| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1mul2lem1 | Structured version Visualization version GIF version | ||
| Description: An equivalence for coe1mul2 22239. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1mul2lem1 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8501 | . . . 4 ⊢ 1o ∈ On | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 1o ∈ On) |
| 3 | fvexd 6902 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) ∧ 𝑎 ∈ 1o) → (𝑋‘∅) ∈ V) | |
| 4 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) ∧ 𝑎 ∈ 1o) → 𝐴 ∈ ℕ0) | |
| 5 | df1o2 8496 | . . . . . 6 ⊢ 1o = {∅} | |
| 6 | nn0ex 12516 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 7 | 0ex 5289 | . . . . . 6 ⊢ ∅ ∈ V | |
| 8 | 5, 6, 7 | mapsnconst 8915 | . . . . 5 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 10 | fconstmpt 5729 | . . . 4 ⊢ (1o × {(𝑋‘∅)}) = (𝑎 ∈ 1o ↦ (𝑋‘∅)) | |
| 11 | 9, 10 | eqtrdi 2785 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (𝑎 ∈ 1o ↦ (𝑋‘∅))) |
| 12 | fconstmpt 5729 | . . . 4 ⊢ (1o × {𝐴}) = (𝑎 ∈ 1o ↦ 𝐴) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (1o × {𝐴}) = (𝑎 ∈ 1o ↦ 𝐴)) |
| 14 | 2, 3, 4, 11, 13 | ofrfval2 7701 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) |
| 15 | 1n0 8509 | . . 3 ⊢ 1o ≠ ∅ | |
| 16 | r19.3rzv 4481 | . . 3 ⊢ (1o ≠ ∅ → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) | |
| 17 | 15, 16 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) |
| 18 | elmapi 8872 | . . . . . 6 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋:1o⟶ℕ0) | |
| 19 | 0lt1o 8525 | . . . . . 6 ⊢ ∅ ∈ 1o | |
| 20 | ffvelcdm 7082 | . . . . . 6 ⊢ ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0) | |
| 21 | 18, 19, 20 | sylancl 586 | . . . . 5 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → (𝑋‘∅) ∈ ℕ0) |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋‘∅) ∈ ℕ0) |
| 23 | 22 | biantrurd 532 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) |
| 24 | fznn0 13642 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) | |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) |
| 26 | 23, 25 | bitr4d 282 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ (𝑋‘∅) ∈ (0...𝐴))) |
| 27 | 14, 17, 26 | 3bitr2d 307 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 Vcvv 3464 ∅c0 4315 {csn 4608 class class class wbr 5125 ↦ cmpt 5207 × cxp 5665 Oncon0 6365 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ∘r cofr 7679 1oc1o 8482 ↑m cmap 8849 0cc0 11138 ≤ cle 11279 ℕ0cn0 12510 ...cfz 13530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-ofr 7681 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-n0 12511 df-z 12598 df-fz 13531 |
| This theorem is referenced by: coe1mul2lem2 22238 coe1mul2 22239 |
| Copyright terms: Public domain | W3C validator |