MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2lem1 Structured version   Visualization version   GIF version

Theorem coe1mul2lem1 21438
Description: An equivalence for coe1mul2 21440. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Assertion
Ref Expression
coe1mul2lem1 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (𝑋r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴)))

Proof of Theorem coe1mul2lem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 1on 8309 . . . 4 1o ∈ On
21a1i 11 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → 1o ∈ On)
3 fvexd 6789 . . 3 (((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) ∧ 𝑎 ∈ 1o) → (𝑋‘∅) ∈ V)
4 simpll 764 . . 3 (((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) ∧ 𝑎 ∈ 1o) → 𝐴 ∈ ℕ0)
5 df1o2 8304 . . . . . 6 1o = {∅}
6 nn0ex 12239 . . . . . 6 0 ∈ V
7 0ex 5231 . . . . . 6 ∅ ∈ V
85, 6, 7mapsnconst 8680 . . . . 5 (𝑋 ∈ (ℕ0m 1o) → 𝑋 = (1o × {(𝑋‘∅)}))
98adantl 482 . . . 4 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → 𝑋 = (1o × {(𝑋‘∅)}))
10 fconstmpt 5649 . . . 4 (1o × {(𝑋‘∅)}) = (𝑎 ∈ 1o ↦ (𝑋‘∅))
119, 10eqtrdi 2794 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → 𝑋 = (𝑎 ∈ 1o ↦ (𝑋‘∅)))
12 fconstmpt 5649 . . . 4 (1o × {𝐴}) = (𝑎 ∈ 1o𝐴)
1312a1i 11 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (1o × {𝐴}) = (𝑎 ∈ 1o𝐴))
142, 3, 4, 11, 13ofrfval2 7554 . 2 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (𝑋r ≤ (1o × {𝐴}) ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴))
15 1n0 8318 . . 3 1o ≠ ∅
16 r19.3rzv 4429 . . 3 (1o ≠ ∅ → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴))
1715, 16mp1i 13 . 2 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ∀𝑎 ∈ 1o (𝑋‘∅) ≤ 𝐴))
18 elmapi 8637 . . . . . 6 (𝑋 ∈ (ℕ0m 1o) → 𝑋:1o⟶ℕ0)
19 0lt1o 8334 . . . . . 6 ∅ ∈ 1o
20 ffvelrn 6959 . . . . . 6 ((𝑋:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑋‘∅) ∈ ℕ0)
2118, 19, 20sylancl 586 . . . . 5 (𝑋 ∈ (ℕ0m 1o) → (𝑋‘∅) ∈ ℕ0)
2221adantl 482 . . . 4 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (𝑋‘∅) ∈ ℕ0)
2322biantrurd 533 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴)))
24 fznn0 13348 . . . 4 (𝐴 ∈ ℕ0 → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴)))
2524adantr 481 . . 3 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → ((𝑋‘∅) ∈ (0...𝐴) ↔ ((𝑋‘∅) ∈ ℕ0 ∧ (𝑋‘∅) ≤ 𝐴)))
2623, 25bitr4d 281 . 2 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → ((𝑋‘∅) ≤ 𝐴 ↔ (𝑋‘∅) ∈ (0...𝐴)))
2714, 17, 263bitr2d 307 1 ((𝐴 ∈ ℕ0𝑋 ∈ (ℕ0m 1o)) → (𝑋r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  c0 4256  {csn 4561   class class class wbr 5074  cmpt 5157   × cxp 5587  Oncon0 6266  wf 6429  cfv 6433  (class class class)co 7275  r cofr 7532  1oc1o 8290  m cmap 8615  0cc0 10871  cle 11010  0cn0 12233  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-fz 13240
This theorem is referenced by:  coe1mul2lem2  21439  coe1mul2  21440
  Copyright terms: Public domain W3C validator