MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utop3cls Structured version   Visualization version   GIF version

Theorem utop3cls 22945
Description: Relation between a topological closure and a symmetric entourage in an uniform space. Second part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utop3cls (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀𝑉)))

Proof of Theorem utop3cls
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5543 . . . . 5 Rel (𝑋 × 𝑋)
2 utoptop.1 . . . . . . . . . . 11 𝐽 = (unifTop‘𝑈)
3 utoptop 22928 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top)
42, 3eqeltrid 2857 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 ∈ Top)
5 txtop 22262 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
64, 4, 5syl2anc 588 . . . . . . . . 9 (𝑈 ∈ (UnifOn‘𝑋) → (𝐽 ×t 𝐽) ∈ Top)
76ad3antrrr 730 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (𝐽 ×t 𝐽) ∈ Top)
8 simpllr 776 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑀 ⊆ (𝑋 × 𝑋))
9 utoptopon 22930 . . . . . . . . . . . . . 14 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋))
102, 9eqeltrid 2857 . . . . . . . . . . . . 13 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
11 toponuni 21607 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1210, 11syl 17 . . . . . . . . . . . 12 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = 𝐽)
1312sqxpeqd 5557 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = ( 𝐽 × 𝐽))
14 eqid 2759 . . . . . . . . . . . . 13 𝐽 = 𝐽
1514, 14txuni 22285 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → ( 𝐽 × 𝐽) = (𝐽 ×t 𝐽))
164, 4, 15syl2anc 588 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → ( 𝐽 × 𝐽) = (𝐽 ×t 𝐽))
1713, 16eqtrd 2794 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
1817ad3antrrr 730 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
198, 18sseqtrd 3933 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑀 (𝐽 ×t 𝐽))
20 eqid 2759 . . . . . . . . 9 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
2120clsss3 21752 . . . . . . . 8 (((𝐽 ×t 𝐽) ∈ Top ∧ 𝑀 (𝐽 ×t 𝐽)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝐽 ×t 𝐽))
227, 19, 21syl2anc 588 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝐽 ×t 𝐽))
2322, 18sseqtrrd 3934 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑋 × 𝑋))
24 simpr 489 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀))
2523, 24sseldd 3894 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ (𝑋 × 𝑋))
26 1st2nd 7743 . . . . 5 ((Rel (𝑋 × 𝑋) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
271, 25, 26sylancr 591 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
28 simp-4l 783 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑈 ∈ (UnifOn‘𝑋))
29 simpr1l 1228 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ ((𝑉𝑈𝑉 = 𝑉) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))) → 𝑉𝑈)
30293anassrs 1358 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑉𝑈)
31 ustrel 22905 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → Rel 𝑉)
3228, 30, 31syl2anc 588 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → Rel 𝑉)
33 simpr 489 . . . . . . . . . . . 12 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))
34 elin 3875 . . . . . . . . . . . 12 (𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ↔ (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∧ 𝑟𝑀))
3533, 34sylib 221 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∧ 𝑟𝑀))
3635simpld 499 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})))
37 xp1st 7726 . . . . . . . . . 10 (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) → (1st𝑟) ∈ (𝑉 “ {(1st𝑧)}))
3836, 37syl 17 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑟) ∈ (𝑉 “ {(1st𝑧)}))
39 elrelimasn 5926 . . . . . . . . . 10 (Rel 𝑉 → ((1st𝑟) ∈ (𝑉 “ {(1st𝑧)}) ↔ (1st𝑧)𝑉(1st𝑟)))
4039biimpa 481 . . . . . . . . 9 ((Rel 𝑉 ∧ (1st𝑟) ∈ (𝑉 “ {(1st𝑧)})) → (1st𝑧)𝑉(1st𝑟))
4132, 38, 40syl2anc 588 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑧)𝑉(1st𝑟))
42 simp-4r 784 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑀 ⊆ (𝑋 × 𝑋))
43 xpss 5541 . . . . . . . . . . 11 (𝑋 × 𝑋) ⊆ (V × V)
4442, 43sstrdi 3905 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑀 ⊆ (V × V))
45 df-rel 5532 . . . . . . . . . 10 (Rel 𝑀𝑀 ⊆ (V × V))
4644, 45sylibr 237 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → Rel 𝑀)
4735simprd 500 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟𝑀)
48 1st2ndbr 7746 . . . . . . . . 9 ((Rel 𝑀𝑟𝑀) → (1st𝑟)𝑀(2nd𝑟))
4946, 47, 48syl2anc 588 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑟)𝑀(2nd𝑟))
50 xp2nd 7727 . . . . . . . . . . 11 (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) → (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}))
5136, 50syl 17 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}))
52 elrelimasn 5926 . . . . . . . . . . 11 (Rel 𝑉 → ((2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}) ↔ (2nd𝑧)𝑉(2nd𝑟)))
5352biimpa 481 . . . . . . . . . 10 ((Rel 𝑉 ∧ (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)})) → (2nd𝑧)𝑉(2nd𝑟))
5432, 51, 53syl2anc 588 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑧)𝑉(2nd𝑟))
55 simpr1r 1229 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ ((𝑉𝑈𝑉 = 𝑉) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))) → 𝑉 = 𝑉)
56553anassrs 1358 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑉 = 𝑉)
57 breq 5035 . . . . . . . . . . 11 (𝑉 = 𝑉 → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑟)𝑉(2nd𝑧)))
58 fvex 6672 . . . . . . . . . . . 12 (2nd𝑟) ∈ V
59 fvex 6672 . . . . . . . . . . . 12 (2nd𝑧) ∈ V
6058, 59brcnv 5723 . . . . . . . . . . 11 ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟))
6157, 60bitr3di 289 . . . . . . . . . 10 (𝑉 = 𝑉 → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟)))
6256, 61syl 17 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟)))
6354, 62mpbird 260 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑟)𝑉(2nd𝑧))
64 fvex 6672 . . . . . . . . . 10 (1st𝑧) ∈ V
65 fvex 6672 . . . . . . . . . 10 (1st𝑟) ∈ V
66 brcogw 5709 . . . . . . . . . . 11 ((((1st𝑧) ∈ V ∧ (2nd𝑟) ∈ V ∧ (1st𝑟) ∈ V) ∧ ((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟))) → (1st𝑧)(𝑀𝑉)(2nd𝑟))
6766ex 417 . . . . . . . . . 10 (((1st𝑧) ∈ V ∧ (2nd𝑟) ∈ V ∧ (1st𝑟) ∈ V) → (((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) → (1st𝑧)(𝑀𝑉)(2nd𝑟)))
6864, 58, 65, 67mp3an 1459 . . . . . . . . 9 (((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) → (1st𝑧)(𝑀𝑉)(2nd𝑟))
69 brcogw 5709 . . . . . . . . . . 11 ((((1st𝑧) ∈ V ∧ (2nd𝑧) ∈ V ∧ (2nd𝑟) ∈ V) ∧ ((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧))) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7069ex 417 . . . . . . . . . 10 (((1st𝑧) ∈ V ∧ (2nd𝑧) ∈ V ∧ (2nd𝑟) ∈ V) → (((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
7164, 59, 58, 70mp3an 1459 . . . . . . . . 9 (((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7268, 71sylan 584 . . . . . . . 8 ((((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7341, 49, 63, 72syl21anc 837 . . . . . . 7 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7473ralrimiva 3114 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
75 simplll 775 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑈 ∈ (UnifOn‘𝑋))
76 simplrl 777 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑉𝑈)
7743ad2ant1 1131 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → 𝐽 ∈ Top)
78 xp1st 7726 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → (1st𝑧) ∈ 𝑋)
792utopsnnei 22943 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈 ∧ (1st𝑧) ∈ 𝑋) → (𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}))
8078, 79syl3an3 1163 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → (𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}))
81 xp2nd 7727 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → (2nd𝑧) ∈ 𝑋)
822utopsnnei 22943 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈 ∧ (2nd𝑧) ∈ 𝑋) → (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))
8381, 82syl3an3 1163 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))
8414, 14neitx 22300 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐽 ∈ Top) ∧ ((𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}) ∧ (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
8577, 77, 80, 83, 84syl22anc 838 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
86 1st2nd2 7733 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋 × 𝑋) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
8786sneqd 4535 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑋) → {𝑧} = {⟨(1st𝑧), (2nd𝑧)⟩})
8864, 59xpsn 6895 . . . . . . . . . . . . 13 ({(1st𝑧)} × {(2nd𝑧)}) = {⟨(1st𝑧), (2nd𝑧)⟩}
8987, 88eqtr4di 2812 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → {𝑧} = ({(1st𝑧)} × {(2nd𝑧)}))
9089fveq2d 6663 . . . . . . . . . . 11 (𝑧 ∈ (𝑋 × 𝑋) → ((nei‘(𝐽 ×t 𝐽))‘{𝑧}) = ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
91903ad2ant3 1133 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((nei‘(𝐽 ×t 𝐽))‘{𝑧}) = ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
9285, 91eleqtrrd 2856 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))
9375, 76, 25, 92syl3anc 1369 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))
9420neindisj 21810 . . . . . . . 8 ((((𝐽 ×t 𝐽) ∈ Top ∧ 𝑀 (𝐽 ×t 𝐽)) ∧ (𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))) → (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅)
957, 19, 24, 93, 94syl22anc 838 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅)
96 r19.3rzv 4393 . . . . . . 7 ((((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅ → ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
9795, 96syl 17 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
9874, 97mpbird 260 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
99 df-br 5034 . . . . 5 ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ (𝑉 ∘ (𝑀𝑉)))
10098, 99sylib 221 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ (𝑉 ∘ (𝑀𝑉)))
10127, 100eqeltrd 2853 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ (𝑉 ∘ (𝑀𝑉)))
102101ex 417 . 2 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → (𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) → 𝑧 ∈ (𝑉 ∘ (𝑀𝑉))))
103102ssrdv 3899 1 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wral 3071  Vcvv 3410  cin 3858  wss 3859  c0 4226  {csn 4523  cop 4529   cuni 4799   class class class wbr 5033   × cxp 5523  ccnv 5524  cima 5528  ccom 5529  Rel wrel 5530  cfv 6336  (class class class)co 7151  1st c1st 7692  2nd c2nd 7693  Topctop 21586  TopOnctopon 21603  clsccl 21711  neicnei 21790   ×t ctx 22253  UnifOncust 22893  unifTopcutop 22924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-en 8529  df-fin 8532  df-fi 8901  df-topgen 16768  df-top 21587  df-topon 21604  df-bases 21639  df-cld 21712  df-ntr 21713  df-cls 21714  df-nei 21791  df-tx 22255  df-ust 22894  df-utop 22925
This theorem is referenced by:  utopreg  22946
  Copyright terms: Public domain W3C validator