Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmobndseqiALT | Structured version Visualization version GIF version |
Description: Alternate shorter proof of nmobndseqi 29141 based on Axioms ax-reg 9351 and ax-ac2 10219 instead of ax-cc 10191. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) |
nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) |
nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmoubi.u | ⊢ 𝑈 ∈ NrmCVec |
nmoubi.w | ⊢ 𝑊 ∈ NrmCVec |
Ref | Expression |
---|---|
nmobndseqiALT | ⊢ ((𝑇:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → (𝑁‘𝑇) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp 451 | . . . . . 6 ⊢ (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) | |
2 | r19.35 3271 | . . . . . . 7 ⊢ (∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) | |
3 | 2 | imbi2i 336 | . . . . . 6 ⊢ ((𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
4 | 1, 3 | bitr4i 277 | . . . . 5 ⊢ (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
5 | 4 | albii 1822 | . . . 4 ⊢ (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
6 | nnex 11979 | . . . . . 6 ⊢ ℕ ∈ V | |
7 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑦 = (𝑓‘𝑘) → (𝐿‘𝑦) = (𝐿‘(𝑓‘𝑘))) | |
8 | 7 | breq1d 5084 | . . . . . . 7 ⊢ (𝑦 = (𝑓‘𝑘) → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘(𝑓‘𝑘)) ≤ 1)) |
9 | fveq2 6774 | . . . . . . . . 9 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑇‘𝑦) = (𝑇‘(𝑓‘𝑘))) | |
10 | 9 | fveq2d 6778 | . . . . . . . 8 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘(𝑓‘𝑘)))) |
11 | 10 | breq1d 5084 | . . . . . . 7 ⊢ (𝑦 = (𝑓‘𝑘) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑘 ↔ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) |
12 | 8, 11 | imbi12d 345 | . . . . . 6 ⊢ (𝑦 = (𝑓‘𝑘) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
13 | 6, 12 | ac6n 10241 | . . . . 5 ⊢ (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℕ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
14 | nnre 11980 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ) | |
15 | 14 | anim1i 615 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ ∧ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) → (𝑘 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘))) |
16 | 15 | reximi2 3175 | . . . . 5 ⊢ (∃𝑘 ∈ ℕ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
17 | 13, 16 | syl 17 | . . . 4 ⊢ (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
18 | 5, 17 | sylbi 216 | . . 3 ⊢ (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
19 | nmoubi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
20 | nmoubi.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
21 | nmoubi.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
22 | nmoubi.m | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
23 | nmoubi.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
24 | nmoubi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
25 | nmoubi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
26 | 19, 20, 21, 22, 23, 24, 25 | nmobndi 29137 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘))) |
27 | 18, 26 | syl5ibr 245 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) → (𝑁‘𝑇) ∈ ℝ)) |
28 | 27 | imp 407 | 1 ⊢ ((𝑇:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → (𝑁‘𝑇) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 ≤ cle 11010 ℕcn 11973 NrmCVeccnv 28946 BaseSetcba 28948 normCVcnmcv 28952 normOpOLD cnmoo 29103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-r1 9522 df-rank 9523 df-card 9697 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-grpo 28855 df-gid 28856 df-ginv 28857 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-nmcv 28962 df-nmoo 29107 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |