Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iinexg | Structured version Visualization version GIF version |
Description: The existence of a class intersection. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
iinexg | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin2g 4969 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | 1 | adantl 483 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
3 | elisset 2818 | . . . . . . . . 9 ⊢ (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) | |
4 | 3 | rgenw 3066 | . . . . . . . 8 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) |
5 | r19.2z 4431 | . . . . . . . 8 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) | |
6 | 4, 5 | mpan2 689 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) |
7 | r19.35 3108 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵)) | |
8 | 6, 7 | sylib 217 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵)) |
9 | 8 | imp 408 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵) |
10 | rexcom4 3268 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) | |
11 | 9, 10 | sylib 217 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
12 | abn0 4320 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅ ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) | |
13 | 11, 12 | sylibr 233 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅) |
14 | intex 5270 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅ ↔ ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
15 | 13, 14 | sylib 217 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
16 | 2, 15 | eqeltrd 2837 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2713 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 Vcvv 3437 ∅c0 4262 ∩ cint 4886 ∩ ciin 4932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-in 3899 df-ss 3909 df-nul 4263 df-int 4887 df-iin 4934 |
This theorem is referenced by: fclsval 23204 taylfval 25563 iinexd 42720 smflimlem1 44359 smfliminflem 44417 |
Copyright terms: Public domain | W3C validator |