| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1mul2lem1 | Structured version Visualization version GIF version | ||
| Description: An equivalence for coe1mul2 22178. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1mul2lem1 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8392 | . . . 4 ⊢ 1o ∈ On | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 1o ∈ On) |
| 3 | fvexd 6832 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) ∧ 𝑎 ∈ 1o) → (𝑋‘∅) ∈ V) | |
| 4 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) ∧ 𝑎 ∈ 1o) → 𝐴 ∈ ℕ0) | |
| 5 | df1o2 8387 | . . . . . 6 ⊢ 1o = {∅} | |
| 6 | nn0ex 12382 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 7 | 0ex 5240 | . . . . . 6 ⊢ ∅ ∈ V | |
| 8 | 5, 6, 7 | mapsnconst 8811 | . . . . 5 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 10 | fconstmpt 5673 | . . . 4 ⊢ (1o × {(𝑋‘∅)}) = (𝑎 ∈ 1o ↦ (𝑋‘∅)) | |
| 11 | 9, 10 | eqtrdi 2782 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (𝑎 ∈ 1o ↦ (𝑋‘∅))) |
| 12 | fconstmpt 5673 | . . . 4 ⊢ (1o × {𝐴}) = (𝑎 ∈ 1o ↦ 𝐴) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (1o × {𝐴}) = (𝑎 ∈ 1o ↦ 𝐴)) |
| 14 | 2, 3, 4, 11, 13 | ofrfval2 7626 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) |
| 15 | 1n0 8398 | . . 3 ⊢ 1o ≠ ∅ | |
| 16 | r19.3rzv 4444 | . . 3 ⊢ (1o ≠ ∅ → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) | |
| 17 | 15, 16 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) |
| 18 | elmapi 8768 | . . . . . 6 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋:1o⟶ℕ0) | |
| 19 | 0lt1o 8414 | . . . . . 6 ⊢ ∅ ∈ 1o | |
| 20 | ffvelcdm 7009 | . . . . . 6 ⊢ ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0) | |
| 21 | 18, 19, 20 | sylancl 586 | . . . . 5 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → (𝑋‘∅) ∈ ℕ0) |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋‘∅) ∈ ℕ0) |
| 23 | 22 | biantrurd 532 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) |
| 24 | fznn0 13514 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) | |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) |
| 26 | 23, 25 | bitr4d 282 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ (𝑋‘∅) ∈ (0...𝐴))) |
| 27 | 14, 17, 26 | 3bitr2d 307 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ∅c0 4278 {csn 4571 class class class wbr 5086 ↦ cmpt 5167 × cxp 5609 Oncon0 6301 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∘r cofr 7604 1oc1o 8373 ↑m cmap 8745 0cc0 11001 ≤ cle 11142 ℕ0cn0 12376 ...cfz 13402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-fz 13403 |
| This theorem is referenced by: coe1mul2lem2 22177 coe1mul2 22178 |
| Copyright terms: Public domain | W3C validator |