MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utop3cls Structured version   Visualization version   GIF version

Theorem utop3cls 23311
Description: Relation between a topological closure and a symmetric entourage in an uniform space. Second part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utop3cls (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀𝑉)))

Proof of Theorem utop3cls
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5598 . . . . 5 Rel (𝑋 × 𝑋)
2 utoptop.1 . . . . . . . . . . 11 𝐽 = (unifTop‘𝑈)
3 utoptop 23294 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top)
42, 3eqeltrid 2843 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 ∈ Top)
5 txtop 22628 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
64, 4, 5syl2anc 583 . . . . . . . . 9 (𝑈 ∈ (UnifOn‘𝑋) → (𝐽 ×t 𝐽) ∈ Top)
76ad3antrrr 726 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (𝐽 ×t 𝐽) ∈ Top)
8 simpllr 772 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑀 ⊆ (𝑋 × 𝑋))
9 utoptopon 23296 . . . . . . . . . . . . . 14 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ (TopOn‘𝑋))
102, 9eqeltrid 2843 . . . . . . . . . . . . 13 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
11 toponuni 21971 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1210, 11syl 17 . . . . . . . . . . . 12 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = 𝐽)
1312sqxpeqd 5612 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = ( 𝐽 × 𝐽))
14 eqid 2738 . . . . . . . . . . . . 13 𝐽 = 𝐽
1514, 14txuni 22651 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → ( 𝐽 × 𝐽) = (𝐽 ×t 𝐽))
164, 4, 15syl2anc 583 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → ( 𝐽 × 𝐽) = (𝐽 ×t 𝐽))
1713, 16eqtrd 2778 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
1817ad3antrrr 726 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
198, 18sseqtrd 3957 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑀 (𝐽 ×t 𝐽))
20 eqid 2738 . . . . . . . . 9 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
2120clsss3 22118 . . . . . . . 8 (((𝐽 ×t 𝐽) ∈ Top ∧ 𝑀 (𝐽 ×t 𝐽)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝐽 ×t 𝐽))
227, 19, 21syl2anc 583 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝐽 ×t 𝐽))
2322, 18sseqtrrd 3958 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑋 × 𝑋))
24 simpr 484 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀))
2523, 24sseldd 3918 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ (𝑋 × 𝑋))
26 1st2nd 7853 . . . . 5 ((Rel (𝑋 × 𝑋) ∧ 𝑧 ∈ (𝑋 × 𝑋)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
271, 25, 26sylancr 586 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
28 simp-4l 779 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑈 ∈ (UnifOn‘𝑋))
29 simpr1l 1228 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ ((𝑉𝑈𝑉 = 𝑉) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))) → 𝑉𝑈)
30293anassrs 1358 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑉𝑈)
31 ustrel 23271 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → Rel 𝑉)
3228, 30, 31syl2anc 583 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → Rel 𝑉)
33 simpr 484 . . . . . . . . . . . 12 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))
34 elin 3899 . . . . . . . . . . . 12 (𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ↔ (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∧ 𝑟𝑀))
3533, 34sylib 217 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∧ 𝑟𝑀))
3635simpld 494 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})))
37 xp1st 7836 . . . . . . . . . 10 (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) → (1st𝑟) ∈ (𝑉 “ {(1st𝑧)}))
3836, 37syl 17 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑟) ∈ (𝑉 “ {(1st𝑧)}))
39 elrelimasn 5982 . . . . . . . . . 10 (Rel 𝑉 → ((1st𝑟) ∈ (𝑉 “ {(1st𝑧)}) ↔ (1st𝑧)𝑉(1st𝑟)))
4039biimpa 476 . . . . . . . . 9 ((Rel 𝑉 ∧ (1st𝑟) ∈ (𝑉 “ {(1st𝑧)})) → (1st𝑧)𝑉(1st𝑟))
4132, 38, 40syl2anc 583 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑧)𝑉(1st𝑟))
42 simp-4r 780 . . . . . . . . . . 11 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑀 ⊆ (𝑋 × 𝑋))
43 xpss 5596 . . . . . . . . . . 11 (𝑋 × 𝑋) ⊆ (V × V)
4442, 43sstrdi 3929 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑀 ⊆ (V × V))
45 df-rel 5587 . . . . . . . . . 10 (Rel 𝑀𝑀 ⊆ (V × V))
4644, 45sylibr 233 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → Rel 𝑀)
4735simprd 495 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑟𝑀)
48 1st2ndbr 7856 . . . . . . . . 9 ((Rel 𝑀𝑟𝑀) → (1st𝑟)𝑀(2nd𝑟))
4946, 47, 48syl2anc 583 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑟)𝑀(2nd𝑟))
50 xp2nd 7837 . . . . . . . . . . 11 (𝑟 ∈ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) → (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}))
5136, 50syl 17 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}))
52 elrelimasn 5982 . . . . . . . . . . 11 (Rel 𝑉 → ((2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)}) ↔ (2nd𝑧)𝑉(2nd𝑟)))
5352biimpa 476 . . . . . . . . . 10 ((Rel 𝑉 ∧ (2nd𝑟) ∈ (𝑉 “ {(2nd𝑧)})) → (2nd𝑧)𝑉(2nd𝑟))
5432, 51, 53syl2anc 583 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑧)𝑉(2nd𝑟))
55 simpr1r 1229 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ ((𝑉𝑈𝑉 = 𝑉) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀))) → 𝑉 = 𝑉)
56553anassrs 1358 . . . . . . . . . 10 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → 𝑉 = 𝑉)
57 breq 5072 . . . . . . . . . . 11 (𝑉 = 𝑉 → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑟)𝑉(2nd𝑧)))
58 fvex 6769 . . . . . . . . . . . 12 (2nd𝑟) ∈ V
59 fvex 6769 . . . . . . . . . . . 12 (2nd𝑧) ∈ V
6058, 59brcnv 5780 . . . . . . . . . . 11 ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟))
6157, 60bitr3di 285 . . . . . . . . . 10 (𝑉 = 𝑉 → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟)))
6256, 61syl 17 . . . . . . . . 9 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → ((2nd𝑟)𝑉(2nd𝑧) ↔ (2nd𝑧)𝑉(2nd𝑟)))
6354, 62mpbird 256 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (2nd𝑟)𝑉(2nd𝑧))
64 fvex 6769 . . . . . . . . . 10 (1st𝑧) ∈ V
65 fvex 6769 . . . . . . . . . 10 (1st𝑟) ∈ V
66 brcogw 5766 . . . . . . . . . . 11 ((((1st𝑧) ∈ V ∧ (2nd𝑟) ∈ V ∧ (1st𝑟) ∈ V) ∧ ((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟))) → (1st𝑧)(𝑀𝑉)(2nd𝑟))
6766ex 412 . . . . . . . . . 10 (((1st𝑧) ∈ V ∧ (2nd𝑟) ∈ V ∧ (1st𝑟) ∈ V) → (((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) → (1st𝑧)(𝑀𝑉)(2nd𝑟)))
6864, 58, 65, 67mp3an 1459 . . . . . . . . 9 (((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) → (1st𝑧)(𝑀𝑉)(2nd𝑟))
69 brcogw 5766 . . . . . . . . . . 11 ((((1st𝑧) ∈ V ∧ (2nd𝑧) ∈ V ∧ (2nd𝑟) ∈ V) ∧ ((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧))) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7069ex 412 . . . . . . . . . 10 (((1st𝑧) ∈ V ∧ (2nd𝑧) ∈ V ∧ (2nd𝑟) ∈ V) → (((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
7164, 59, 58, 70mp3an 1459 . . . . . . . . 9 (((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7268, 71sylan 579 . . . . . . . 8 ((((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7341, 49, 63, 72syl21anc 834 . . . . . . 7 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) ∧ 𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
7473ralrimiva 3107 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
75 simplll 771 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑈 ∈ (UnifOn‘𝑋))
76 simplrl 773 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑉𝑈)
7743ad2ant1 1131 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → 𝐽 ∈ Top)
78 xp1st 7836 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → (1st𝑧) ∈ 𝑋)
792utopsnnei 23309 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈 ∧ (1st𝑧) ∈ 𝑋) → (𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}))
8078, 79syl3an3 1163 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → (𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}))
81 xp2nd 7837 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → (2nd𝑧) ∈ 𝑋)
822utopsnnei 23309 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈 ∧ (2nd𝑧) ∈ 𝑋) → (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))
8381, 82syl3an3 1163 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))
8414, 14neitx 22666 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐽 ∈ Top) ∧ ((𝑉 “ {(1st𝑧)}) ∈ ((nei‘𝐽)‘{(1st𝑧)}) ∧ (𝑉 “ {(2nd𝑧)}) ∈ ((nei‘𝐽)‘{(2nd𝑧)}))) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
8577, 77, 80, 83, 84syl22anc 835 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
86 1st2nd2 7843 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑋 × 𝑋) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
8786sneqd 4570 . . . . . . . . . . . . 13 (𝑧 ∈ (𝑋 × 𝑋) → {𝑧} = {⟨(1st𝑧), (2nd𝑧)⟩})
8864, 59xpsn 6995 . . . . . . . . . . . . 13 ({(1st𝑧)} × {(2nd𝑧)}) = {⟨(1st𝑧), (2nd𝑧)⟩}
8987, 88eqtr4di 2797 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑋) → {𝑧} = ({(1st𝑧)} × {(2nd𝑧)}))
9089fveq2d 6760 . . . . . . . . . . 11 (𝑧 ∈ (𝑋 × 𝑋) → ((nei‘(𝐽 ×t 𝐽))‘{𝑧}) = ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
91903ad2ant3 1133 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((nei‘(𝐽 ×t 𝐽))‘{𝑧}) = ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑧)} × {(2nd𝑧)})))
9285, 91eleqtrrd 2842 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑧 ∈ (𝑋 × 𝑋)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))
9375, 76, 25, 92syl3anc 1369 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))
9420neindisj 22176 . . . . . . . 8 ((((𝐽 ×t 𝐽) ∈ Top ∧ 𝑀 (𝐽 ×t 𝐽)) ∧ (𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) ∧ ((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑧}))) → (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅)
957, 19, 24, 93, 94syl22anc 835 . . . . . . 7 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅)
96 r19.3rzv 4426 . . . . . . 7 ((((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀) ≠ ∅ → ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
9795, 96syl 17 . . . . . 6 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ∀𝑟 ∈ (((𝑉 “ {(1st𝑧)}) × (𝑉 “ {(2nd𝑧)})) ∩ 𝑀)(1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧)))
9874, 97mpbird 256 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
99 df-br 5071 . . . . 5 ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ (𝑉 ∘ (𝑀𝑉)))
10098, 99sylib 217 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ (𝑉 ∘ (𝑀𝑉)))
10127, 100eqeltrd 2839 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) ∧ 𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀)) → 𝑧 ∈ (𝑉 ∘ (𝑀𝑉)))
102101ex 412 . 2 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → (𝑧 ∈ ((cls‘(𝐽 ×t 𝐽))‘𝑀) → 𝑧 ∈ (𝑉 ∘ (𝑀𝑉))))
103102ssrdv 3923 1 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ (𝑉𝑈𝑉 = 𝑉)) → ((cls‘(𝐽 ×t 𝐽))‘𝑀) ⊆ (𝑉 ∘ (𝑀𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cin 3882  wss 3883  c0 4253  {csn 4558  cop 4564   cuni 4836   class class class wbr 5070   × cxp 5578  ccnv 5579  cima 5583  ccom 5584  Rel wrel 5585  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Topctop 21950  TopOnctopon 21967  clsccl 22077  neicnei 22156   ×t ctx 22619  UnifOncust 23259  unifTopcutop 23290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-fin 8695  df-fi 9100  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-tx 22621  df-ust 23260  df-utop 23291
This theorem is referenced by:  utopreg  23312
  Copyright terms: Public domain W3C validator