![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1mul2lem1 | Structured version Visualization version GIF version |
Description: An equivalence for coe1mul2 21790. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
coe1mul2lem1 | β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β (π βr β€ (1o Γ {π΄}) β (πββ ) β (0...π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8477 | . . . 4 β’ 1o β On | |
2 | 1 | a1i 11 | . . 3 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β 1o β On) |
3 | fvexd 6906 | . . 3 β’ (((π΄ β β0 β§ π β (β0 βm 1o)) β§ π β 1o) β (πββ ) β V) | |
4 | simpll 765 | . . 3 β’ (((π΄ β β0 β§ π β (β0 βm 1o)) β§ π β 1o) β π΄ β β0) | |
5 | df1o2 8472 | . . . . . 6 β’ 1o = {β } | |
6 | nn0ex 12477 | . . . . . 6 β’ β0 β V | |
7 | 0ex 5307 | . . . . . 6 β’ β β V | |
8 | 5, 6, 7 | mapsnconst 8885 | . . . . 5 β’ (π β (β0 βm 1o) β π = (1o Γ {(πββ )})) |
9 | 8 | adantl 482 | . . . 4 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β π = (1o Γ {(πββ )})) |
10 | fconstmpt 5738 | . . . 4 β’ (1o Γ {(πββ )}) = (π β 1o β¦ (πββ )) | |
11 | 9, 10 | eqtrdi 2788 | . . 3 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β π = (π β 1o β¦ (πββ ))) |
12 | fconstmpt 5738 | . . . 4 β’ (1o Γ {π΄}) = (π β 1o β¦ π΄) | |
13 | 12 | a1i 11 | . . 3 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β (1o Γ {π΄}) = (π β 1o β¦ π΄)) |
14 | 2, 3, 4, 11, 13 | ofrfval2 7690 | . 2 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β (π βr β€ (1o Γ {π΄}) β βπ β 1o (πββ ) β€ π΄)) |
15 | 1n0 8487 | . . 3 β’ 1o β β | |
16 | r19.3rzv 4498 | . . 3 β’ (1o β β β ((πββ ) β€ π΄ β βπ β 1o (πββ ) β€ π΄)) | |
17 | 15, 16 | mp1i 13 | . 2 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β ((πββ ) β€ π΄ β βπ β 1o (πββ ) β€ π΄)) |
18 | elmapi 8842 | . . . . . 6 β’ (π β (β0 βm 1o) β π:1oβΆβ0) | |
19 | 0lt1o 8503 | . . . . . 6 β’ β β 1o | |
20 | ffvelcdm 7083 | . . . . . 6 β’ ((π:1oβΆβ0 β§ β β 1o) β (πββ ) β β0) | |
21 | 18, 19, 20 | sylancl 586 | . . . . 5 β’ (π β (β0 βm 1o) β (πββ ) β β0) |
22 | 21 | adantl 482 | . . . 4 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β (πββ ) β β0) |
23 | 22 | biantrurd 533 | . . 3 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β ((πββ ) β€ π΄ β ((πββ ) β β0 β§ (πββ ) β€ π΄))) |
24 | fznn0 13592 | . . . 4 β’ (π΄ β β0 β ((πββ ) β (0...π΄) β ((πββ ) β β0 β§ (πββ ) β€ π΄))) | |
25 | 24 | adantr 481 | . . 3 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β ((πββ ) β (0...π΄) β ((πββ ) β β0 β§ (πββ ) β€ π΄))) |
26 | 23, 25 | bitr4d 281 | . 2 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β ((πββ ) β€ π΄ β (πββ ) β (0...π΄))) |
27 | 14, 17, 26 | 3bitr2d 306 | 1 β’ ((π΄ β β0 β§ π β (β0 βm 1o)) β (π βr β€ (1o Γ {π΄}) β (πββ ) β (0...π΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 Vcvv 3474 β c0 4322 {csn 4628 class class class wbr 5148 β¦ cmpt 5231 Γ cxp 5674 Oncon0 6364 βΆwf 6539 βcfv 6543 (class class class)co 7408 βr cofr 7668 1oc1o 8458 βm cmap 8819 0cc0 11109 β€ cle 11248 β0cn0 12471 ...cfz 13483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-ofr 7670 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-fz 13484 |
This theorem is referenced by: coe1mul2lem2 21789 coe1mul2 21790 |
Copyright terms: Public domain | W3C validator |