![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmobndseqiALT | Structured version Visualization version GIF version |
Description: Alternate shorter proof of nmobndseqi 27974 based on axioms ax-reg 8653 and ax-ac2 9487 instead of ax-cc 9459. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) |
nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) |
nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmoubi.u | ⊢ 𝑈 ∈ NrmCVec |
nmoubi.w | ⊢ 𝑊 ∈ NrmCVec |
Ref | Expression |
---|---|
nmobndseqiALT | ⊢ ((𝑇:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → (𝑁‘𝑇) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp 437 | . . . . . 6 ⊢ (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) | |
2 | r19.35 3232 | . . . . . . 7 ⊢ (∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) | |
3 | 2 | imbi2i 325 | . . . . . 6 ⊢ ((𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
4 | 1, 3 | bitr4i 267 | . . . . 5 ⊢ (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
5 | 4 | albii 1895 | . . . 4 ⊢ (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
6 | nnex 11228 | . . . . . 6 ⊢ ℕ ∈ V | |
7 | fveq2 6332 | . . . . . . . 8 ⊢ (𝑦 = (𝑓‘𝑘) → (𝐿‘𝑦) = (𝐿‘(𝑓‘𝑘))) | |
8 | 7 | breq1d 4796 | . . . . . . 7 ⊢ (𝑦 = (𝑓‘𝑘) → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘(𝑓‘𝑘)) ≤ 1)) |
9 | fveq2 6332 | . . . . . . . . 9 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑇‘𝑦) = (𝑇‘(𝑓‘𝑘))) | |
10 | 9 | fveq2d 6336 | . . . . . . . 8 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘(𝑓‘𝑘)))) |
11 | 10 | breq1d 4796 | . . . . . . 7 ⊢ (𝑦 = (𝑓‘𝑘) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑘 ↔ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) |
12 | 8, 11 | imbi12d 333 | . . . . . 6 ⊢ (𝑦 = (𝑓‘𝑘) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
13 | 6, 12 | ac6n 9509 | . . . . 5 ⊢ (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℕ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
14 | nnre 11229 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ) | |
15 | 14 | anim1i 594 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ ∧ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) → (𝑘 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘))) |
16 | 15 | reximi2 3158 | . . . . 5 ⊢ (∃𝑘 ∈ ℕ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
17 | 13, 16 | syl 17 | . . . 4 ⊢ (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
18 | 5, 17 | sylbi 207 | . . 3 ⊢ (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
19 | nmoubi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
20 | nmoubi.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
21 | nmoubi.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
22 | nmoubi.m | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
23 | nmoubi.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
24 | nmoubi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
25 | nmoubi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
26 | 19, 20, 21, 22, 23, 24, 25 | nmobndi 27970 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘))) |
27 | 18, 26 | syl5ibr 236 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) → (𝑁‘𝑇) ∈ ℝ)) |
28 | 27 | imp 393 | 1 ⊢ ((𝑇:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → (𝑁‘𝑇) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∀wal 1629 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∃wrex 3062 class class class wbr 4786 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ℝcr 10137 1c1 10139 ≤ cle 10277 ℕcn 11222 NrmCVeccnv 27779 BaseSetcba 27781 normCVcnmcv 27785 normOpOLD cnmoo 27936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-reg 8653 ax-inf2 8702 ax-ac2 9487 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-r1 8791 df-rank 8792 df-card 8965 df-ac 9139 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-grpo 27687 df-gid 27688 df-ginv 27689 df-ablo 27739 df-vc 27754 df-nv 27787 df-va 27790 df-ba 27791 df-sm 27792 df-0v 27793 df-nmcv 27795 df-nmoo 27940 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |