MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2lem1 Structured version   Visualization version   GIF version

Theorem coe1mul2lem1 22169
Description: An equivalence for coe1mul2 22171. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Assertion
Ref Expression
coe1mul2lem1 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (𝑋r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴)))

Proof of Theorem coe1mul2lem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 1on 8407 . . . 4 1o ∈ On
21a1i 11 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → 1o ∈ On)
3 fvexd 6841 . . 3 (((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) ∧ 𝑎 ∈ 1o) → (𝑋‘∅) ∈ V)
4 simpll 766 . . 3 (((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) ∧ 𝑎 ∈ 1o) → 𝐴 ∈ ℕ0)
5 df1o2 8402 . . . . . 6 1o = {∅}
6 nn0ex 12408 . . . . . 6 0 ∈ V
7 0ex 5249 . . . . . 6 ∅ ∈ V
85, 6, 7mapsnconst 8826 . . . . 5 (𝑋 ∈ (ℕ0m 1o) → 𝑋 = (1o × {(𝑋‘∅)}))
98adantl 481 . . . 4 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → 𝑋 = (1o × {(𝑋‘∅)}))
10 fconstmpt 5685 . . . 4 (1o × {(𝑋‘∅)}) = (𝑎 ∈ 1o ↦ (𝑋‘∅))
119, 10eqtrdi 2780 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → 𝑋 = (𝑎 ∈ 1o ↦ (𝑋‘∅)))
12 fconstmpt 5685 . . . 4 (1o × {𝐴}) = (𝑎 ∈ 1o𝐴)
1312a1i 11 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (1o × {𝐴}) = (𝑎 ∈ 1o𝐴))
142, 3, 4, 11, 13ofrfval2 7638 . 2 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (𝑋r ≤ (1o × {𝐴}) ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴))
15 1n0 8413 . . 3 1o ≠ ∅
16 r19.3rzv 4452 . . 3 (1o ≠ ∅ → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴))
1715, 16mp1i 13 . 2 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴))
18 elmapi 8783 . . . . . 6 (𝑋 ∈ (ℕ0m 1o) → 𝑋:1o⟶ℕ0)
19 0lt1o 8429 . . . . . 6 ∅ ∈ 1o
20 ffvelcdm 7019 . . . . . 6 ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0)
2118, 19, 20sylancl 586 . . . . 5 (𝑋 ∈ (ℕ0m 1o) → (𝑋‘∅) ∈ ℕ0)
2221adantl 481 . . . 4 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (𝑋‘∅) ∈ ℕ0)
2322biantrurd 532 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴)))
24 fznn0 13540 . . . 4 (𝐴 ∈ ℕ0 → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴)))
2524adantr 480 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴)))
2623, 25bitr4d 282 . 2 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ (𝑋‘∅) ∈ (0...𝐴)))
2714, 17, 263bitr2d 307 1 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (𝑋r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3438  c0 4286  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  Oncon0 6311  wf 6482  cfv 6486  (class class class)co 7353  r cofr 7616  1oc1o 8388  m cmap 8760  0cc0 11028  cle 11169  0cn0 12402  ...cfz 13428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-fz 13429
This theorem is referenced by:  coe1mul2lem2  22170  coe1mul2  22171
  Copyright terms: Public domain W3C validator