MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utop3cls Structured version   Visualization version   GIF version

Theorem utop3cls 24190
Description: Relation between a topological closure and a symmetric entourage in an uniform space. Second part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utop3cls (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀𝑉)))

Proof of Theorem utop3cls
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5672 . . . . 5 Rel (𝑋 × 𝑋)
2 utoptop.1 . . . . . . . . . . 11 𝐽 = (unifTop‘𝑈)
3 utoptop 24173 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top)
42, 3eqeltrid 2838 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 ∈ Top)
5 txtop 23507 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
64, 4, 5syl2anc 584 . . . . . . . . 9 (𝑈 ∈ (UnifOn‘𝑋) → (𝐽 ×t 𝐽) ∈ Top)
76ad3antrrr 730 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (𝐽 ×t 𝐽) ∈ Top)
8 simpllr 775 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑀 ⊆ (𝑋 × 𝑋))
9 utoptopon 24175 . . . . . . . . . . . . . 14 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋))
102, 9eqeltrid 2838 . . . . . . . . . . . . 13 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
11 toponuni 22852 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1210, 11syl 17 . . . . . . . . . . . 12 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = 𝐽)
1312sqxpeqd 5686 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = ( 𝐽 × 𝐽))
14 eqid 2735 . . . . . . . . . . . . 13 𝐽 = 𝐽
1514, 14txuni 23530 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → ( 𝐽 × 𝐽) = (𝐽 ×t 𝐽))
164, 4, 15syl2anc 584 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → ( 𝐽 × 𝐽) = (𝐽 ×t 𝐽))
1713, 16eqtrd 2770 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
1817ad3antrrr 730 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
198, 18sseqtrd 3995 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑀 (𝐽 ×t 𝐽))
20 eqid 2735 . . . . . . . . 9 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
2120clsss3 22997 . . . . . . . 8 (((𝐽 ×t 𝐽) ∈ Top ∧ 𝑀 (𝐽 ×t 𝐽)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝐽 ×t 𝐽))
227, 19, 21syl2anc 584 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝐽 ×t 𝐽))
2322, 18sseqtrrd 3996 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑋 × 𝑋))
24 simpr 484 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀))
2523, 24sseldd 3959 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ (𝑋 × 𝑋))
26 1st2nd 8038 . . . . 5 ((Rel (𝑋 × 𝑋) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
271, 25, 26sylancr 587 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
28 simp-4l 782 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑈 ∈ (UnifOn‘𝑋))
29 simpr1l 1231 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ ((𝑉𝑈𝑉 = 𝑉) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))) → 𝑉𝑈)
30293anassrs 1361 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑉𝑈)
31 ustrel 24150 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → Rel 𝑉)
3228, 30, 31syl2anc 584 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → Rel 𝑉)
33 simpr 484 . . . . . . . . . . . 12 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))
34 elin 3942 . . . . . . . . . . . 12 (𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ↔ (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∧ 𝑟𝑀))
3533, 34sylib 218 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∧ 𝑟𝑀))
3635simpld 494 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})))
37 xp1st 8020 . . . . . . . . . 10 (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) → (1st𝑟) ∈ (𝑉 “ {(1st𝑧)}))
3836, 37syl 17 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑟) ∈ (𝑉 “ {(1st𝑧)}))
39 elrelimasn 6073 . . . . . . . . . 10 (Rel 𝑉 → ((1st𝑟) ∈ (𝑉 “ {(1st𝑧)}) ↔ (1st𝑧)𝑉(1st𝑟)))
4039biimpa 476 . . . . . . . . 9 ((Rel 𝑉 ∧ (1st𝑟) ∈ (𝑉 “ {(1st𝑧)})) → (1st𝑧)𝑉(1st𝑟))
4132, 38, 40syl2anc 584 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑧)𝑉(1st𝑟))
42 simp-4r 783 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑀 ⊆ (𝑋 × 𝑋))
43 xpss 5670 . . . . . . . . . . 11 (𝑋 × 𝑋) ⊆ (V × V)
4442, 43sstrdi 3971 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑀 ⊆ (V × V))
45 df-rel 5661 . . . . . . . . . 10 (Rel 𝑀𝑀 ⊆ (V × V))
4644, 45sylibr 234 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → Rel 𝑀)
4735simprd 495 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟𝑀)
48 1st2ndbr 8041 . . . . . . . . 9 ((Rel 𝑀𝑟𝑀) → (1st𝑟)𝑀(2nd𝑟))
4946, 47, 48syl2anc 584 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑟)𝑀(2nd𝑟))
50 xp2nd 8021 . . . . . . . . . . 11 (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) → (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}))
5136, 50syl 17 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}))
52 elrelimasn 6073 . . . . . . . . . . 11 (Rel 𝑉 → ((2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}) ↔ (2nd𝑧)𝑉(2nd𝑟)))
5352biimpa 476 . . . . . . . . . 10 ((Rel 𝑉 ∧ (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)})) → (2nd𝑧)𝑉(2nd𝑟))
5432, 51, 53syl2anc 584 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑧)𝑉(2nd𝑟))
55 simpr1r 1232 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ ((𝑉𝑈𝑉 = 𝑉) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))) → 𝑉 = 𝑉)
56553anassrs 1361 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑉 = 𝑉)
57 breq 5121 . . . . . . . . . . 11 (𝑉 = 𝑉 → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑟)𝑉(2nd𝑧)))
58 fvex 6889 . . . . . . . . . . . 12 (2nd𝑟) ∈ V
59 fvex 6889 . . . . . . . . . . . 12 (2nd𝑧) ∈ V
6058, 59brcnv 5862 . . . . . . . . . . 11 ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟))
6157, 60bitr3di 286 . . . . . . . . . 10 (𝑉 = 𝑉 → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟)))
6256, 61syl 17 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟)))
6354, 62mpbird 257 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑟)𝑉(2nd𝑧))
64 fvex 6889 . . . . . . . . . 10 (1st𝑧) ∈ V
65 fvex 6889 . . . . . . . . . 10 (1st𝑟) ∈ V
66 brcogw 5848 . . . . . . . . . . 11 ((((1st𝑧) ∈ V ∧ (2nd𝑟) ∈ V ∧ (1st𝑟) ∈ V) ∧ ((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟))) → (1st𝑧)(𝑀𝑉)(2nd𝑟))
6766ex 412 . . . . . . . . . 10 (((1st𝑧) ∈ V ∧ (2nd𝑟) ∈ V ∧ (1st𝑟) ∈ V) → (((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) → (1st𝑧)(𝑀𝑉)(2nd𝑟)))
6864, 58, 65, 67mp3an 1463 . . . . . . . . 9 (((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) → (1st𝑧)(𝑀𝑉)(2nd𝑟))
69 brcogw 5848 . . . . . . . . . . 11 ((((1st𝑧) ∈ V ∧ (2nd𝑧) ∈ V ∧ (2nd𝑟) ∈ V) ∧ ((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧))) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7069ex 412 . . . . . . . . . 10 (((1st𝑧) ∈ V ∧ (2nd𝑧) ∈ V ∧ (2nd𝑟) ∈ V) → (((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
7164, 59, 58, 70mp3an 1463 . . . . . . . . 9 (((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7268, 71sylan 580 . . . . . . . 8 ((((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7341, 49, 63, 72syl21anc 837 . . . . . . 7 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7473ralrimiva 3132 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
75 simplll 774 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑈 ∈ (UnifOn‘𝑋))
76 simplrl 776 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑉𝑈)
7743ad2ant1 1133 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → 𝐽 ∈ Top)
78 xp1st 8020 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → (1st𝑧) ∈ 𝑋)
792utopsnnei 24188 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈 ∧ (1st𝑧) ∈ 𝑋) → (𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}))
8078, 79syl3an3 1165 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → (𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}))
81 xp2nd 8021 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → (2nd𝑧) ∈ 𝑋)
822utopsnnei 24188 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈 ∧ (2nd𝑧) ∈ 𝑋) → (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))
8381, 82syl3an3 1165 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))
8414, 14neitx 23545 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐽 ∈ Top) ∧ ((𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}) ∧ (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
8577, 77, 80, 83, 84syl22anc 838 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
86 1st2nd2 8027 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋 × 𝑋) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
8786sneqd 4613 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑋) → {𝑧} = {⟨(1st𝑧), (2nd𝑧)⟩})
8864, 59xpsn 7131 . . . . . . . . . . . . 13 ({(1st𝑧)} × {(2nd𝑧)}) = {⟨(1st𝑧), (2nd𝑧)⟩}
8987, 88eqtr4di 2788 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → {𝑧} = ({(1st𝑧)} × {(2nd𝑧)}))
9089fveq2d 6880 . . . . . . . . . . 11 (𝑧 ∈ (𝑋 × 𝑋) → ((nei‘(𝐽 ×t 𝐽))‘{𝑧}) = ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
91903ad2ant3 1135 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((nei‘(𝐽 ×t 𝐽))‘{𝑧}) = ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
9285, 91eleqtrrd 2837 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))
9375, 76, 25, 92syl3anc 1373 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))
9420neindisj 23055 . . . . . . . 8 ((((𝐽 ×t 𝐽) ∈ Top ∧ 𝑀 (𝐽 ×t 𝐽)) ∧ (𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))) → (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅)
957, 19, 24, 93, 94syl22anc 838 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅)
96 r19.3rzv 4474 . . . . . . 7 ((((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅ → ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
9795, 96syl 17 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
9874, 97mpbird 257 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
99 df-br 5120 . . . . 5 ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ (𝑉 ∘ (𝑀𝑉)))
10098, 99sylib 218 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ (𝑉 ∘ (𝑀𝑉)))
10127, 100eqeltrd 2834 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ (𝑉 ∘ (𝑀𝑉)))
102101ex 412 . 2 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → (𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) → 𝑧 ∈ (𝑉 ∘ (𝑀𝑉))))
103102ssrdv 3964 1 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  cin 3925  wss 3926  c0 4308  {csn 4601  cop 4607   cuni 4883   class class class wbr 5119   × cxp 5652  ccnv 5653  cima 5657  ccom 5658  Rel wrel 5659  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  Topctop 22831  TopOnctopon 22848  clsccl 22956  neicnei 23035   ×t ctx 23498  UnifOncust 24138  unifTopcutop 24169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-2o 8481  df-en 8960  df-fin 8963  df-fi 9423  df-topgen 17457  df-top 22832  df-topon 22849  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-tx 23500  df-ust 24139  df-utop 24170
This theorem is referenced by:  utopreg  24191
  Copyright terms: Public domain W3C validator