MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinexg Structured version   Visualization version   GIF version

Theorem iinexg 5366
Description: The existence of a class intersection. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
iinexg ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iinexg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 5055 . . 3 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
21adantl 481 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
3 elisset 2826 . . . . . . . . 9 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵)
43rgenw 3071 . . . . . . . 8 𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵)
5 r19.2z 4518 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵)) → ∃𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵))
64, 5mpan2 690 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵))
7 r19.35 3114 . . . . . . 7 (∃𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵) ↔ (∀𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴𝑦 𝑦 = 𝐵))
86, 7sylib 218 . . . . . 6 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴𝑦 𝑦 = 𝐵))
98imp 406 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → ∃𝑥𝐴𝑦 𝑦 = 𝐵)
10 rexcom4 3294 . . . . 5 (∃𝑥𝐴𝑦 𝑦 = 𝐵 ↔ ∃𝑦𝑥𝐴 𝑦 = 𝐵)
119, 10sylib 218 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → ∃𝑦𝑥𝐴 𝑦 = 𝐵)
12 abn0 4408 . . . 4 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ↔ ∃𝑦𝑥𝐴 𝑦 = 𝐵)
1311, 12sylibr 234 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅)
14 intex 5362 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
1513, 14sylib 218 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
162, 15eqeltrd 2844 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  Vcvv 3488  c0 4352   cint 4970   ciin 5016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993  df-nul 4353  df-int 4971  df-iin 5018
This theorem is referenced by:  fclsval  24037  taylfval  26418  iinexd  45035  smflimlem1  46692  smfliminflem  46751
  Copyright terms: Public domain W3C validator