![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1mul2lem1 | Structured version Visualization version GIF version |
Description: An equivalence for coe1mul2 22192. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
coe1mul2lem1 | β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β (π βr β€ (1o Γ {π΄}) β (πββ ) β (0...π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8492 | . . . 4 β’ 1o β On | |
2 | 1 | a1i 11 | . . 3 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β 1o β On) |
3 | fvexd 6905 | . . 3 β’ (((π΄ β β0 β§ π β (β0 βm 1o)) β§ π β 1o) β (πββ ) β V) | |
4 | simpll 765 | . . 3 β’ (((π΄ β β0 β§ π β (β0 βm 1o)) β§ π β 1o) β π΄ β β0) | |
5 | df1o2 8487 | . . . . . 6 β’ 1o = {β } | |
6 | nn0ex 12503 | . . . . . 6 β’ β0 β V | |
7 | 0ex 5303 | . . . . . 6 β’ β β V | |
8 | 5, 6, 7 | mapsnconst 8904 | . . . . 5 β’ (π β (β0 βm 1o) β π = (1o Γ {(πββ )})) |
9 | 8 | adantl 480 | . . . 4 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β π = (1o Γ {(πββ )})) |
10 | fconstmpt 5735 | . . . 4 β’ (1o Γ {(πββ )}) = (π β 1o β¦ (πββ )) | |
11 | 9, 10 | eqtrdi 2781 | . . 3 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β π = (π β 1o β¦ (πββ ))) |
12 | fconstmpt 5735 | . . . 4 β’ (1o Γ {π΄}) = (π β 1o β¦ π΄) | |
13 | 12 | a1i 11 | . . 3 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β (1o Γ {π΄}) = (π β 1o β¦ π΄)) |
14 | 2, 3, 4, 11, 13 | ofrfval2 7700 | . 2 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β (π βr β€ (1o Γ {π΄}) β βπ β 1o (πββ ) β€ π΄)) |
15 | 1n0 8502 | . . 3 β’ 1o β β | |
16 | r19.3rzv 4495 | . . 3 β’ (1o β β β ((πββ ) β€ π΄ β βπ β 1o (πββ ) β€ π΄)) | |
17 | 15, 16 | mp1i 13 | . 2 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β ((πββ ) β€ π΄ β βπ β 1o (πββ ) β€ π΄)) |
18 | elmapi 8861 | . . . . . 6 β’ (π β (β0 βm 1o) β π:1oβΆβ0) | |
19 | 0lt1o 8518 | . . . . . 6 β’ β β 1o | |
20 | ffvelcdm 7084 | . . . . . 6 β’ ((π:1oβΆβ0 β§ β β 1o) β (πββ ) β β0) | |
21 | 18, 19, 20 | sylancl 584 | . . . . 5 β’ (π β (β0 βm 1o) β (πββ ) β β0) |
22 | 21 | adantl 480 | . . . 4 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β (πββ ) β β0) |
23 | 22 | biantrurd 531 | . . 3 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β ((πββ ) β€ π΄ β ((πββ ) β β0 β§ (πββ ) β€ π΄))) |
24 | fznn0 13620 | . . . 4 β’ (π΄ β β0 β ((πββ ) β (0...π΄) β ((πββ ) β β0 β§ (πββ ) β€ π΄))) | |
25 | 24 | adantr 479 | . . 3 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β ((πββ ) β (0...π΄) β ((πββ ) β β0 β§ (πββ ) β€ π΄))) |
26 | 23, 25 | bitr4d 281 | . 2 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β ((πββ ) β€ π΄ β (πββ ) β (0...π΄))) |
27 | 14, 17, 26 | 3bitr2d 306 | 1 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β (π βr β€ (1o Γ {π΄}) β (πββ ) β (0...π΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 βwral 3051 Vcvv 3463 β c0 4319 {csn 4625 class class class wbr 5144 β¦ cmpt 5227 Γ cxp 5671 Oncon0 6365 βΆwf 6539 βcfv 6543 (class class class)co 7413 βr cofr 7678 1oc1o 8473 βm cmap 8838 0cc0 11133 β€ cle 11274 β0cn0 12497 ...cfz 13511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-ofr 7680 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-n0 12498 df-z 12584 df-fz 13512 |
This theorem is referenced by: coe1mul2lem2 22191 coe1mul2 22192 |
Copyright terms: Public domain | W3C validator |