MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utop3cls Structured version   Visualization version   GIF version

Theorem utop3cls 23603
Description: Relation between a topological closure and a symmetric entourage in an uniform space. Second part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utop3cls (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀𝑉)))

Proof of Theorem utop3cls
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5651 . . . . 5 Rel (𝑋 × 𝑋)
2 utoptop.1 . . . . . . . . . . 11 𝐽 = (unifTop‘𝑈)
3 utoptop 23586 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top)
42, 3eqeltrid 2842 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 ∈ Top)
5 txtop 22920 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
64, 4, 5syl2anc 584 . . . . . . . . 9 (𝑈 ∈ (UnifOn‘𝑋) → (𝐽 ×t 𝐽) ∈ Top)
76ad3antrrr 728 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (𝐽 ×t 𝐽) ∈ Top)
8 simpllr 774 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑀 ⊆ (𝑋 × 𝑋))
9 utoptopon 23588 . . . . . . . . . . . . . 14 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋))
102, 9eqeltrid 2842 . . . . . . . . . . . . 13 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
11 toponuni 22263 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1210, 11syl 17 . . . . . . . . . . . 12 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = 𝐽)
1312sqxpeqd 5665 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = ( 𝐽 × 𝐽))
14 eqid 2736 . . . . . . . . . . . . 13 𝐽 = 𝐽
1514, 14txuni 22943 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → ( 𝐽 × 𝐽) = (𝐽 ×t 𝐽))
164, 4, 15syl2anc 584 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → ( 𝐽 × 𝐽) = (𝐽 ×t 𝐽))
1713, 16eqtrd 2776 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
1817ad3antrrr 728 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
198, 18sseqtrd 3984 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑀 (𝐽 ×t 𝐽))
20 eqid 2736 . . . . . . . . 9 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
2120clsss3 22410 . . . . . . . 8 (((𝐽 ×t 𝐽) ∈ Top ∧ 𝑀 (𝐽 ×t 𝐽)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝐽 ×t 𝐽))
227, 19, 21syl2anc 584 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝐽 ×t 𝐽))
2322, 18sseqtrrd 3985 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑋 × 𝑋))
24 simpr 485 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀))
2523, 24sseldd 3945 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ (𝑋 × 𝑋))
26 1st2nd 7971 . . . . 5 ((Rel (𝑋 × 𝑋) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
271, 25, 26sylancr 587 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
28 simp-4l 781 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑈 ∈ (UnifOn‘𝑋))
29 simpr1l 1230 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ ((𝑉𝑈𝑉 = 𝑉) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))) → 𝑉𝑈)
30293anassrs 1360 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑉𝑈)
31 ustrel 23563 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → Rel 𝑉)
3228, 30, 31syl2anc 584 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → Rel 𝑉)
33 simpr 485 . . . . . . . . . . . 12 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))
34 elin 3926 . . . . . . . . . . . 12 (𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ↔ (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∧ 𝑟𝑀))
3533, 34sylib 217 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∧ 𝑟𝑀))
3635simpld 495 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})))
37 xp1st 7953 . . . . . . . . . 10 (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) → (1st𝑟) ∈ (𝑉 “ {(1st𝑧)}))
3836, 37syl 17 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑟) ∈ (𝑉 “ {(1st𝑧)}))
39 elrelimasn 6037 . . . . . . . . . 10 (Rel 𝑉 → ((1st𝑟) ∈ (𝑉 “ {(1st𝑧)}) ↔ (1st𝑧)𝑉(1st𝑟)))
4039biimpa 477 . . . . . . . . 9 ((Rel 𝑉 ∧ (1st𝑟) ∈ (𝑉 “ {(1st𝑧)})) → (1st𝑧)𝑉(1st𝑟))
4132, 38, 40syl2anc 584 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑧)𝑉(1st𝑟))
42 simp-4r 782 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑀 ⊆ (𝑋 × 𝑋))
43 xpss 5649 . . . . . . . . . . 11 (𝑋 × 𝑋) ⊆ (V × V)
4442, 43sstrdi 3956 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑀 ⊆ (V × V))
45 df-rel 5640 . . . . . . . . . 10 (Rel 𝑀𝑀 ⊆ (V × V))
4644, 45sylibr 233 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → Rel 𝑀)
4735simprd 496 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟𝑀)
48 1st2ndbr 7974 . . . . . . . . 9 ((Rel 𝑀𝑟𝑀) → (1st𝑟)𝑀(2nd𝑟))
4946, 47, 48syl2anc 584 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑟)𝑀(2nd𝑟))
50 xp2nd 7954 . . . . . . . . . . 11 (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) → (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}))
5136, 50syl 17 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}))
52 elrelimasn 6037 . . . . . . . . . . 11 (Rel 𝑉 → ((2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}) ↔ (2nd𝑧)𝑉(2nd𝑟)))
5352biimpa 477 . . . . . . . . . 10 ((Rel 𝑉 ∧ (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)})) → (2nd𝑧)𝑉(2nd𝑟))
5432, 51, 53syl2anc 584 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑧)𝑉(2nd𝑟))
55 simpr1r 1231 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ ((𝑉𝑈𝑉 = 𝑉) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))) → 𝑉 = 𝑉)
56553anassrs 1360 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑉 = 𝑉)
57 breq 5107 . . . . . . . . . . 11 (𝑉 = 𝑉 → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑟)𝑉(2nd𝑧)))
58 fvex 6855 . . . . . . . . . . . 12 (2nd𝑟) ∈ V
59 fvex 6855 . . . . . . . . . . . 12 (2nd𝑧) ∈ V
6058, 59brcnv 5838 . . . . . . . . . . 11 ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟))
6157, 60bitr3di 285 . . . . . . . . . 10 (𝑉 = 𝑉 → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟)))
6256, 61syl 17 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟)))
6354, 62mpbird 256 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑟)𝑉(2nd𝑧))
64 fvex 6855 . . . . . . . . . 10 (1st𝑧) ∈ V
65 fvex 6855 . . . . . . . . . 10 (1st𝑟) ∈ V
66 brcogw 5824 . . . . . . . . . . 11 ((((1st𝑧) ∈ V ∧ (2nd𝑟) ∈ V ∧ (1st𝑟) ∈ V) ∧ ((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟))) → (1st𝑧)(𝑀𝑉)(2nd𝑟))
6766ex 413 . . . . . . . . . 10 (((1st𝑧) ∈ V ∧ (2nd𝑟) ∈ V ∧ (1st𝑟) ∈ V) → (((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) → (1st𝑧)(𝑀𝑉)(2nd𝑟)))
6864, 58, 65, 67mp3an 1461 . . . . . . . . 9 (((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) → (1st𝑧)(𝑀𝑉)(2nd𝑟))
69 brcogw 5824 . . . . . . . . . . 11 ((((1st𝑧) ∈ V ∧ (2nd𝑧) ∈ V ∧ (2nd𝑟) ∈ V) ∧ ((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧))) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7069ex 413 . . . . . . . . . 10 (((1st𝑧) ∈ V ∧ (2nd𝑧) ∈ V ∧ (2nd𝑟) ∈ V) → (((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
7164, 59, 58, 70mp3an 1461 . . . . . . . . 9 (((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7268, 71sylan 580 . . . . . . . 8 ((((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7341, 49, 63, 72syl21anc 836 . . . . . . 7 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7473ralrimiva 3143 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
75 simplll 773 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑈 ∈ (UnifOn‘𝑋))
76 simplrl 775 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑉𝑈)
7743ad2ant1 1133 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → 𝐽 ∈ Top)
78 xp1st 7953 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → (1st𝑧) ∈ 𝑋)
792utopsnnei 23601 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈 ∧ (1st𝑧) ∈ 𝑋) → (𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}))
8078, 79syl3an3 1165 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → (𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}))
81 xp2nd 7954 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → (2nd𝑧) ∈ 𝑋)
822utopsnnei 23601 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈 ∧ (2nd𝑧) ∈ 𝑋) → (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))
8381, 82syl3an3 1165 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))
8414, 14neitx 22958 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐽 ∈ Top) ∧ ((𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}) ∧ (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
8577, 77, 80, 83, 84syl22anc 837 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
86 1st2nd2 7960 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋 × 𝑋) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
8786sneqd 4598 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑋) → {𝑧} = {⟨(1st𝑧), (2nd𝑧)⟩})
8864, 59xpsn 7087 . . . . . . . . . . . . 13 ({(1st𝑧)} × {(2nd𝑧)}) = {⟨(1st𝑧), (2nd𝑧)⟩}
8987, 88eqtr4di 2794 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → {𝑧} = ({(1st𝑧)} × {(2nd𝑧)}))
9089fveq2d 6846 . . . . . . . . . . 11 (𝑧 ∈ (𝑋 × 𝑋) → ((nei‘(𝐽 ×t 𝐽))‘{𝑧}) = ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
91903ad2ant3 1135 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((nei‘(𝐽 ×t 𝐽))‘{𝑧}) = ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
9285, 91eleqtrrd 2841 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))
9375, 76, 25, 92syl3anc 1371 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))
9420neindisj 22468 . . . . . . . 8 ((((𝐽 ×t 𝐽) ∈ Top ∧ 𝑀 (𝐽 ×t 𝐽)) ∧ (𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))) → (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅)
957, 19, 24, 93, 94syl22anc 837 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅)
96 r19.3rzv 4456 . . . . . . 7 ((((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅ → ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
9795, 96syl 17 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
9874, 97mpbird 256 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
99 df-br 5106 . . . . 5 ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ (𝑉 ∘ (𝑀𝑉)))
10098, 99sylib 217 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ (𝑉 ∘ (𝑀𝑉)))
10127, 100eqeltrd 2838 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ (𝑉 ∘ (𝑀𝑉)))
102101ex 413 . 2 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → (𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) → 𝑧 ∈ (𝑉 ∘ (𝑀𝑉))))
103102ssrdv 3950 1 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  Vcvv 3445  cin 3909  wss 3910  c0 4282  {csn 4586  cop 4592   cuni 4865   class class class wbr 5105   × cxp 5631  ccnv 5632  cima 5636  ccom 5637  Rel wrel 5638  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  Topctop 22242  TopOnctopon 22259  clsccl 22369  neicnei 22448   ×t ctx 22911  UnifOncust 23551  unifTopcutop 23582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-1o 8412  df-er 8648  df-en 8884  df-fin 8887  df-fi 9347  df-topgen 17325  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-tx 22913  df-ust 23552  df-utop 23583
This theorem is referenced by:  utopreg  23604
  Copyright terms: Public domain W3C validator