![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmobndseqiALT | Structured version Visualization version GIF version |
Description: Alternate shorter proof of nmobndseqi 30661 based on Axioms ax-reg 9617 and ax-ac2 10488 instead of ax-cc 10460. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
nmoubi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nmoubi.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
nmoubi.l | ⊢ 𝐿 = (normCV‘𝑈) |
nmoubi.m | ⊢ 𝑀 = (normCV‘𝑊) |
nmoubi.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmoubi.u | ⊢ 𝑈 ∈ NrmCVec |
nmoubi.w | ⊢ 𝑊 ∈ NrmCVec |
Ref | Expression |
---|---|
nmobndseqiALT | ⊢ ((𝑇:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → (𝑁‘𝑇) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp 449 | . . . . . 6 ⊢ (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) | |
2 | r19.35 3097 | . . . . . . 7 ⊢ (∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) | |
3 | 2 | imbi2i 335 | . . . . . 6 ⊢ ((𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
4 | 1, 3 | bitr4i 277 | . . . . 5 ⊢ (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
5 | 4 | albii 1813 | . . . 4 ⊢ (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
6 | nnex 12251 | . . . . . 6 ⊢ ℕ ∈ V | |
7 | fveq2 6896 | . . . . . . . 8 ⊢ (𝑦 = (𝑓‘𝑘) → (𝐿‘𝑦) = (𝐿‘(𝑓‘𝑘))) | |
8 | 7 | breq1d 5159 | . . . . . . 7 ⊢ (𝑦 = (𝑓‘𝑘) → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘(𝑓‘𝑘)) ≤ 1)) |
9 | fveq2 6896 | . . . . . . . . 9 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑇‘𝑦) = (𝑇‘(𝑓‘𝑘))) | |
10 | 9 | fveq2d 6900 | . . . . . . . 8 ⊢ (𝑦 = (𝑓‘𝑘) → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘(𝑓‘𝑘)))) |
11 | 10 | breq1d 5159 | . . . . . . 7 ⊢ (𝑦 = (𝑓‘𝑘) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑘 ↔ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) |
12 | 8, 11 | imbi12d 343 | . . . . . 6 ⊢ (𝑦 = (𝑓‘𝑘) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
13 | 6, 12 | ac6n 10510 | . . . . 5 ⊢ (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℕ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
14 | nnre 12252 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℝ) | |
15 | 14 | anim1i 613 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ ∧ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) → (𝑘 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘))) |
16 | 15 | reximi2 3068 | . . . . 5 ⊢ (∃𝑘 ∈ ℕ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
17 | 13, 16 | syl 17 | . . . 4 ⊢ (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
18 | 5, 17 | sylbi 216 | . . 3 ⊢ (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
19 | nmoubi.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
20 | nmoubi.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
21 | nmoubi.l | . . . 4 ⊢ 𝐿 = (normCV‘𝑈) | |
22 | nmoubi.m | . . . 4 ⊢ 𝑀 = (normCV‘𝑊) | |
23 | nmoubi.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
24 | nmoubi.u | . . . 4 ⊢ 𝑈 ∈ NrmCVec | |
25 | nmoubi.w | . . . 4 ⊢ 𝑊 ∈ NrmCVec | |
26 | 19, 20, 21, 22, 23, 24, 25 | nmobndi 30657 | . . 3 ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘))) |
27 | 18, 26 | imbitrrid 245 | . 2 ⊢ (𝑇:𝑋⟶𝑌 → (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) → (𝑁‘𝑇) ∈ ℝ)) |
28 | 27 | imp 405 | 1 ⊢ ((𝑇:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → (𝑁‘𝑇) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 class class class wbr 5149 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ℝcr 11139 1c1 11141 ≤ cle 11281 ℕcn 12245 NrmCVeccnv 30466 BaseSetcba 30468 normCVcnmcv 30472 normOpOLD cnmoo 30623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-reg 9617 ax-inf2 9666 ax-ac2 10488 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9467 df-r1 9789 df-rank 9790 df-card 9964 df-ac 10141 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-grpo 30375 df-gid 30376 df-ginv 30377 df-ablo 30427 df-vc 30441 df-nv 30474 df-va 30477 df-ba 30478 df-sm 30479 df-0v 30480 df-nmcv 30482 df-nmoo 30627 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |