MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2lem1 Structured version   Visualization version   GIF version

Theorem coe1mul2lem1 20438
Description: An equivalence for coe1mul2 20440. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Assertion
Ref Expression
coe1mul2lem1 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (𝑋r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴)))

Proof of Theorem coe1mul2lem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 1on 8106 . . . 4 1o ∈ On
21a1i 11 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → 1o ∈ On)
3 fvexd 6677 . . 3 (((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) ∧ 𝑎 ∈ 1o) → (𝑋‘∅) ∈ V)
4 simpll 766 . . 3 (((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) ∧ 𝑎 ∈ 1o) → 𝐴 ∈ ℕ0)
5 df1o2 8113 . . . . . 6 1o = {∅}
6 nn0ex 11903 . . . . . 6 0 ∈ V
7 0ex 5198 . . . . . 6 ∅ ∈ V
85, 6, 7mapsnconst 8453 . . . . 5 (𝑋 ∈ (ℕ0m 1o) → 𝑋 = (1o × {(𝑋‘∅)}))
98adantl 485 . . . 4 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → 𝑋 = (1o × {(𝑋‘∅)}))
10 fconstmpt 5602 . . . 4 (1o × {(𝑋‘∅)}) = (𝑎 ∈ 1o ↦ (𝑋‘∅))
119, 10syl6eq 2875 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → 𝑋 = (𝑎 ∈ 1o ↦ (𝑋‘∅)))
12 fconstmpt 5602 . . . 4 (1o × {𝐴}) = (𝑎 ∈ 1o𝐴)
1312a1i 11 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (1o × {𝐴}) = (𝑎 ∈ 1o𝐴))
142, 3, 4, 11, 13ofrfval2 7422 . 2 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (𝑋r ≤ (1o × {𝐴}) ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴))
15 1n0 8116 . . 3 1o ≠ ∅
16 r19.3rzv 4428 . . 3 (1o ≠ ∅ → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴))
1715, 16mp1i 13 . 2 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴))
18 elmapi 8425 . . . . . 6 (𝑋 ∈ (ℕ0m 1o) → 𝑋:1o⟶ℕ0)
19 0lt1o 8126 . . . . . 6 ∅ ∈ 1o
20 ffvelrn 6841 . . . . . 6 ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0)
2118, 19, 20sylancl 589 . . . . 5 (𝑋 ∈ (ℕ0m 1o) → (𝑋‘∅) ∈ ℕ0)
2221adantl 485 . . . 4 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (𝑋‘∅) ∈ ℕ0)
2322biantrurd 536 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴)))
24 fznn0 13006 . . . 4 (𝐴 ∈ ℕ0 → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴)))
2524adantr 484 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴)))
2623, 25bitr4d 285 . 2 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ (𝑋‘∅) ∈ (0...𝐴)))
2714, 17, 263bitr2d 310 1 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (𝑋r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  wral 3133  Vcvv 3481  c0 4277  {csn 4551   class class class wbr 5053  cmpt 5133   × cxp 5541  Oncon0 6179  wf 6340  cfv 6344  (class class class)co 7150  r cofr 7403  1oc1o 8092  m cmap 8403  0cc0 10536  cle 10675  0cn0 11897  ...cfz 12897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-ofr 7405  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11898  df-z 11982  df-fz 12898
This theorem is referenced by:  coe1mul2lem2  20439  coe1mul2  20440
  Copyright terms: Public domain W3C validator