Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coe1mul2lem1 | Structured version Visualization version GIF version |
Description: An equivalence for coe1mul2 21440. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
coe1mul2lem1 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8309 | . . . 4 ⊢ 1o ∈ On | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 1o ∈ On) |
3 | fvexd 6789 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) ∧ 𝑎 ∈ 1o) → (𝑋‘∅) ∈ V) | |
4 | simpll 764 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) ∧ 𝑎 ∈ 1o) → 𝐴 ∈ ℕ0) | |
5 | df1o2 8304 | . . . . . 6 ⊢ 1o = {∅} | |
6 | nn0ex 12239 | . . . . . 6 ⊢ ℕ0 ∈ V | |
7 | 0ex 5231 | . . . . . 6 ⊢ ∅ ∈ V | |
8 | 5, 6, 7 | mapsnconst 8680 | . . . . 5 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋 = (1o × {(𝑋‘∅)})) |
9 | 8 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (1o × {(𝑋‘∅)})) |
10 | fconstmpt 5649 | . . . 4 ⊢ (1o × {(𝑋‘∅)}) = (𝑎 ∈ 1o ↦ (𝑋‘∅)) | |
11 | 9, 10 | eqtrdi 2794 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → 𝑋 = (𝑎 ∈ 1o ↦ (𝑋‘∅))) |
12 | fconstmpt 5649 | . . . 4 ⊢ (1o × {𝐴}) = (𝑎 ∈ 1o ↦ 𝐴) | |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (1o × {𝐴}) = (𝑎 ∈ 1o ↦ 𝐴)) |
14 | 2, 3, 4, 11, 13 | ofrfval2 7554 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) |
15 | 1n0 8318 | . . 3 ⊢ 1o ≠ ∅ | |
16 | r19.3rzv 4429 | . . 3 ⊢ (1o ≠ ∅ → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) | |
17 | 15, 16 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴)) |
18 | elmapi 8637 | . . . . . 6 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → 𝑋:1o⟶ℕ0) | |
19 | 0lt1o 8334 | . . . . . 6 ⊢ ∅ ∈ 1o | |
20 | ffvelrn 6959 | . . . . . 6 ⊢ ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0) | |
21 | 18, 19, 20 | sylancl 586 | . . . . 5 ⊢ (𝑋 ∈ (ℕ0 ↑m 1o) → (𝑋‘∅) ∈ ℕ0) |
22 | 21 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋‘∅) ∈ ℕ0) |
23 | 22 | biantrurd 533 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) |
24 | fznn0 13348 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) | |
25 | 24 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴))) |
26 | 23, 25 | bitr4d 281 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ (𝑋‘∅) ∈ (0...𝐴))) |
27 | 14, 17, 26 | 3bitr2d 307 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 Vcvv 3432 ∅c0 4256 {csn 4561 class class class wbr 5074 ↦ cmpt 5157 × cxp 5587 Oncon0 6266 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘r cofr 7532 1oc1o 8290 ↑m cmap 8615 0cc0 10871 ≤ cle 11010 ℕ0cn0 12233 ...cfz 13239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-fz 13240 |
This theorem is referenced by: coe1mul2lem2 21439 coe1mul2 21440 |
Copyright terms: Public domain | W3C validator |