Proof of Theorem poimirlem23
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ovex 7464 | . . . . . 6
⊢ (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V | 
| 2 | 1 | csbex 5311 | . . . . 5
⊢
⦋if(𝑦
< 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V | 
| 3 | 2 | rgenw 3065 | . . . 4
⊢
∀𝑦 ∈
(0...(𝑁 −
1))⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V | 
| 4 |  | eqid 2737 | . . . . 5
⊢ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 5 |  | fveq1 6905 | . . . . . . 7
⊢ (𝑝 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝑝‘𝑁) = (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁)) | 
| 6 | 5 | neeq1d 3000 | . . . . . 6
⊢ (𝑝 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝑝‘𝑁) ≠ 0 ↔ (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0)) | 
| 7 |  | df-ne 2941 | . . . . . 6
⊢
((⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0 ↔ ¬
(⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) | 
| 8 | 6, 7 | bitrdi 287 | . . . . 5
⊢ (𝑝 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝑝‘𝑁) ≠ 0 ↔ ¬
(⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) | 
| 9 | 4, 8 | rexrnmptw 7115 | . . . 4
⊢
(∀𝑦 ∈
(0...(𝑁 −
1))⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V →
(∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0 ↔ ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) | 
| 10 | 3, 9 | ax-mp 5 | . . 3
⊢
(∃𝑝 ∈ ran
(𝑦 ∈ (0...(𝑁 − 1)) ↦
⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0 ↔ ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) | 
| 11 |  | rexnal 3100 | . . 3
⊢
(∃𝑦 ∈
(0...(𝑁 − 1)) ¬
(⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) | 
| 12 | 10, 11 | bitri 275 | . 2
⊢
(∃𝑝 ∈ ran
(𝑦 ∈ (0...(𝑁 − 1)) ↦
⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0 ↔ ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) | 
| 13 |  | poimir.0 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 14 | 13 | nnzd 12640 | . . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 15 |  | poimirlem23.3 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑉 ∈ (0...𝑁)) | 
| 16 |  | elfzelz 13564 | . . . . . . . . . . 11
⊢ (𝑉 ∈ (0...𝑁) → 𝑉 ∈ ℤ) | 
| 17 | 15, 16 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ ℤ) | 
| 18 |  | zlem1lt 12669 | . . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑉 ∈ ℤ) → (𝑁 ≤ 𝑉 ↔ (𝑁 − 1) < 𝑉)) | 
| 19 | 14, 17, 18 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → (𝑁 ≤ 𝑉 ↔ (𝑁 − 1) < 𝑉)) | 
| 20 |  | elfzle2 13568 | . . . . . . . . . . 11
⊢ (𝑉 ∈ (0...𝑁) → 𝑉 ≤ 𝑁) | 
| 21 | 15, 20 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝑉 ≤ 𝑁) | 
| 22 | 17 | zred 12722 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑉 ∈ ℝ) | 
| 23 | 13 | nnred 12281 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 24 | 22, 23 | letri3d 11403 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑉 = 𝑁 ↔ (𝑉 ≤ 𝑁 ∧ 𝑁 ≤ 𝑉))) | 
| 25 | 24 | biimprd 248 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑉 ≤ 𝑁 ∧ 𝑁 ≤ 𝑉) → 𝑉 = 𝑁)) | 
| 26 | 21, 25 | mpand 695 | . . . . . . . . 9
⊢ (𝜑 → (𝑁 ≤ 𝑉 → 𝑉 = 𝑁)) | 
| 27 | 19, 26 | sylbird 260 | . . . . . . . 8
⊢ (𝜑 → ((𝑁 − 1) < 𝑉 → 𝑉 = 𝑁)) | 
| 28 | 27 | necon3ad 2953 | . . . . . . 7
⊢ (𝜑 → (𝑉 ≠ 𝑁 → ¬ (𝑁 − 1) < 𝑉)) | 
| 29 |  | nnm1nn0 12567 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) | 
| 30 | 13, 29 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑁 − 1) ∈
ℕ0) | 
| 31 |  | nn0fz0 13665 | . . . . . . . . . . . 12
⊢ ((𝑁 − 1) ∈
ℕ0 ↔ (𝑁 − 1) ∈ (0...(𝑁 − 1))) | 
| 32 | 30, 31 | sylib 218 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑁 − 1) ∈ (0...(𝑁 − 1))) | 
| 33 | 32 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (𝑁 − 1) ∈ (0...(𝑁 − 1))) | 
| 34 |  | iffalse 4534 | . . . . . . . . . . . . . . . 16
⊢ (¬
(𝑁 − 1) < 𝑉 → if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) = ((𝑁 − 1) + 1)) | 
| 35 | 13 | nncnd 12282 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 36 |  | npcan1 11688 | . . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | 
| 37 | 35, 36 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) | 
| 38 | 34, 37 | sylan9eqr 2799 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) = 𝑁) | 
| 39 | 38 | csbeq1d 3903 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋𝑁 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 40 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑁 → (1...𝑗) = (1...𝑁)) | 
| 41 | 40 | imaeq2d 6078 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑁 → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...𝑁))) | 
| 42 | 41 | xpeq1d 5714 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑁 → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...𝑁)) × {1})) | 
| 43 |  | oveq1 7438 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1)) | 
| 44 | 43 | oveq1d 7446 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑁 → ((𝑗 + 1)...𝑁) = ((𝑁 + 1)...𝑁)) | 
| 45 | 44 | imaeq2d 6078 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑁 → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ ((𝑁 + 1)...𝑁))) | 
| 46 | 45 | xpeq1d 5714 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑁 → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0})) | 
| 47 | 42, 46 | uneq12d 4169 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑁 → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...𝑁)) × {1}) ∪ ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0}))) | 
| 48 |  | poimirlem23.2 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) | 
| 49 |  | f1ofo 6855 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–onto→(1...𝑁)) | 
| 50 |  | foima 6825 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑈:(1...𝑁)–onto→(1...𝑁) → (𝑈 “ (1...𝑁)) = (1...𝑁)) | 
| 51 | 48, 49, 50 | 3syl 18 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (1...𝑁)) | 
| 52 | 51 | xpeq1d 5714 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑈 “ (1...𝑁)) × {1}) = ((1...𝑁) × {1})) | 
| 53 | 23 | ltp1d 12198 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑁 < (𝑁 + 1)) | 
| 54 | 14 | peano2zd 12725 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) | 
| 55 |  | fzn 13580 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅)) | 
| 56 | 54, 14, 55 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅)) | 
| 57 | 53, 56 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑁 + 1)...𝑁) = ∅) | 
| 58 | 57 | imaeq2d 6078 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑈 “ ((𝑁 + 1)...𝑁)) = (𝑈 “ ∅)) | 
| 59 | 58 | xpeq1d 5714 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0}) = ((𝑈 “ ∅) ×
{0})) | 
| 60 |  | ima0 6095 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑈 “ ∅) =
∅ | 
| 61 | 60 | xpeq1i 5711 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑈 “ ∅) × {0}) =
(∅ × {0}) | 
| 62 |  | 0xp 5784 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (∅
× {0}) = ∅ | 
| 63 | 61, 62 | eqtri 2765 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑈 “ ∅) × {0}) =
∅ | 
| 64 | 59, 63 | eqtrdi 2793 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0}) = ∅) | 
| 65 | 52, 64 | uneq12d 4169 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((𝑈 “ (1...𝑁)) × {1}) ∪ ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0})) = (((1...𝑁) × {1}) ∪
∅)) | 
| 66 |  | un0 4394 | . . . . . . . . . . . . . . . . . . 19
⊢
(((1...𝑁) ×
{1}) ∪ ∅) = ((1...𝑁) × {1}) | 
| 67 | 65, 66 | eqtrdi 2793 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑈 “ (1...𝑁)) × {1}) ∪ ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0})) = ((1...𝑁) × {1})) | 
| 68 | 47, 67 | sylan9eqr 2799 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 = 𝑁) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = ((1...𝑁) × {1})) | 
| 69 | 68 | oveq2d 7447 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 = 𝑁) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + ((1...𝑁) ×
{1}))) | 
| 70 | 13, 69 | csbied 3935 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ⦋𝑁 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + ((1...𝑁) ×
{1}))) | 
| 71 | 70 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ⦋𝑁 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + ((1...𝑁) ×
{1}))) | 
| 72 | 39, 71 | eqtrd 2777 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + ((1...𝑁) ×
{1}))) | 
| 73 | 72 | fveq1d 6908 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = ((𝑇 ∘f + ((1...𝑁) × {1}))‘𝑁)) | 
| 74 |  | elfzonn0 13747 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0..^𝐾) → 𝑗 ∈ ℕ0) | 
| 75 |  | nn0p1nn 12565 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ) | 
| 76 | 74, 75 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0..^𝐾) → (𝑗 + 1) ∈ ℕ) | 
| 77 |  | elsni 4643 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ {1} → 𝑦 = 1) | 
| 78 | 77 | oveq2d 7447 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ {1} → (𝑗 + 𝑦) = (𝑗 + 1)) | 
| 79 | 78 | eleq1d 2826 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ {1} → ((𝑗 + 𝑦) ∈ ℕ ↔ (𝑗 + 1) ∈ ℕ)) | 
| 80 | 76, 79 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0..^𝐾) → (𝑦 ∈ {1} → (𝑗 + 𝑦) ∈ ℕ)) | 
| 81 | 80 | imp 406 | . . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0..^𝐾) ∧ 𝑦 ∈ {1}) → (𝑗 + 𝑦) ∈ ℕ) | 
| 82 | 81 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ (0..^𝐾) ∧ 𝑦 ∈ {1})) → (𝑗 + 𝑦) ∈ ℕ) | 
| 83 |  | poimirlem23.1 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇:(1...𝑁)⟶(0..^𝐾)) | 
| 84 |  | 1ex 11257 | . . . . . . . . . . . . . . . . 17
⊢ 1 ∈
V | 
| 85 | 84 | fconst 6794 | . . . . . . . . . . . . . . . 16
⊢
((1...𝑁) ×
{1}):(1...𝑁)⟶{1} | 
| 86 | 85 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1...𝑁) × {1}):(1...𝑁)⟶{1}) | 
| 87 |  | ovexd 7466 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (1...𝑁) ∈ V) | 
| 88 |  | inidm 4227 | . . . . . . . . . . . . . . 15
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) | 
| 89 | 82, 83, 86, 87, 87, 88 | off 7715 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑇 ∘f + ((1...𝑁) × {1})):(1...𝑁)⟶ℕ) | 
| 90 |  | elfz1end 13594 | . . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁)) | 
| 91 | 13, 90 | sylib 218 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) | 
| 92 | 89, 91 | ffvelcdmd 7105 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑇 ∘f + ((1...𝑁) × {1}))‘𝑁) ∈
ℕ) | 
| 93 | 92 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ((𝑇 ∘f + ((1...𝑁) × {1}))‘𝑁) ∈
ℕ) | 
| 94 | 73, 93 | eqeltrd 2841 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ∈ ℕ) | 
| 95 | 94 | nnne0d 12316 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0) | 
| 96 |  | breq1 5146 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑁 − 1) → (𝑦 < 𝑉 ↔ (𝑁 − 1) < 𝑉)) | 
| 97 |  | id 22 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑁 − 1) → 𝑦 = (𝑁 − 1)) | 
| 98 |  | oveq1 7438 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑁 − 1) → (𝑦 + 1) = ((𝑁 − 1) + 1)) | 
| 99 | 96, 97, 98 | ifbieq12d 4554 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑁 − 1) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1))) | 
| 100 | 99 | csbeq1d 3903 | . . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑁 − 1) → ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 101 | 100 | fveq1d 6908 | . . . . . . . . . . . . 13
⊢ (𝑦 = (𝑁 − 1) → (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = (⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁)) | 
| 102 | 101 | neeq1d 3000 | . . . . . . . . . . . 12
⊢ (𝑦 = (𝑁 − 1) → ((⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0 ↔ (⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0)) | 
| 103 | 7, 102 | bitr3id 285 | . . . . . . . . . . 11
⊢ (𝑦 = (𝑁 − 1) → (¬
(⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0)) | 
| 104 | 103 | rspcev 3622 | . . . . . . . . . 10
⊢ (((𝑁 − 1) ∈ (0...(𝑁 − 1)) ∧
(⦋if((𝑁
− 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0) → ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) | 
| 105 | 33, 95, 104 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) | 
| 106 | 105, 11 | sylib 218 | . . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) | 
| 107 | 106 | ex 412 | . . . . . . 7
⊢ (𝜑 → (¬ (𝑁 − 1) < 𝑉 → ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) | 
| 108 | 28, 107 | syld 47 | . . . . . 6
⊢ (𝜑 → (𝑉 ≠ 𝑁 → ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) | 
| 109 | 108 | necon4ad 2959 | . . . . 5
⊢ (𝜑 → (∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 → 𝑉 = 𝑁)) | 
| 110 | 109 | pm4.71rd 562 | . . . 4
⊢ (𝜑 → (∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (𝑉 = 𝑁 ∧ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))) | 
| 111 | 30 | nn0zd 12639 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) | 
| 112 |  | uzid 12893 | . . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) | 
| 113 |  | peano2uz 12943 | . . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) | 
| 114 | 111, 112,
113 | 3syl 18 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) | 
| 115 | 37, 114 | eqeltrrd 2842 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) | 
| 116 |  | fzss2 13604 | . . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁)) | 
| 117 | 115, 116 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁)) | 
| 118 | 117 | sselda 3983 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ (0...𝑁)) | 
| 119 | 91 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ∈ (1...𝑁)) | 
| 120 | 83 | ffnd 6737 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇 Fn (1...𝑁)) | 
| 121 | 120 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑇 Fn (1...𝑁)) | 
| 122 | 84 | fconst 6794 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1} | 
| 123 |  | c0ex 11255 | . . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
V | 
| 124 | 123 | fconst 6794 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0} | 
| 125 | 122, 124 | pm3.2i 470 | . . . . . . . . . . . . . . . 16
⊢ (((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1} ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0}) | 
| 126 |  | dff1o3 6854 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (𝑈:(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡𝑈)) | 
| 127 | 126 | simprbi 496 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡𝑈) | 
| 128 |  | imain 6651 | . . . . . . . . . . . . . . . . . 18
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁)))) | 
| 129 | 48, 127, 128 | 3syl 18 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁)))) | 
| 130 |  | elfzelz 13564 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ) | 
| 131 | 130 | zred 12722 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ) | 
| 132 | 131 | ltp1d 12198 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 < (𝑗 + 1)) | 
| 133 |  | fzdisj 13591 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅) | 
| 134 | 132, 133 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑁) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅) | 
| 135 | 134 | imaeq2d 6078 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑁) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (𝑈 “ ∅)) | 
| 136 | 135, 60 | eqtrdi 2793 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑁) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅) | 
| 137 | 129, 136 | sylan9req 2798 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) | 
| 138 |  | fun 6770 | . . . . . . . . . . . . . . . 16
⊢
(((((𝑈 “
(1...𝑗)) ×
{1}):(𝑈 “ (1...𝑗))⟶{1} ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0}) ∧ ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0})) | 
| 139 | 125, 137,
138 | sylancr 587 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0})) | 
| 140 |  | elfznn0 13660 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℕ0) | 
| 141 | 140, 75 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ ℕ) | 
| 142 |  | nnuz 12921 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ℕ =
(ℤ≥‘1) | 
| 143 | 141, 142 | eleqtrdi 2851 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈
(ℤ≥‘1)) | 
| 144 |  | elfzuz3 13561 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘𝑗)) | 
| 145 |  | fzsplit2 13589 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑗 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑗)) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) | 
| 146 | 143, 144,
145 | syl2anc 584 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑁) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) | 
| 147 | 146 | imaeq2d 6078 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑁) → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))) | 
| 148 |  | imaundi 6169 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) | 
| 149 | 147, 148 | eqtr2di 2794 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑁) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) = (𝑈 “ (1...𝑁))) | 
| 150 | 149, 51 | sylan9eqr 2799 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) = (1...𝑁)) | 
| 151 | 150 | feq2d 6722 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}) ↔ (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))) | 
| 152 | 139, 151 | mpbid 232 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0})) | 
| 153 | 152 | ffnd 6737 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) Fn (1...𝑁)) | 
| 154 |  | ovexd 7466 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (1...𝑁) ∈ V) | 
| 155 |  | eqidd 2738 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑁 ∈ (1...𝑁)) → (𝑇‘𝑁) = (𝑇‘𝑁)) | 
| 156 |  | eqidd 2738 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑁 ∈ (1...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) | 
| 157 | 121, 153,
154, 154, 88, 155, 156 | ofval 7708 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑁 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = ((𝑇‘𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))) | 
| 158 | 119, 157 | mpdan 687 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = ((𝑇‘𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))) | 
| 159 | 158 | eqeq1d 2739 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇‘𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) = 0)) | 
| 160 | 83, 91 | ffvelcdmd 7105 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑇‘𝑁) ∈ (0..^𝐾)) | 
| 161 |  | elfzonn0 13747 | . . . . . . . . . . . . . 14
⊢ ((𝑇‘𝑁) ∈ (0..^𝐾) → (𝑇‘𝑁) ∈
ℕ0) | 
| 162 | 160, 161 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑇‘𝑁) ∈
ℕ0) | 
| 163 | 162 | nn0red 12588 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑇‘𝑁) ∈ ℝ) | 
| 164 | 163 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑇‘𝑁) ∈ ℝ) | 
| 165 | 162 | nn0ge0d 12590 | . . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤ (𝑇‘𝑁)) | 
| 166 | 165 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 0 ≤ (𝑇‘𝑁)) | 
| 167 |  | 1re 11261 | . . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ | 
| 168 |  | snssi 4808 | . . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ → {1} ⊆ ℝ) | 
| 169 | 167, 168 | ax-mp 5 | . . . . . . . . . . . . 13
⊢ {1}
⊆ ℝ | 
| 170 |  | 0re 11263 | . . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ | 
| 171 |  | snssi 4808 | . . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ → {0} ⊆ ℝ) | 
| 172 | 170, 171 | ax-mp 5 | . . . . . . . . . . . . 13
⊢ {0}
⊆ ℝ | 
| 173 | 169, 172 | unssi 4191 | . . . . . . . . . . . 12
⊢ ({1}
∪ {0}) ⊆ ℝ | 
| 174 | 152, 119 | ffvelcdmd 7105 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ({1} ∪ {0})) | 
| 175 | 173, 174 | sselid 3981 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ℝ) | 
| 176 |  | elun 4153 | . . . . . . . . . . . . 13
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ({1} ∪ {0}) ↔ (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} ∨ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0})) | 
| 177 |  | 0le1 11786 | . . . . . . . . . . . . . . 15
⊢ 0 ≤
1 | 
| 178 |  | elsni 4643 | . . . . . . . . . . . . . . 15
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 1) | 
| 179 | 177, 178 | breqtrrid 5181 | . . . . . . . . . . . . . 14
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) | 
| 180 |  | 0le0 12367 | . . . . . . . . . . . . . . 15
⊢ 0 ≤
0 | 
| 181 |  | elsni 4643 | . . . . . . . . . . . . . . 15
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0} → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) | 
| 182 | 180, 181 | breqtrrid 5181 | . . . . . . . . . . . . . 14
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0} → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) | 
| 183 | 179, 182 | jaoi 858 | . . . . . . . . . . . . 13
⊢
((((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} ∨ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0}) → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) | 
| 184 | 176, 183 | sylbi 217 | . . . . . . . . . . . 12
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ({1} ∪ {0}) → 0 ≤
((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) | 
| 185 | 174, 184 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) | 
| 186 |  | add20 11775 | . . . . . . . . . . 11
⊢ ((((𝑇‘𝑁) ∈ ℝ ∧ 0 ≤ (𝑇‘𝑁)) ∧ (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ℝ ∧ 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))) → (((𝑇‘𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) = 0 ↔ ((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) | 
| 187 | 164, 166,
175, 185, 186 | syl22anc 839 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑇‘𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) = 0 ↔ ((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) | 
| 188 | 159, 187 | bitrd 279 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) | 
| 189 | 118, 188 | syldan 591 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) | 
| 190 | 189 | ralbidva 3176 | . . . . . . 7
⊢ (𝜑 → (∀𝑗 ∈ (0...(𝑁 − 1))((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) | 
| 191 | 190 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑉 = 𝑁) → (∀𝑗 ∈ (0...(𝑁 − 1))((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) | 
| 192 |  | breq2 5147 | . . . . . . . . . . . . . 14
⊢ (𝑉 = 𝑁 → (𝑦 < 𝑉 ↔ 𝑦 < 𝑁)) | 
| 193 | 192 | ifbid 4549 | . . . . . . . . . . . . 13
⊢ (𝑉 = 𝑁 → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = if(𝑦 < 𝑁, 𝑦, (𝑦 + 1))) | 
| 194 |  | elfzelz 13564 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℤ) | 
| 195 | 194 | zred 12722 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ) | 
| 196 | 195 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ) | 
| 197 | 30 | nn0red 12588 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) | 
| 198 | 197 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ) | 
| 199 | 23 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ) | 
| 200 |  | elfzle2 13568 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1)) | 
| 201 | 200 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1)) | 
| 202 | 23 | ltm1d 12200 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 − 1) < 𝑁) | 
| 203 | 202 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁) | 
| 204 | 196, 198,
199, 201, 203 | lelttrd 11419 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁) | 
| 205 | 204 | iftrued 4533 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑁, 𝑦, (𝑦 + 1)) = 𝑦) | 
| 206 | 193, 205 | sylan9eqr 2799 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑉 = 𝑁) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = 𝑦) | 
| 207 | 206 | an32s 652 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = 𝑦) | 
| 208 | 207 | csbeq1d 3903 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 209 | 208 | fveq1d 6908 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) →
(⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = (⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁)) | 
| 210 | 209 | eqeq1d 2739 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) →
((⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) | 
| 211 | 210 | ralbidva 3176 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑉 = 𝑁) → (∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) | 
| 212 |  | nfv 1914 | . . . . . . . 8
⊢
Ⅎ𝑦((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 | 
| 213 |  | nfcsb1v 3923 | . . . . . . . . . 10
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) | 
| 214 |  | nfcv 2905 | . . . . . . . . . 10
⊢
Ⅎ𝑗𝑁 | 
| 215 | 213, 214 | nffv 6916 | . . . . . . . . 9
⊢
Ⅎ𝑗(⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) | 
| 216 | 215 | nfeq1 2921 | . . . . . . . 8
⊢
Ⅎ𝑗(⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 | 
| 217 |  | csbeq1a 3913 | . . . . . . . . . 10
⊢ (𝑗 = 𝑦 → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) | 
| 218 | 217 | fveq1d 6908 | . . . . . . . . 9
⊢ (𝑗 = 𝑦 → ((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = (⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁)) | 
| 219 | 218 | eqeq1d 2739 | . . . . . . . 8
⊢ (𝑗 = 𝑦 → (((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) | 
| 220 | 212, 216,
219 | cbvralw 3306 | . . . . . . 7
⊢
(∀𝑗 ∈
(0...(𝑁 − 1))((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) | 
| 221 | 211, 220 | bitr4di 289 | . . . . . 6
⊢ ((𝜑 ∧ 𝑉 = 𝑁) → (∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) | 
| 222 |  | ne0i 4341 | . . . . . . . . . 10
⊢ ((𝑁 − 1) ∈ (0...(𝑁 − 1)) → (0...(𝑁 − 1)) ≠
∅) | 
| 223 |  | r19.3rzv 4499 | . . . . . . . . . 10
⊢
((0...(𝑁 − 1))
≠ ∅ → ((𝑇‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))(𝑇‘𝑁) = 0)) | 
| 224 | 32, 222, 223 | 3syl 18 | . . . . . . . . 9
⊢ (𝜑 → ((𝑇‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))(𝑇‘𝑁) = 0)) | 
| 225 |  | elfzelz 13564 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ) | 
| 226 | 225 | zred 12722 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℝ) | 
| 227 | 226 | ltp1d 12198 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 < (𝑗 + 1)) | 
| 228 | 227, 133 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅) | 
| 229 | 228 | imaeq2d 6078 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (𝑈 “ ∅)) | 
| 230 | 229, 60 | eqtrdi 2793 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅) | 
| 231 | 129, 230 | sylan9req 2798 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) | 
| 232 | 231 | adantlr 715 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) | 
| 233 |  | simplr 769 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑈‘𝑁) = 𝑁) | 
| 234 |  | f1ofn 6849 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈 Fn (1...𝑁)) | 
| 235 | 48, 234 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑈 Fn (1...𝑁)) | 
| 236 | 235 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑈 Fn (1...𝑁)) | 
| 237 |  | elfznn0 13660 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0) | 
| 238 | 237, 75 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℕ) | 
| 239 | 238, 142 | eleqtrdi 2851 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈
(ℤ≥‘1)) | 
| 240 |  | fzss1 13603 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 + 1) ∈
(ℤ≥‘1) → ((𝑗 + 1)...𝑁) ⊆ (1...𝑁)) | 
| 241 | 239, 240 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → ((𝑗 + 1)...𝑁) ⊆ (1...𝑁)) | 
| 242 | 241 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)...𝑁) ⊆ (1...𝑁)) | 
| 243 | 37 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) | 
| 244 |  | elfzuz3 13561 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑗)) | 
| 245 |  | eluzp1p1 12906 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑗) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑗 + 1))) | 
| 246 | 244, 245 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑗 + 1))) | 
| 247 | 246 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑗 + 1))) | 
| 248 | 243, 247 | eqeltrrd 2842 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘(𝑗 + 1))) | 
| 249 |  | eluzfz2 13572 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈
(ℤ≥‘(𝑗 + 1)) → 𝑁 ∈ ((𝑗 + 1)...𝑁)) | 
| 250 | 248, 249 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑗 + 1)...𝑁)) | 
| 251 |  | fnfvima 7253 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑈 Fn (1...𝑁) ∧ ((𝑗 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑗 + 1)...𝑁)) → (𝑈‘𝑁) ∈ (𝑈 “ ((𝑗 + 1)...𝑁))) | 
| 252 | 236, 242,
250, 251 | syl3anc 1373 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑈‘𝑁) ∈ (𝑈 “ ((𝑗 + 1)...𝑁))) | 
| 253 | 252 | adantlr 715 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑈‘𝑁) ∈ (𝑈 “ ((𝑗 + 1)...𝑁))) | 
| 254 | 233, 253 | eqeltrrd 2842 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁))) | 
| 255 |  | fnconstg 6796 | . . . . . . . . . . . . . . . 16
⊢ (1 ∈
V → ((𝑈 “
(1...𝑗)) × {1}) Fn
(𝑈 “ (1...𝑗))) | 
| 256 | 84, 255 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢ ((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)) | 
| 257 |  | fnconstg 6796 | . . . . . . . . . . . . . . . 16
⊢ (0 ∈
V → ((𝑈 “
((𝑗 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑁))) | 
| 258 | 123, 257 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑁)) | 
| 259 |  | fvun2 7001 | . . . . . . . . . . . . . . 15
⊢ ((((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)) ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑁)) ∧ (((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁)))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁)) | 
| 260 | 256, 258,
259 | mp3an12 1453 | . . . . . . . . . . . . . 14
⊢ ((((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁)) | 
| 261 | 232, 254,
260 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁)) | 
| 262 | 123 | fvconst2 7224 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁)) → (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁) = 0) | 
| 263 | 254, 262 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁) = 0) | 
| 264 | 261, 263 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) | 
| 265 | 264 | ralrimiva 3146 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑈‘𝑁) = 𝑁) → ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) | 
| 266 | 265 | ex 412 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑈‘𝑁) = 𝑁 → ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)) | 
| 267 | 32 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → (𝑁 − 1) ∈ (0...(𝑁 − 1))) | 
| 268 |  | ax-1ne0 11224 | . . . . . . . . . . . . . . 15
⊢ 1 ≠
0 | 
| 269 |  | imain 6651 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁)))) | 
| 270 | 48, 127, 269 | 3syl 18 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁)))) | 
| 271 | 202, 37 | breqtrrd 5171 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑁 − 1) < ((𝑁 − 1) + 1)) | 
| 272 |  | fzdisj 13591 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 − 1) < ((𝑁 − 1) + 1) →
((1...(𝑁 − 1)) ∩
(((𝑁 − 1) +
1)...𝑁)) =
∅) | 
| 273 | 271, 272 | syl 17 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁)) = ∅) | 
| 274 | 273 | imaeq2d 6078 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = (𝑈 “ ∅)) | 
| 275 | 274, 60 | eqtrdi 2793 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = ∅) | 
| 276 | 270, 275 | eqtr3d 2779 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅) | 
| 277 | 276 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅) | 
| 278 | 91 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → 𝑁 ∈ (1...𝑁)) | 
| 279 |  | elimasni 6109 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ (𝑈 “ {𝑁}) → 𝑁𝑈𝑁) | 
| 280 |  | fnbrfvb 6959 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑈 Fn (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → ((𝑈‘𝑁) = 𝑁 ↔ 𝑁𝑈𝑁)) | 
| 281 | 235, 91, 280 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑈‘𝑁) = 𝑁 ↔ 𝑁𝑈𝑁)) | 
| 282 | 279, 281 | imbitrrid 246 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑁 ∈ (𝑈 “ {𝑁}) → (𝑈‘𝑁) = 𝑁)) | 
| 283 | 282 | necon3ad 2953 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑈‘𝑁) ≠ 𝑁 → ¬ 𝑁 ∈ (𝑈 “ {𝑁}))) | 
| 284 | 283 | imp 406 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ¬ 𝑁 ∈ (𝑈 “ {𝑁})) | 
| 285 | 278, 284 | eldifd 3962 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → 𝑁 ∈ ((1...𝑁) ∖ (𝑈 “ {𝑁}))) | 
| 286 |  | imadif 6650 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑁) ∖ {𝑁})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑁}))) | 
| 287 | 48, 127, 286 | 3syl 18 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ ((1...𝑁) ∖ {𝑁})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑁}))) | 
| 288 |  | difun2 4481 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1...(𝑁 −
1)) ∪ {𝑁}) ∖
{𝑁}) = ((1...(𝑁 − 1)) ∖ {𝑁}) | 
| 289 |  | elun 4153 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 ∈ {𝑁})) | 
| 290 |  | velsn 4642 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ {𝑁} ↔ 𝑗 = 𝑁) | 
| 291 | 290 | orbi2i 913 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 ∈ {𝑁}) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁)) | 
| 292 | 289, 291 | bitri 275 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁)) | 
| 293 | 13, 142 | eleqtrdi 2851 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) | 
| 294 |  | fzm1 13647 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈
(ℤ≥‘1) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁))) | 
| 295 | 293, 294 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁))) | 
| 296 | 292, 295 | bitr4id 290 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑗 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ 𝑗 ∈ (1...𝑁))) | 
| 297 | 296 | eqrdv 2735 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁)) | 
| 298 | 297 | difeq1d 4125 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((1...(𝑁 − 1)) ∪ {𝑁}) ∖ {𝑁}) = ((1...𝑁) ∖ {𝑁})) | 
| 299 | 197, 23 | ltnled 11408 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1))) | 
| 300 | 202, 299 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1)) | 
| 301 |  | elfzle2 13568 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) | 
| 302 | 300, 301 | nsyl 140 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1))) | 
| 303 |  | difsn 4798 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑁 ∈ (1...(𝑁 − 1)) → ((1...(𝑁 − 1)) ∖ {𝑁}) = (1...(𝑁 − 1))) | 
| 304 | 302, 303 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((1...(𝑁 − 1)) ∖ {𝑁}) = (1...(𝑁 − 1))) | 
| 305 | 288, 298,
304 | 3eqtr3a 2801 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) | 
| 306 | 305 | imaeq2d 6078 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ ((1...𝑁) ∖ {𝑁})) = (𝑈 “ (1...(𝑁 − 1)))) | 
| 307 | 51 | difeq1d 4125 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑁})) = ((1...𝑁) ∖ (𝑈 “ {𝑁}))) | 
| 308 | 287, 306,
307 | 3eqtr3rd 2786 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((1...𝑁) ∖ (𝑈 “ {𝑁})) = (𝑈 “ (1...(𝑁 − 1)))) | 
| 309 | 308 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ((1...𝑁) ∖ (𝑈 “ {𝑁})) = (𝑈 “ (1...(𝑁 − 1)))) | 
| 310 | 285, 309 | eleqtrd 2843 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → 𝑁 ∈ (𝑈 “ (1...(𝑁 − 1)))) | 
| 311 |  | fnconstg 6796 | . . . . . . . . . . . . . . . . . . . 20
⊢ (1 ∈
V → ((𝑈 “
(1...(𝑁 − 1)))
× {1}) Fn (𝑈 “
(1...(𝑁 −
1)))) | 
| 312 | 84, 311 | ax-mp 5 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 “ (1...(𝑁 − 1))) × {1}) Fn (𝑈 “ (1...(𝑁 − 1))) | 
| 313 |  | fnconstg 6796 | . . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
V → ((𝑈 “
(((𝑁 − 1) +
1)...𝑁)) × {0}) Fn
(𝑈 “ (((𝑁 − 1) + 1)...𝑁))) | 
| 314 | 123, 313 | ax-mp 5 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑁 − 1) + 1)...𝑁)) | 
| 315 |  | fvun1 7000 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) Fn (𝑈 “ (1...(𝑁 − 1))) ∧ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑁 − 1) + 1)...𝑁)) ∧ (((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ (1...(𝑁 − 1))))) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁)) | 
| 316 | 312, 314,
315 | mp3an12 1453 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ (1...(𝑁 − 1)))) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁)) | 
| 317 | 277, 310,
316 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁)) | 
| 318 | 84 | fvconst2 7224 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ (𝑈 “ (1...(𝑁 − 1))) → (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁) = 1) | 
| 319 | 310, 318 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁) = 1) | 
| 320 | 317, 319 | eqtrd 2777 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = 1) | 
| 321 | 320 | neeq1d 3000 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → (((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0 ↔ 1 ≠ 0)) | 
| 322 | 268, 321 | mpbiri 258 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0) | 
| 323 |  | df-ne 2941 | . . . . . . . . . . . . . . . 16
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ≠ 0 ↔ ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) | 
| 324 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑁 − 1) → (1...𝑗) = (1...(𝑁 − 1))) | 
| 325 | 324 | imaeq2d 6078 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑁 − 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑁 − 1)))) | 
| 326 | 325 | xpeq1d 5714 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑁 − 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑁 − 1))) × {1})) | 
| 327 |  | oveq1 7438 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = (𝑁 − 1) → (𝑗 + 1) = ((𝑁 − 1) + 1)) | 
| 328 | 327 | oveq1d 7446 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑁 − 1) → ((𝑗 + 1)...𝑁) = (((𝑁 − 1) + 1)...𝑁)) | 
| 329 | 328 | imaeq2d 6078 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑁 − 1) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) | 
| 330 | 329 | xpeq1d 5714 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑁 − 1) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0})) | 
| 331 | 326, 330 | uneq12d 4169 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑁 − 1) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))) | 
| 332 | 331 | fveq1d 6908 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑁 − 1) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁)) | 
| 333 | 332 | neeq1d 3000 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑁 − 1) → (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ≠ 0 ↔ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0)) | 
| 334 | 323, 333 | bitr3id 285 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑁 − 1) → (¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0 ↔ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0)) | 
| 335 | 334 | rspcev 3622 | . . . . . . . . . . . . . 14
⊢ (((𝑁 − 1) ∈ (0...(𝑁 − 1)) ∧ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0) → ∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) | 
| 336 | 267, 322,
335 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) | 
| 337 | 336 | ex 412 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝑈‘𝑁) ≠ 𝑁 → ∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)) | 
| 338 |  | rexnal 3100 | . . . . . . . . . . . 12
⊢
(∃𝑗 ∈
(0...(𝑁 − 1)) ¬
((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0 ↔ ¬ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) | 
| 339 | 337, 338 | imbitrdi 251 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑈‘𝑁) ≠ 𝑁 → ¬ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)) | 
| 340 | 339 | necon4ad 2959 | . . . . . . . . . 10
⊢ (𝜑 → (∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0 → (𝑈‘𝑁) = 𝑁)) | 
| 341 | 266, 340 | impbid 212 | . . . . . . . . 9
⊢ (𝜑 → ((𝑈‘𝑁) = 𝑁 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)) | 
| 342 | 224, 341 | anbi12d 632 | . . . . . . . 8
⊢ (𝜑 → (((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁) ↔ (∀𝑗 ∈ (0...(𝑁 − 1))(𝑇‘𝑁) = 0 ∧ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) | 
| 343 |  | r19.26 3111 | . . . . . . . 8
⊢
(∀𝑗 ∈
(0...(𝑁 − 1))((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) ↔ (∀𝑗 ∈ (0...(𝑁 − 1))(𝑇‘𝑁) = 0 ∧ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)) | 
| 344 | 342, 343 | bitr4di 289 | . . . . . . 7
⊢ (𝜑 → (((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁) ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) | 
| 345 | 344 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑉 = 𝑁) → (((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁) ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) | 
| 346 | 191, 221,
345 | 3bitr4d 311 | . . . . 5
⊢ ((𝜑 ∧ 𝑉 = 𝑁) → (∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁))) | 
| 347 | 346 | pm5.32da 579 | . . . 4
⊢ (𝜑 → ((𝑉 = 𝑁 ∧ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) ↔ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁)))) | 
| 348 | 110, 347 | bitrd 279 | . . 3
⊢ (𝜑 → (∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁)))) | 
| 349 | 348 | notbid 318 | . 2
⊢ (𝜑 → (¬ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁)))) | 
| 350 | 12, 349 | bitrid 283 | 1
⊢ (𝜑 → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁)))) |