (𝑎𝐴 ↦ [𝑁] )
2312ne0d 4336 . . . 4 (𝜑𝐴 ≠ ∅)
2422, 23rnmptc 7208 . . 3 (𝜑 → ran (𝑎𝐴 ↦ [𝑁] ) = {[𝑁] })
252ecss 8749 . . . . 5 (𝜑 → [𝑁] 𝐴)
263, 18ersym 8715 . . . . . 6 ((𝜑𝑎𝐴) → 𝑁 𝑎)
2712adantr 482 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑁𝐴)
28 elecg 8746 . . . . . . 7 ((𝑎𝐴𝑁𝐴) → (𝑎 ∈ [𝑁] 𝑁 𝑎))
297, 27, 28syl2anc 585 . . . . . 6 ((𝜑𝑎𝐴) → (𝑎 ∈ [𝑁] 𝑁 𝑎))
3026, 29mpbird 257 . . . . 5 ((𝜑𝑎𝐴) → 𝑎 ∈ [𝑁] )
3125, 30eqelssd 4004 . . . 4 (𝜑 → [𝑁] = 𝐴)
3231sneqd 4641 . . 3 (𝜑 → {[𝑁] } = {𝐴})
3321, 24, 323eqtrd 2777 . 2 (𝜑 → ran (𝑎𝐴 ↦ [𝑎] ) = {𝐴})
341, 33eqtrid 2785 1 (𝜑 → (𝐴 / ) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  {csn 4629   class class class wbr 5149  cmpt 5232  ran crn 5678   Er wer 8700  [cec 8701   / cqs 8702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-mpt 5233  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-er 8703  df-ec 8705  df-qs 8709
This theorem is referenced by:  0prjspn  41370
  Copyright terms: Public domain W3C validator