![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinexg | Structured version Visualization version GIF version |
Description: The existence of a class intersection. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
iinexg | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin2g 4786 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | 1 | adantl 475 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
3 | elisset 3416 | . . . . . . . . 9 ⊢ (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) | |
4 | 3 | rgenw 3105 | . . . . . . . 8 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) |
5 | r19.2z 4282 | . . . . . . . 8 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) | |
6 | 4, 5 | mpan2 681 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) |
7 | r19.35 3269 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵)) | |
8 | 6, 7 | sylib 210 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵)) |
9 | 8 | imp 397 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵) |
10 | rexcom4 3426 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) | |
11 | 9, 10 | sylib 210 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
12 | abn0 4184 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅ ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) | |
13 | 11, 12 | sylibr 226 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅) |
14 | intex 5054 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅ ↔ ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
15 | 13, 14 | sylib 210 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
16 | 2, 15 | eqeltrd 2858 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∃wex 1823 ∈ wcel 2106 {cab 2762 ≠ wne 2968 ∀wral 3089 ∃wrex 3090 Vcvv 3397 ∅c0 4140 ∩ cint 4710 ∩ ciin 4754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-v 3399 df-dif 3794 df-in 3798 df-ss 3805 df-nul 4141 df-int 4711 df-iin 4756 |
This theorem is referenced by: fclsval 22220 taylfval 24550 iinexd 40237 smflimlem1 41898 smfliminflem 41955 |
Copyright terms: Public domain | W3C validator |