MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinexg Structured version   Visualization version   GIF version

Theorem iinexg 5284
Description: The existence of a class intersection. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
iinexg ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iinexg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 4979 . . 3 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
21adantl 481 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
3 elisset 2813 . . . . . . . . 9 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵)
43rgenw 3051 . . . . . . . 8 𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵)
5 r19.2z 4442 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵)) → ∃𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵))
64, 5mpan2 691 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵))
7 r19.35 3090 . . . . . . 7 (∃𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵) ↔ (∀𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴𝑦 𝑦 = 𝐵))
86, 7sylib 218 . . . . . 6 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴𝑦 𝑦 = 𝐵))
98imp 406 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → ∃𝑥𝐴𝑦 𝑦 = 𝐵)
10 rexcom4 3259 . . . . 5 (∃𝑥𝐴𝑦 𝑦 = 𝐵 ↔ ∃𝑦𝑥𝐴 𝑦 = 𝐵)
119, 10sylib 218 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → ∃𝑦𝑥𝐴 𝑦 = 𝐵)
12 abn0 4332 . . . 4 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ↔ ∃𝑦𝑥𝐴 𝑦 = 𝐵)
1311, 12sylibr 234 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅)
14 intex 5280 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
1513, 14sylib 218 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
162, 15eqeltrd 2831 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  Vcvv 3436  c0 4280   cint 4895   ciin 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914  df-nul 4281  df-int 4896  df-iin 4942
This theorem is referenced by:  fclsval  23923  taylfval  26293  iinexd  45240  smflimlem1  46879  smfliminflem  46938  iinfssclem2  49166  iinfssclem3  49167  iinfssc  49168
  Copyright terms: Public domain W3C validator