| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1mul2lem1 | Structured version Visualization version GIF version | ||
| Description: An equivalence for coe1mul2 22171. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1mul2lem1 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 8407 | . . . 4 ⊢ 1o ∈ On | |
| 2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 1o ∈ On) |
| 3 | fvexd 6841 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) ∧ 𝑎 ∈ 1o) → (𝑋‘∅) ∈ V) | |
| 4 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) ∧ 𝑎 ∈ 1o) → 𝐴 ∈ ℕ0) | |
| 5 | df1o2 8402 | . . . . . 6 ⊢ 1o = {∅} | |
| 6 | nn0ex 12408 | . . . . . 6 ⊢ ℕ0 ∈ V | |
| 7 | 0ex 5249 | . . . . . 6 ⊢ ∅ ∈ V | |
| 8 | 5, 6, 7 | mapsnconst 8826 | . . . . 5 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (1o × {(𝑋‘∅)})) |
| 10 | fconstmpt 5685 | . . . 4 ⊢ (1o × {(𝑋‘∅)}) = (𝑎 ∈ 1o ↦ (𝑋‘∅)) | |
| 11 | 9, 10 | eqtrdi 2780 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (𝑎 ∈ 1o ↦ (𝑋‘∅))) |
| 12 | fconstmpt 5685 | . . . 4 ⊢ (1o × {𝐴}) = (𝑎 ∈ 1o ↦ 𝐴) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (1o × {𝐴}) = (𝑎 ∈ 1o ↦ 𝐴)) |
| 14 | 2, 3, 4, 11, 13 | ofrfval2 7638 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) |
| 15 | 1n0 8413 | . . 3 ⊢ 1o ≠ ∅ | |
| 16 | r19.3rzv 4452 | . . 3 ⊢ (1o ≠ ∅ → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) | |
| 17 | 15, 16 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) |
| 18 | elmapi 8783 | . . . . . 6 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋:1o⟶ℕ0) | |
| 19 | 0lt1o 8429 | . . . . . 6 ⊢ ∅ ∈ 1o | |
| 20 | ffvelcdm 7019 | . . . . . 6 ⊢ ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0) | |
| 21 | 18, 19, 20 | sylancl 586 | . . . . 5 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → (𝑋‘∅) ∈ ℕ0) |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋‘∅) ∈ ℕ0) |
| 23 | 22 | biantrurd 532 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) |
| 24 | fznn0 13540 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) | |
| 25 | 24 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) |
| 26 | 23, 25 | bitr4d 282 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ (𝑋‘∅) ∈ (0...𝐴))) |
| 27 | 14, 17, 26 | 3bitr2d 307 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3438 ∅c0 4286 {csn 4579 class class class wbr 5095 ↦ cmpt 5176 × cxp 5621 Oncon0 6311 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∘r cofr 7616 1oc1o 8388 ↑m cmap 8760 0cc0 11028 ≤ cle 11169 ℕ0cn0 12402 ...cfz 13428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-fz 13429 |
| This theorem is referenced by: coe1mul2lem2 22170 coe1mul2 22171 |
| Copyright terms: Public domain | W3C validator |