| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1mul2lem1 | Structured version Visualization version GIF version | ||
| Description: An equivalence for coe1mul2 22155. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1mul2lem1 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8446 | . . . 4 ⊢ 1o ∈ On | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 1o ∈ On) |
| 3 | fvexd 6873 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) ∧ 𝑎 ∈ 1o) → (𝑋‘∅) ∈ V) | |
| 4 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) ∧ 𝑎 ∈ 1o) → 𝐴 ∈ ℕ0) | |
| 5 | df1o2 8441 | . . . . . 6 ⊢ 1o = {∅} | |
| 6 | nn0ex 12448 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 7 | 0ex 5262 | . . . . . 6 ⊢ ∅ ∈ V | |
| 8 | 5, 6, 7 | mapsnconst 8865 | . . . . 5 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 10 | fconstmpt 5700 | . . . 4 ⊢ (1o × {(𝑋‘∅)}) = (𝑎 ∈ 1o ↦ (𝑋‘∅)) | |
| 11 | 9, 10 | eqtrdi 2780 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (𝑎 ∈ 1o ↦ (𝑋‘∅))) |
| 12 | fconstmpt 5700 | . . . 4 ⊢ (1o × {𝐴}) = (𝑎 ∈ 1o ↦ 𝐴) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (1o × {𝐴}) = (𝑎 ∈ 1o ↦ 𝐴)) |
| 14 | 2, 3, 4, 11, 13 | ofrfval2 7674 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) |
| 15 | 1n0 8452 | . . 3 ⊢ 1o ≠ ∅ | |
| 16 | r19.3rzv 4462 | . . 3 ⊢ (1o ≠ ∅ → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) | |
| 17 | 15, 16 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) |
| 18 | elmapi 8822 | . . . . . 6 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋:1o⟶ℕ0) | |
| 19 | 0lt1o 8468 | . . . . . 6 ⊢ ∅ ∈ 1o | |
| 20 | ffvelcdm 7053 | . . . . . 6 ⊢ ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0) | |
| 21 | 18, 19, 20 | sylancl 586 | . . . . 5 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → (𝑋‘∅) ∈ ℕ0) |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋‘∅) ∈ ℕ0) |
| 23 | 22 | biantrurd 532 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) |
| 24 | fznn0 13580 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) | |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) |
| 26 | 23, 25 | bitr4d 282 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ (𝑋‘∅) ∈ (0...𝐴))) |
| 27 | 14, 17, 26 | 3bitr2d 307 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3447 ∅c0 4296 {csn 4589 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 Oncon0 6332 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘r cofr 7652 1oc1o 8427 ↑m cmap 8799 0cc0 11068 ≤ cle 11209 ℕ0cn0 12442 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-fz 13469 |
| This theorem is referenced by: coe1mul2lem2 22154 coe1mul2 22155 |
| Copyright terms: Public domain | W3C validator |