MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utop3cls Structured version   Visualization version   GIF version

Theorem utop3cls 23747
Description: Relation between a topological closure and a symmetric entourage in an uniform space. Second part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utop3cls (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀𝑉)))

Proof of Theorem utop3cls
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5693 . . . . 5 Rel (𝑋 × 𝑋)
2 utoptop.1 . . . . . . . . . . 11 𝐽 = (unifTop‘𝑈)
3 utoptop 23730 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top)
42, 3eqeltrid 2837 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 ∈ Top)
5 txtop 23064 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
64, 4, 5syl2anc 584 . . . . . . . . 9 (𝑈 ∈ (UnifOn‘𝑋) → (𝐽 ×t 𝐽) ∈ Top)
76ad3antrrr 728 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (𝐽 ×t 𝐽) ∈ Top)
8 simpllr 774 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑀 ⊆ (𝑋 × 𝑋))
9 utoptopon 23732 . . . . . . . . . . . . . 14 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋))
102, 9eqeltrid 2837 . . . . . . . . . . . . 13 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
11 toponuni 22407 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1210, 11syl 17 . . . . . . . . . . . 12 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = 𝐽)
1312sqxpeqd 5707 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = ( 𝐽 × 𝐽))
14 eqid 2732 . . . . . . . . . . . . 13 𝐽 = 𝐽
1514, 14txuni 23087 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → ( 𝐽 × 𝐽) = (𝐽 ×t 𝐽))
164, 4, 15syl2anc 584 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → ( 𝐽 × 𝐽) = (𝐽 ×t 𝐽))
1713, 16eqtrd 2772 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
1817ad3antrrr 728 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
198, 18sseqtrd 4021 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑀 (𝐽 ×t 𝐽))
20 eqid 2732 . . . . . . . . 9 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
2120clsss3 22554 . . . . . . . 8 (((𝐽 ×t 𝐽) ∈ Top ∧ 𝑀 (𝐽 ×t 𝐽)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝐽 ×t 𝐽))
227, 19, 21syl2anc 584 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝐽 ×t 𝐽))
2322, 18sseqtrrd 4022 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑋 × 𝑋))
24 simpr 485 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀))
2523, 24sseldd 3982 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ (𝑋 × 𝑋))
26 1st2nd 8021 . . . . 5 ((Rel (𝑋 × 𝑋) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
271, 25, 26sylancr 587 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
28 simp-4l 781 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑈 ∈ (UnifOn‘𝑋))
29 simpr1l 1230 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ ((𝑉𝑈𝑉 = 𝑉) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))) → 𝑉𝑈)
30293anassrs 1360 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑉𝑈)
31 ustrel 23707 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → Rel 𝑉)
3228, 30, 31syl2anc 584 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → Rel 𝑉)
33 simpr 485 . . . . . . . . . . . 12 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))
34 elin 3963 . . . . . . . . . . . 12 (𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ↔ (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∧ 𝑟𝑀))
3533, 34sylib 217 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∧ 𝑟𝑀))
3635simpld 495 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})))
37 xp1st 8003 . . . . . . . . . 10 (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) → (1st𝑟) ∈ (𝑉 “ {(1st𝑧)}))
3836, 37syl 17 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑟) ∈ (𝑉 “ {(1st𝑧)}))
39 elrelimasn 6081 . . . . . . . . . 10 (Rel 𝑉 → ((1st𝑟) ∈ (𝑉 “ {(1st𝑧)}) ↔ (1st𝑧)𝑉(1st𝑟)))
4039biimpa 477 . . . . . . . . 9 ((Rel 𝑉 ∧ (1st𝑟) ∈ (𝑉 “ {(1st𝑧)})) → (1st𝑧)𝑉(1st𝑟))
4132, 38, 40syl2anc 584 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑧)𝑉(1st𝑟))
42 simp-4r 782 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑀 ⊆ (𝑋 × 𝑋))
43 xpss 5691 . . . . . . . . . . 11 (𝑋 × 𝑋) ⊆ (V × V)
4442, 43sstrdi 3993 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑀 ⊆ (V × V))
45 df-rel 5682 . . . . . . . . . 10 (Rel 𝑀𝑀 ⊆ (V × V))
4644, 45sylibr 233 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → Rel 𝑀)
4735simprd 496 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟𝑀)
48 1st2ndbr 8024 . . . . . . . . 9 ((Rel 𝑀𝑟𝑀) → (1st𝑟)𝑀(2nd𝑟))
4946, 47, 48syl2anc 584 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑟)𝑀(2nd𝑟))
50 xp2nd 8004 . . . . . . . . . . 11 (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) → (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}))
5136, 50syl 17 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}))
52 elrelimasn 6081 . . . . . . . . . . 11 (Rel 𝑉 → ((2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}) ↔ (2nd𝑧)𝑉(2nd𝑟)))
5352biimpa 477 . . . . . . . . . 10 ((Rel 𝑉 ∧ (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)})) → (2nd𝑧)𝑉(2nd𝑟))
5432, 51, 53syl2anc 584 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑧)𝑉(2nd𝑟))
55 simpr1r 1231 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ ((𝑉𝑈𝑉 = 𝑉) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))) → 𝑉 = 𝑉)
56553anassrs 1360 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑉 = 𝑉)
57 breq 5149 . . . . . . . . . . 11 (𝑉 = 𝑉 → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑟)𝑉(2nd𝑧)))
58 fvex 6901 . . . . . . . . . . . 12 (2nd𝑟) ∈ V
59 fvex 6901 . . . . . . . . . . . 12 (2nd𝑧) ∈ V
6058, 59brcnv 5880 . . . . . . . . . . 11 ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟))
6157, 60bitr3di 285 . . . . . . . . . 10 (𝑉 = 𝑉 → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟)))
6256, 61syl 17 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟)))
6354, 62mpbird 256 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑟)𝑉(2nd𝑧))
64 fvex 6901 . . . . . . . . . 10 (1st𝑧) ∈ V
65 fvex 6901 . . . . . . . . . 10 (1st𝑟) ∈ V
66 brcogw 5866 . . . . . . . . . . 11 ((((1st𝑧) ∈ V ∧ (2nd𝑟) ∈ V ∧ (1st𝑟) ∈ V) ∧ ((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟))) → (1st𝑧)(𝑀𝑉)(2nd𝑟))
6766ex 413 . . . . . . . . . 10 (((1st𝑧) ∈ V ∧ (2nd𝑟) ∈ V ∧ (1st𝑟) ∈ V) → (((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) → (1st𝑧)(𝑀𝑉)(2nd𝑟)))
6864, 58, 65, 67mp3an 1461 . . . . . . . . 9 (((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) → (1st𝑧)(𝑀𝑉)(2nd𝑟))
69 brcogw 5866 . . . . . . . . . . 11 ((((1st𝑧) ∈ V ∧ (2nd𝑧) ∈ V ∧ (2nd𝑟) ∈ V) ∧ ((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧))) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7069ex 413 . . . . . . . . . 10 (((1st𝑧) ∈ V ∧ (2nd𝑧) ∈ V ∧ (2nd𝑟) ∈ V) → (((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
7164, 59, 58, 70mp3an 1461 . . . . . . . . 9 (((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7268, 71sylan 580 . . . . . . . 8 ((((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7341, 49, 63, 72syl21anc 836 . . . . . . 7 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7473ralrimiva 3146 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
75 simplll 773 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑈 ∈ (UnifOn‘𝑋))
76 simplrl 775 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑉𝑈)
7743ad2ant1 1133 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → 𝐽 ∈ Top)
78 xp1st 8003 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → (1st𝑧) ∈ 𝑋)
792utopsnnei 23745 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈 ∧ (1st𝑧) ∈ 𝑋) → (𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}))
8078, 79syl3an3 1165 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → (𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}))
81 xp2nd 8004 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → (2nd𝑧) ∈ 𝑋)
822utopsnnei 23745 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈 ∧ (2nd𝑧) ∈ 𝑋) → (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))
8381, 82syl3an3 1165 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))
8414, 14neitx 23102 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐽 ∈ Top) ∧ ((𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}) ∧ (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
8577, 77, 80, 83, 84syl22anc 837 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
86 1st2nd2 8010 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋 × 𝑋) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
8786sneqd 4639 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑋) → {𝑧} = {⟨(1st𝑧), (2nd𝑧)⟩})
8864, 59xpsn 7135 . . . . . . . . . . . . 13 ({(1st𝑧)} × {(2nd𝑧)}) = {⟨(1st𝑧), (2nd𝑧)⟩}
8987, 88eqtr4di 2790 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → {𝑧} = ({(1st𝑧)} × {(2nd𝑧)}))
9089fveq2d 6892 . . . . . . . . . . 11 (𝑧 ∈ (𝑋 × 𝑋) → ((nei‘(𝐽 ×t 𝐽))‘{𝑧}) = ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
91903ad2ant3 1135 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((nei‘(𝐽 ×t 𝐽))‘{𝑧}) = ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
9285, 91eleqtrrd 2836 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))
9375, 76, 25, 92syl3anc 1371 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))
9420neindisj 22612 . . . . . . . 8 ((((𝐽 ×t 𝐽) ∈ Top ∧ 𝑀 (𝐽 ×t 𝐽)) ∧ (𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))) → (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅)
957, 19, 24, 93, 94syl22anc 837 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅)
96 r19.3rzv 4497 . . . . . . 7 ((((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅ → ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
9795, 96syl 17 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
9874, 97mpbird 256 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
99 df-br 5148 . . . . 5 ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ (𝑉 ∘ (𝑀𝑉)))
10098, 99sylib 217 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ (𝑉 ∘ (𝑀𝑉)))
10127, 100eqeltrd 2833 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ (𝑉 ∘ (𝑀𝑉)))
102101ex 413 . 2 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → (𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) → 𝑧 ∈ (𝑉 ∘ (𝑀𝑉))))
103102ssrdv 3987 1 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  Vcvv 3474  cin 3946  wss 3947  c0 4321  {csn 4627  cop 4633   cuni 4907   class class class wbr 5147   × cxp 5673  ccnv 5674  cima 5678  ccom 5679  Rel wrel 5680  cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  Topctop 22386  TopOnctopon 22403  clsccl 22513  neicnei 22592   ×t ctx 23055  UnifOncust 23695  unifTopcutop 23726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-1o 8462  df-er 8699  df-en 8936  df-fin 8939  df-fi 9402  df-topgen 17385  df-top 22387  df-topon 22404  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-nei 22593  df-tx 23057  df-ust 23696  df-utop 23727
This theorem is referenced by:  utopreg  23748
  Copyright terms: Public domain W3C validator