MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmobndseqiALT Structured version   Visualization version   GIF version

Theorem nmobndseqiALT 30709
Description: Alternate shorter proof of nmobndseqi 30708 based on Axioms ax-reg 9545 and ax-ac2 10416 instead of ax-cc 10388. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmobndseqiALT ((𝑇:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → (𝑁𝑇) ∈ ℝ)
Distinct variable groups:   𝑓,𝑘,𝐿   𝑘,𝑌   𝑓,𝑀,𝑘   𝑇,𝑓,𝑘   𝑓,𝑋,𝑘   𝑘,𝑁
Allowed substitution hints:   𝑈(𝑓,𝑘)   𝑁(𝑓)   𝑊(𝑓,𝑘)   𝑌(𝑓)

Proof of Theorem nmobndseqiALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 impexp 450 . . . . . 6 (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
2 r19.35 3088 . . . . . . 7 (∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ (∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘))
32imbi2i 336 . . . . . 6 ((𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
41, 3bitr4i 278 . . . . 5 (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
54albii 1819 . . . 4 (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
6 nnex 12192 . . . . . 6 ℕ ∈ V
7 fveq2 6858 . . . . . . . 8 (𝑦 = (𝑓𝑘) → (𝐿𝑦) = (𝐿‘(𝑓𝑘)))
87breq1d 5117 . . . . . . 7 (𝑦 = (𝑓𝑘) → ((𝐿𝑦) ≤ 1 ↔ (𝐿‘(𝑓𝑘)) ≤ 1))
9 fveq2 6858 . . . . . . . . 9 (𝑦 = (𝑓𝑘) → (𝑇𝑦) = (𝑇‘(𝑓𝑘)))
109fveq2d 6862 . . . . . . . 8 (𝑦 = (𝑓𝑘) → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇‘(𝑓𝑘))))
1110breq1d 5117 . . . . . . 7 (𝑦 = (𝑓𝑘) → ((𝑀‘(𝑇𝑦)) ≤ 𝑘 ↔ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘))
128, 11imbi12d 344 . . . . . 6 (𝑦 = (𝑓𝑘) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘) ↔ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
136, 12ac6n 10438 . . . . 5 (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℕ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
14 nnre 12193 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
1514anim1i 615 . . . . . 6 ((𝑘 ∈ ℕ ∧ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘)) → (𝑘 ∈ ℝ ∧ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘)))
1615reximi2 3062 . . . . 5 (∃𝑘 ∈ ℕ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
1713, 16syl 17 . . . 4 (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
185, 17sylbi 217 . . 3 (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
19 nmoubi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
20 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
21 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
22 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
23 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
24 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
25 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
2619, 20, 21, 22, 23, 24, 25nmobndi 30704 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑘 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘)))
2718, 26imbitrrid 246 . 2 (𝑇:𝑋𝑌 → (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) → (𝑁𝑇) ∈ ℝ))
2827imp 406 1 ((𝑇:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → (𝑁𝑇) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  1c1 11069  cle 11209  cn 12186  NrmCVeccnv 30513  BaseSetcba 30515  normCVcnmcv 30519   normOpOLD cnmoo 30670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-r1 9717  df-rank 9718  df-card 9892  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-grpo 30422  df-gid 30423  df-ginv 30424  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-nmcv 30529  df-nmoo 30674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator