MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utop3cls Structured version   Visualization version   GIF version

Theorem utop3cls 23756
Description: Relation between a topological closure and a symmetric entourage in an uniform space. Second part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTopβ€˜π‘ˆ)
Assertion
Ref Expression
utop3cls (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) β†’ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€) βŠ† (𝑉 ∘ (𝑀 ∘ 𝑉)))

Proof of Theorem utop3cls
Dummy variables π‘Ÿ 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5695 . . . . 5 Rel (𝑋 Γ— 𝑋)
2 utoptop.1 . . . . . . . . . . 11 𝐽 = (unifTopβ€˜π‘ˆ)
3 utoptop 23739 . . . . . . . . . . 11 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (unifTopβ€˜π‘ˆ) ∈ Top)
42, 3eqeltrid 2838 . . . . . . . . . 10 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
5 txtop 23073 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) β†’ (𝐽 Γ—t 𝐽) ∈ Top)
64, 4, 5syl2anc 585 . . . . . . . . 9 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (𝐽 Γ—t 𝐽) ∈ Top)
76ad3antrrr 729 . . . . . . . 8 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ (𝐽 Γ—t 𝐽) ∈ Top)
8 simpllr 775 . . . . . . . . 9 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ 𝑀 βŠ† (𝑋 Γ— 𝑋))
9 utoptopon 23741 . . . . . . . . . . . . . 14 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (unifTopβ€˜π‘ˆ) ∈ (TopOnβ€˜π‘‹))
102, 9eqeltrid 2838 . . . . . . . . . . . . 13 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
11 toponuni 22416 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
1210, 11syl 17 . . . . . . . . . . . 12 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
1312sqxpeqd 5709 . . . . . . . . . . 11 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (𝑋 Γ— 𝑋) = (βˆͺ 𝐽 Γ— βˆͺ 𝐽))
14 eqid 2733 . . . . . . . . . . . . 13 βˆͺ 𝐽 = βˆͺ 𝐽
1514, 14txuni 23096 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) β†’ (βˆͺ 𝐽 Γ— βˆͺ 𝐽) = βˆͺ (𝐽 Γ—t 𝐽))
164, 4, 15syl2anc 585 . . . . . . . . . . 11 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (βˆͺ 𝐽 Γ— βˆͺ 𝐽) = βˆͺ (𝐽 Γ—t 𝐽))
1713, 16eqtrd 2773 . . . . . . . . . 10 (π‘ˆ ∈ (UnifOnβ€˜π‘‹) β†’ (𝑋 Γ— 𝑋) = βˆͺ (𝐽 Γ—t 𝐽))
1817ad3antrrr 729 . . . . . . . . 9 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ (𝑋 Γ— 𝑋) = βˆͺ (𝐽 Γ—t 𝐽))
198, 18sseqtrd 4023 . . . . . . . 8 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ 𝑀 βŠ† βˆͺ (𝐽 Γ—t 𝐽))
20 eqid 2733 . . . . . . . . 9 βˆͺ (𝐽 Γ—t 𝐽) = βˆͺ (𝐽 Γ—t 𝐽)
2120clsss3 22563 . . . . . . . 8 (((𝐽 Γ—t 𝐽) ∈ Top ∧ 𝑀 βŠ† βˆͺ (𝐽 Γ—t 𝐽)) β†’ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€) βŠ† βˆͺ (𝐽 Γ—t 𝐽))
227, 19, 21syl2anc 585 . . . . . . 7 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€) βŠ† βˆͺ (𝐽 Γ—t 𝐽))
2322, 18sseqtrrd 4024 . . . . . 6 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€) βŠ† (𝑋 Γ— 𝑋))
24 simpr 486 . . . . . 6 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€))
2523, 24sseldd 3984 . . . . 5 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ 𝑧 ∈ (𝑋 Γ— 𝑋))
26 1st2nd 8025 . . . . 5 ((Rel (𝑋 Γ— 𝑋) ∧ 𝑧 ∈ (𝑋 Γ— 𝑋)) β†’ 𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)
271, 25, 26sylancr 588 . . . 4 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ 𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)
28 simp-4l 782 . . . . . . . . . 10 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ π‘ˆ ∈ (UnifOnβ€˜π‘‹))
29 simpr1l 1231 . . . . . . . . . . 11 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ ((𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀))) β†’ 𝑉 ∈ π‘ˆ)
30293anassrs 1361 . . . . . . . . . 10 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ 𝑉 ∈ π‘ˆ)
31 ustrel 23716 . . . . . . . . . 10 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ Rel 𝑉)
3228, 30, 31syl2anc 585 . . . . . . . . 9 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ Rel 𝑉)
33 simpr 486 . . . . . . . . . . . 12 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀))
34 elin 3965 . . . . . . . . . . . 12 (π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀) ↔ (π‘Ÿ ∈ ((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∧ π‘Ÿ ∈ 𝑀))
3533, 34sylib 217 . . . . . . . . . . 11 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ (π‘Ÿ ∈ ((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∧ π‘Ÿ ∈ 𝑀))
3635simpld 496 . . . . . . . . . 10 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ π‘Ÿ ∈ ((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})))
37 xp1st 8007 . . . . . . . . . 10 (π‘Ÿ ∈ ((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) β†’ (1st β€˜π‘Ÿ) ∈ (𝑉 β€œ {(1st β€˜π‘§)}))
3836, 37syl 17 . . . . . . . . 9 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ (1st β€˜π‘Ÿ) ∈ (𝑉 β€œ {(1st β€˜π‘§)}))
39 elrelimasn 6085 . . . . . . . . . 10 (Rel 𝑉 β†’ ((1st β€˜π‘Ÿ) ∈ (𝑉 β€œ {(1st β€˜π‘§)}) ↔ (1st β€˜π‘§)𝑉(1st β€˜π‘Ÿ)))
4039biimpa 478 . . . . . . . . 9 ((Rel 𝑉 ∧ (1st β€˜π‘Ÿ) ∈ (𝑉 β€œ {(1st β€˜π‘§)})) β†’ (1st β€˜π‘§)𝑉(1st β€˜π‘Ÿ))
4132, 38, 40syl2anc 585 . . . . . . . 8 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ (1st β€˜π‘§)𝑉(1st β€˜π‘Ÿ))
42 simp-4r 783 . . . . . . . . . . 11 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ 𝑀 βŠ† (𝑋 Γ— 𝑋))
43 xpss 5693 . . . . . . . . . . 11 (𝑋 Γ— 𝑋) βŠ† (V Γ— V)
4442, 43sstrdi 3995 . . . . . . . . . 10 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ 𝑀 βŠ† (V Γ— V))
45 df-rel 5684 . . . . . . . . . 10 (Rel 𝑀 ↔ 𝑀 βŠ† (V Γ— V))
4644, 45sylibr 233 . . . . . . . . 9 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ Rel 𝑀)
4735simprd 497 . . . . . . . . 9 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ π‘Ÿ ∈ 𝑀)
48 1st2ndbr 8028 . . . . . . . . 9 ((Rel 𝑀 ∧ π‘Ÿ ∈ 𝑀) β†’ (1st β€˜π‘Ÿ)𝑀(2nd β€˜π‘Ÿ))
4946, 47, 48syl2anc 585 . . . . . . . 8 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ (1st β€˜π‘Ÿ)𝑀(2nd β€˜π‘Ÿ))
50 xp2nd 8008 . . . . . . . . . . 11 (π‘Ÿ ∈ ((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) β†’ (2nd β€˜π‘Ÿ) ∈ (𝑉 β€œ {(2nd β€˜π‘§)}))
5136, 50syl 17 . . . . . . . . . 10 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ (2nd β€˜π‘Ÿ) ∈ (𝑉 β€œ {(2nd β€˜π‘§)}))
52 elrelimasn 6085 . . . . . . . . . . 11 (Rel 𝑉 β†’ ((2nd β€˜π‘Ÿ) ∈ (𝑉 β€œ {(2nd β€˜π‘§)}) ↔ (2nd β€˜π‘§)𝑉(2nd β€˜π‘Ÿ)))
5352biimpa 478 . . . . . . . . . 10 ((Rel 𝑉 ∧ (2nd β€˜π‘Ÿ) ∈ (𝑉 β€œ {(2nd β€˜π‘§)})) β†’ (2nd β€˜π‘§)𝑉(2nd β€˜π‘Ÿ))
5432, 51, 53syl2anc 585 . . . . . . . . 9 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ (2nd β€˜π‘§)𝑉(2nd β€˜π‘Ÿ))
55 simpr1r 1232 . . . . . . . . . . 11 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ ((𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀))) β†’ ◑𝑉 = 𝑉)
56553anassrs 1361 . . . . . . . . . 10 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ ◑𝑉 = 𝑉)
57 breq 5151 . . . . . . . . . . 11 (◑𝑉 = 𝑉 β†’ ((2nd β€˜π‘Ÿ)◑𝑉(2nd β€˜π‘§) ↔ (2nd β€˜π‘Ÿ)𝑉(2nd β€˜π‘§)))
58 fvex 6905 . . . . . . . . . . . 12 (2nd β€˜π‘Ÿ) ∈ V
59 fvex 6905 . . . . . . . . . . . 12 (2nd β€˜π‘§) ∈ V
6058, 59brcnv 5883 . . . . . . . . . . 11 ((2nd β€˜π‘Ÿ)◑𝑉(2nd β€˜π‘§) ↔ (2nd β€˜π‘§)𝑉(2nd β€˜π‘Ÿ))
6157, 60bitr3di 286 . . . . . . . . . 10 (◑𝑉 = 𝑉 β†’ ((2nd β€˜π‘Ÿ)𝑉(2nd β€˜π‘§) ↔ (2nd β€˜π‘§)𝑉(2nd β€˜π‘Ÿ)))
6256, 61syl 17 . . . . . . . . 9 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ ((2nd β€˜π‘Ÿ)𝑉(2nd β€˜π‘§) ↔ (2nd β€˜π‘§)𝑉(2nd β€˜π‘Ÿ)))
6354, 62mpbird 257 . . . . . . . 8 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ (2nd β€˜π‘Ÿ)𝑉(2nd β€˜π‘§))
64 fvex 6905 . . . . . . . . . 10 (1st β€˜π‘§) ∈ V
65 fvex 6905 . . . . . . . . . 10 (1st β€˜π‘Ÿ) ∈ V
66 brcogw 5869 . . . . . . . . . . 11 ((((1st β€˜π‘§) ∈ V ∧ (2nd β€˜π‘Ÿ) ∈ V ∧ (1st β€˜π‘Ÿ) ∈ V) ∧ ((1st β€˜π‘§)𝑉(1st β€˜π‘Ÿ) ∧ (1st β€˜π‘Ÿ)𝑀(2nd β€˜π‘Ÿ))) β†’ (1st β€˜π‘§)(𝑀 ∘ 𝑉)(2nd β€˜π‘Ÿ))
6766ex 414 . . . . . . . . . 10 (((1st β€˜π‘§) ∈ V ∧ (2nd β€˜π‘Ÿ) ∈ V ∧ (1st β€˜π‘Ÿ) ∈ V) β†’ (((1st β€˜π‘§)𝑉(1st β€˜π‘Ÿ) ∧ (1st β€˜π‘Ÿ)𝑀(2nd β€˜π‘Ÿ)) β†’ (1st β€˜π‘§)(𝑀 ∘ 𝑉)(2nd β€˜π‘Ÿ)))
6864, 58, 65, 67mp3an 1462 . . . . . . . . 9 (((1st β€˜π‘§)𝑉(1st β€˜π‘Ÿ) ∧ (1st β€˜π‘Ÿ)𝑀(2nd β€˜π‘Ÿ)) β†’ (1st β€˜π‘§)(𝑀 ∘ 𝑉)(2nd β€˜π‘Ÿ))
69 brcogw 5869 . . . . . . . . . . 11 ((((1st β€˜π‘§) ∈ V ∧ (2nd β€˜π‘§) ∈ V ∧ (2nd β€˜π‘Ÿ) ∈ V) ∧ ((1st β€˜π‘§)(𝑀 ∘ 𝑉)(2nd β€˜π‘Ÿ) ∧ (2nd β€˜π‘Ÿ)𝑉(2nd β€˜π‘§))) β†’ (1st β€˜π‘§)(𝑉 ∘ (𝑀 ∘ 𝑉))(2nd β€˜π‘§))
7069ex 414 . . . . . . . . . 10 (((1st β€˜π‘§) ∈ V ∧ (2nd β€˜π‘§) ∈ V ∧ (2nd β€˜π‘Ÿ) ∈ V) β†’ (((1st β€˜π‘§)(𝑀 ∘ 𝑉)(2nd β€˜π‘Ÿ) ∧ (2nd β€˜π‘Ÿ)𝑉(2nd β€˜π‘§)) β†’ (1st β€˜π‘§)(𝑉 ∘ (𝑀 ∘ 𝑉))(2nd β€˜π‘§)))
7164, 59, 58, 70mp3an 1462 . . . . . . . . 9 (((1st β€˜π‘§)(𝑀 ∘ 𝑉)(2nd β€˜π‘Ÿ) ∧ (2nd β€˜π‘Ÿ)𝑉(2nd β€˜π‘§)) β†’ (1st β€˜π‘§)(𝑉 ∘ (𝑀 ∘ 𝑉))(2nd β€˜π‘§))
7268, 71sylan 581 . . . . . . . 8 ((((1st β€˜π‘§)𝑉(1st β€˜π‘Ÿ) ∧ (1st β€˜π‘Ÿ)𝑀(2nd β€˜π‘Ÿ)) ∧ (2nd β€˜π‘Ÿ)𝑉(2nd β€˜π‘§)) β†’ (1st β€˜π‘§)(𝑉 ∘ (𝑀 ∘ 𝑉))(2nd β€˜π‘§))
7341, 49, 63, 72syl21anc 837 . . . . . . 7 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) ∧ π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)) β†’ (1st β€˜π‘§)(𝑉 ∘ (𝑀 ∘ 𝑉))(2nd β€˜π‘§))
7473ralrimiva 3147 . . . . . 6 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ βˆ€π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)(1st β€˜π‘§)(𝑉 ∘ (𝑀 ∘ 𝑉))(2nd β€˜π‘§))
75 simplll 774 . . . . . . . . 9 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ π‘ˆ ∈ (UnifOnβ€˜π‘‹))
76 simplrl 776 . . . . . . . . 9 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ 𝑉 ∈ π‘ˆ)
7743ad2ant1 1134 . . . . . . . . . . 11 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ ∧ 𝑧 ∈ (𝑋 Γ— 𝑋)) β†’ 𝐽 ∈ Top)
78 xp1st 8007 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 Γ— 𝑋) β†’ (1st β€˜π‘§) ∈ 𝑋)
792utopsnnei 23754 . . . . . . . . . . . 12 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ ∧ (1st β€˜π‘§) ∈ 𝑋) β†’ (𝑉 β€œ {(1st β€˜π‘§)}) ∈ ((neiβ€˜π½)β€˜{(1st β€˜π‘§)}))
8078, 79syl3an3 1166 . . . . . . . . . . 11 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ ∧ 𝑧 ∈ (𝑋 Γ— 𝑋)) β†’ (𝑉 β€œ {(1st β€˜π‘§)}) ∈ ((neiβ€˜π½)β€˜{(1st β€˜π‘§)}))
81 xp2nd 8008 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 Γ— 𝑋) β†’ (2nd β€˜π‘§) ∈ 𝑋)
822utopsnnei 23754 . . . . . . . . . . . 12 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ ∧ (2nd β€˜π‘§) ∈ 𝑋) β†’ (𝑉 β€œ {(2nd β€˜π‘§)}) ∈ ((neiβ€˜π½)β€˜{(2nd β€˜π‘§)}))
8381, 82syl3an3 1166 . . . . . . . . . . 11 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ ∧ 𝑧 ∈ (𝑋 Γ— 𝑋)) β†’ (𝑉 β€œ {(2nd β€˜π‘§)}) ∈ ((neiβ€˜π½)β€˜{(2nd β€˜π‘§)}))
8414, 14neitx 23111 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐽 ∈ Top) ∧ ((𝑉 β€œ {(1st β€˜π‘§)}) ∈ ((neiβ€˜π½)β€˜{(1st β€˜π‘§)}) ∧ (𝑉 β€œ {(2nd β€˜π‘§)}) ∈ ((neiβ€˜π½)β€˜{(2nd β€˜π‘§)}))) β†’ ((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∈ ((neiβ€˜(𝐽 Γ—t 𝐽))β€˜({(1st β€˜π‘§)} Γ— {(2nd β€˜π‘§)})))
8577, 77, 80, 83, 84syl22anc 838 . . . . . . . . . 10 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ ∧ 𝑧 ∈ (𝑋 Γ— 𝑋)) β†’ ((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∈ ((neiβ€˜(𝐽 Γ—t 𝐽))β€˜({(1st β€˜π‘§)} Γ— {(2nd β€˜π‘§)})))
86 1st2nd2 8014 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋 Γ— 𝑋) β†’ 𝑧 = ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩)
8786sneqd 4641 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 Γ— 𝑋) β†’ {𝑧} = {⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩})
8864, 59xpsn 7139 . . . . . . . . . . . . 13 ({(1st β€˜π‘§)} Γ— {(2nd β€˜π‘§)}) = {⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩}
8987, 88eqtr4di 2791 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 Γ— 𝑋) β†’ {𝑧} = ({(1st β€˜π‘§)} Γ— {(2nd β€˜π‘§)}))
9089fveq2d 6896 . . . . . . . . . . 11 (𝑧 ∈ (𝑋 Γ— 𝑋) β†’ ((neiβ€˜(𝐽 Γ—t 𝐽))β€˜{𝑧}) = ((neiβ€˜(𝐽 Γ—t 𝐽))β€˜({(1st β€˜π‘§)} Γ— {(2nd β€˜π‘§)})))
91903ad2ant3 1136 . . . . . . . . . 10 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ ∧ 𝑧 ∈ (𝑋 Γ— 𝑋)) β†’ ((neiβ€˜(𝐽 Γ—t 𝐽))β€˜{𝑧}) = ((neiβ€˜(𝐽 Γ—t 𝐽))β€˜({(1st β€˜π‘§)} Γ— {(2nd β€˜π‘§)})))
9285, 91eleqtrrd 2837 . . . . . . . . 9 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ ∧ 𝑧 ∈ (𝑋 Γ— 𝑋)) β†’ ((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∈ ((neiβ€˜(𝐽 Γ—t 𝐽))β€˜{𝑧}))
9375, 76, 25, 92syl3anc 1372 . . . . . . . 8 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ ((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∈ ((neiβ€˜(𝐽 Γ—t 𝐽))β€˜{𝑧}))
9420neindisj 22621 . . . . . . . 8 ((((𝐽 Γ—t 𝐽) ∈ Top ∧ 𝑀 βŠ† βˆͺ (𝐽 Γ—t 𝐽)) ∧ (𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€) ∧ ((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∈ ((neiβ€˜(𝐽 Γ—t 𝐽))β€˜{𝑧}))) β†’ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀) β‰  βˆ…)
957, 19, 24, 93, 94syl22anc 838 . . . . . . 7 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀) β‰  βˆ…)
96 r19.3rzv 4499 . . . . . . 7 ((((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀) β‰  βˆ… β†’ ((1st β€˜π‘§)(𝑉 ∘ (𝑀 ∘ 𝑉))(2nd β€˜π‘§) ↔ βˆ€π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)(1st β€˜π‘§)(𝑉 ∘ (𝑀 ∘ 𝑉))(2nd β€˜π‘§)))
9795, 96syl 17 . . . . . 6 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ ((1st β€˜π‘§)(𝑉 ∘ (𝑀 ∘ 𝑉))(2nd β€˜π‘§) ↔ βˆ€π‘Ÿ ∈ (((𝑉 β€œ {(1st β€˜π‘§)}) Γ— (𝑉 β€œ {(2nd β€˜π‘§)})) ∩ 𝑀)(1st β€˜π‘§)(𝑉 ∘ (𝑀 ∘ 𝑉))(2nd β€˜π‘§)))
9874, 97mpbird 257 . . . . 5 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ (1st β€˜π‘§)(𝑉 ∘ (𝑀 ∘ 𝑉))(2nd β€˜π‘§))
99 df-br 5150 . . . . 5 ((1st β€˜π‘§)(𝑉 ∘ (𝑀 ∘ 𝑉))(2nd β€˜π‘§) ↔ ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ ∈ (𝑉 ∘ (𝑀 ∘ 𝑉)))
10098, 99sylib 217 . . . 4 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ ⟨(1st β€˜π‘§), (2nd β€˜π‘§)⟩ ∈ (𝑉 ∘ (𝑀 ∘ 𝑉)))
10127, 100eqeltrd 2834 . . 3 ((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) ∧ 𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€)) β†’ 𝑧 ∈ (𝑉 ∘ (𝑀 ∘ 𝑉)))
102101ex 414 . 2 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) β†’ (𝑧 ∈ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€) β†’ 𝑧 ∈ (𝑉 ∘ (𝑀 ∘ 𝑉))))
103102ssrdv 3989 1 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 βŠ† (𝑋 Γ— 𝑋)) ∧ (𝑉 ∈ π‘ˆ ∧ ◑𝑉 = 𝑉)) β†’ ((clsβ€˜(𝐽 Γ—t 𝐽))β€˜π‘€) βŠ† (𝑉 ∘ (𝑀 ∘ 𝑉)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  Vcvv 3475   ∩ cin 3948   βŠ† wss 3949  βˆ…c0 4323  {csn 4629  βŸ¨cop 4635  βˆͺ cuni 4909   class class class wbr 5149   Γ— cxp 5675  β—‘ccnv 5676   β€œ cima 5680   ∘ ccom 5681  Rel wrel 5682  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  Topctop 22395  TopOnctopon 22412  clsccl 22522  neicnei 22601   Γ—t ctx 23064  UnifOncust 23704  unifTopcutop 23735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-1o 8466  df-er 8703  df-en 8940  df-fin 8943  df-fi 9406  df-topgen 17389  df-top 22396  df-topon 22413  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-tx 23066  df-ust 23705  df-utop 23736
This theorem is referenced by:  utopreg  23757
  Copyright terms: Public domain W3C validator