Proof of Theorem poimirlem23
Step | Hyp | Ref
| Expression |
1 | | ovex 7308 |
. . . . . 6
⊢ (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V |
2 | 1 | csbex 5235 |
. . . . 5
⊢
⦋if(𝑦
< 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V |
3 | 2 | rgenw 3076 |
. . . 4
⊢
∀𝑦 ∈
(0...(𝑁 −
1))⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V |
4 | | eqid 2738 |
. . . . 5
⊢ (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) |
5 | | fveq1 6773 |
. . . . . . 7
⊢ (𝑝 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝑝‘𝑁) = (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁)) |
6 | 5 | neeq1d 3003 |
. . . . . 6
⊢ (𝑝 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝑝‘𝑁) ≠ 0 ↔ (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0)) |
7 | | df-ne 2944 |
. . . . . 6
⊢
((⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0 ↔ ¬
(⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) |
8 | 6, 7 | bitrdi 287 |
. . . . 5
⊢ (𝑝 = ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝑝‘𝑁) ≠ 0 ↔ ¬
(⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) |
9 | 4, 8 | rexrnmptw 6971 |
. . . 4
⊢
(∀𝑦 ∈
(0...(𝑁 −
1))⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V →
(∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0 ↔ ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) |
10 | 3, 9 | ax-mp 5 |
. . 3
⊢
(∃𝑝 ∈ ran
(𝑦 ∈ (0...(𝑁 − 1)) ↦
⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0 ↔ ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) |
11 | | rexnal 3169 |
. . 3
⊢
(∃𝑦 ∈
(0...(𝑁 − 1)) ¬
(⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) |
12 | 10, 11 | bitri 274 |
. 2
⊢
(∃𝑝 ∈ ran
(𝑦 ∈ (0...(𝑁 − 1)) ↦
⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0 ↔ ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) |
13 | | poimir.0 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
14 | 13 | nnzd 12425 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
15 | | poimirlem23.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉 ∈ (0...𝑁)) |
16 | | elfzelz 13256 |
. . . . . . . . . . 11
⊢ (𝑉 ∈ (0...𝑁) → 𝑉 ∈ ℤ) |
17 | 15, 16 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ ℤ) |
18 | | zlem1lt 12372 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℤ ∧ 𝑉 ∈ ℤ) → (𝑁 ≤ 𝑉 ↔ (𝑁 − 1) < 𝑉)) |
19 | 14, 17, 18 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ≤ 𝑉 ↔ (𝑁 − 1) < 𝑉)) |
20 | | elfzle2 13260 |
. . . . . . . . . . 11
⊢ (𝑉 ∈ (0...𝑁) → 𝑉 ≤ 𝑁) |
21 | 15, 20 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ≤ 𝑁) |
22 | 17 | zred 12426 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑉 ∈ ℝ) |
23 | 13 | nnred 11988 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℝ) |
24 | 22, 23 | letri3d 11117 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑉 = 𝑁 ↔ (𝑉 ≤ 𝑁 ∧ 𝑁 ≤ 𝑉))) |
25 | 24 | biimprd 247 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑉 ≤ 𝑁 ∧ 𝑁 ≤ 𝑉) → 𝑉 = 𝑁)) |
26 | 21, 25 | mpand 692 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁 ≤ 𝑉 → 𝑉 = 𝑁)) |
27 | 19, 26 | sylbird 259 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 − 1) < 𝑉 → 𝑉 = 𝑁)) |
28 | 27 | necon3ad 2956 |
. . . . . . 7
⊢ (𝜑 → (𝑉 ≠ 𝑁 → ¬ (𝑁 − 1) < 𝑉)) |
29 | | nnm1nn0 12274 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
30 | 13, 29 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁 − 1) ∈
ℕ0) |
31 | | nn0fz0 13354 |
. . . . . . . . . . . 12
⊢ ((𝑁 − 1) ∈
ℕ0 ↔ (𝑁 − 1) ∈ (0...(𝑁 − 1))) |
32 | 30, 31 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 − 1) ∈ (0...(𝑁 − 1))) |
33 | 32 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (𝑁 − 1) ∈ (0...(𝑁 − 1))) |
34 | | iffalse 4468 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑁 − 1) < 𝑉 → if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) = ((𝑁 − 1) + 1)) |
35 | 13 | nncnd 11989 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ ℂ) |
36 | | npcan1 11400 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
38 | 34, 37 | sylan9eqr 2800 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) = 𝑁) |
39 | 38 | csbeq1d 3836 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋𝑁 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) |
40 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑁 → (1...𝑗) = (1...𝑁)) |
41 | 40 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑁 → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...𝑁))) |
42 | 41 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑁 → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...𝑁)) × {1})) |
43 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1)) |
44 | 43 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑁 → ((𝑗 + 1)...𝑁) = ((𝑁 + 1)...𝑁)) |
45 | 44 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑁 → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ ((𝑁 + 1)...𝑁))) |
46 | 45 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑁 → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0})) |
47 | 42, 46 | uneq12d 4098 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑁 → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...𝑁)) × {1}) ∪ ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0}))) |
48 | | poimirlem23.2 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑈:(1...𝑁)–1-1-onto→(1...𝑁)) |
49 | | f1ofo 6723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–onto→(1...𝑁)) |
50 | | foima 6693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑈:(1...𝑁)–onto→(1...𝑁) → (𝑈 “ (1...𝑁)) = (1...𝑁)) |
51 | 48, 49, 50 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ (1...𝑁)) = (1...𝑁)) |
52 | 51 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑈 “ (1...𝑁)) × {1}) = ((1...𝑁) × {1})) |
53 | 23 | ltp1d 11905 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑁 < (𝑁 + 1)) |
54 | 14 | peano2zd 12429 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
55 | | fzn 13272 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅)) |
56 | 54, 14, 55 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅)) |
57 | 53, 56 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑁 + 1)...𝑁) = ∅) |
58 | 57 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑈 “ ((𝑁 + 1)...𝑁)) = (𝑈 “ ∅)) |
59 | 58 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0}) = ((𝑈 “ ∅) ×
{0})) |
60 | | ima0 5985 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑈 “ ∅) =
∅ |
61 | 60 | xpeq1i 5615 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑈 “ ∅) × {0}) =
(∅ × {0}) |
62 | | 0xp 5685 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∅
× {0}) = ∅ |
63 | 61, 62 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑈 “ ∅) × {0}) =
∅ |
64 | 59, 63 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0}) = ∅) |
65 | 52, 64 | uneq12d 4098 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((𝑈 “ (1...𝑁)) × {1}) ∪ ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0})) = (((1...𝑁) × {1}) ∪
∅)) |
66 | | un0 4324 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((1...𝑁) ×
{1}) ∪ ∅) = ((1...𝑁) × {1}) |
67 | 65, 66 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑈 “ (1...𝑁)) × {1}) ∪ ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0})) = ((1...𝑁) × {1})) |
68 | 47, 67 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 = 𝑁) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = ((1...𝑁) × {1})) |
69 | 68 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 = 𝑁) → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + ((1...𝑁) ×
{1}))) |
70 | 13, 69 | csbied 3870 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ⦋𝑁 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + ((1...𝑁) ×
{1}))) |
71 | 70 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ⦋𝑁 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + ((1...𝑁) ×
{1}))) |
72 | 39, 71 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇 ∘f + ((1...𝑁) ×
{1}))) |
73 | 72 | fveq1d 6776 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = ((𝑇 ∘f + ((1...𝑁) × {1}))‘𝑁)) |
74 | | elfzonn0 13432 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0..^𝐾) → 𝑗 ∈ ℕ0) |
75 | | nn0p1nn 12272 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0..^𝐾) → (𝑗 + 1) ∈ ℕ) |
77 | | elsni 4578 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ {1} → 𝑦 = 1) |
78 | 77 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ {1} → (𝑗 + 𝑦) = (𝑗 + 1)) |
79 | 78 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ {1} → ((𝑗 + 𝑦) ∈ ℕ ↔ (𝑗 + 1) ∈ ℕ)) |
80 | 76, 79 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0..^𝐾) → (𝑦 ∈ {1} → (𝑗 + 𝑦) ∈ ℕ)) |
81 | 80 | imp 407 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0..^𝐾) ∧ 𝑦 ∈ {1}) → (𝑗 + 𝑦) ∈ ℕ) |
82 | 81 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ (0..^𝐾) ∧ 𝑦 ∈ {1})) → (𝑗 + 𝑦) ∈ ℕ) |
83 | | poimirlem23.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇:(1...𝑁)⟶(0..^𝐾)) |
84 | | 1ex 10971 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
V |
85 | 84 | fconst 6660 |
. . . . . . . . . . . . . . . 16
⊢
((1...𝑁) ×
{1}):(1...𝑁)⟶{1} |
86 | 85 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((1...𝑁) × {1}):(1...𝑁)⟶{1}) |
87 | | ovexd 7310 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1...𝑁) ∈ V) |
88 | | inidm 4152 |
. . . . . . . . . . . . . . 15
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
89 | 82, 83, 86, 87, 87, 88 | off 7551 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑇 ∘f + ((1...𝑁) × {1})):(1...𝑁)⟶ℕ) |
90 | | elfz1end 13286 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁)) |
91 | 13, 90 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) |
92 | 89, 91 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑇 ∘f + ((1...𝑁) × {1}))‘𝑁) ∈
ℕ) |
93 | 92 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ((𝑇 ∘f + ((1...𝑁) × {1}))‘𝑁) ∈
ℕ) |
94 | 73, 93 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ∈ ℕ) |
95 | 94 | nnne0d 12023 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0) |
96 | | breq1 5077 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑁 − 1) → (𝑦 < 𝑉 ↔ (𝑁 − 1) < 𝑉)) |
97 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑁 − 1) → 𝑦 = (𝑁 − 1)) |
98 | | oveq1 7282 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑁 − 1) → (𝑦 + 1) = ((𝑁 − 1) + 1)) |
99 | 96, 97, 98 | ifbieq12d 4487 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑁 − 1) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1))) |
100 | 99 | csbeq1d 3836 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑁 − 1) → ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) |
101 | 100 | fveq1d 6776 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑁 − 1) → (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = (⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁)) |
102 | 101 | neeq1d 3003 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑁 − 1) → ((⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0 ↔ (⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0)) |
103 | 7, 102 | bitr3id 285 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑁 − 1) → (¬
(⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (⦋if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0)) |
104 | 103 | rspcev 3561 |
. . . . . . . . . 10
⊢ (((𝑁 − 1) ∈ (0...(𝑁 − 1)) ∧
(⦋if((𝑁
− 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0) → ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) |
105 | 33, 95, 104 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) |
106 | 105, 11 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) |
107 | 106 | ex 413 |
. . . . . . 7
⊢ (𝜑 → (¬ (𝑁 − 1) < 𝑉 → ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) |
108 | 28, 107 | syld 47 |
. . . . . 6
⊢ (𝜑 → (𝑉 ≠ 𝑁 → ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) |
109 | 108 | necon4ad 2962 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 → 𝑉 = 𝑁)) |
110 | 109 | pm4.71rd 563 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (𝑉 = 𝑁 ∧ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))) |
111 | 30 | nn0zd 12424 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
112 | | uzid 12597 |
. . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
113 | | peano2uz 12641 |
. . . . . . . . . . . . 13
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
114 | 111, 112,
113 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
115 | 37, 114 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
116 | | fzss2 13296 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁)) |
117 | 115, 116 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁)) |
118 | 117 | sselda 3921 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ (0...𝑁)) |
119 | 91 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑁 ∈ (1...𝑁)) |
120 | 83 | ffnd 6601 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇 Fn (1...𝑁)) |
121 | 120 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 𝑇 Fn (1...𝑁)) |
122 | 84 | fconst 6660 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1} |
123 | | c0ex 10969 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
V |
124 | 123 | fconst 6660 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0} |
125 | 122, 124 | pm3.2i 471 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1} ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0}) |
126 | | dff1o3 6722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (𝑈:(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡𝑈)) |
127 | 126 | simprbi 497 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡𝑈) |
128 | | imain 6519 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁)))) |
129 | 48, 127, 128 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁)))) |
130 | | elfzelz 13256 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ) |
131 | 130 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ) |
132 | 131 | ltp1d 11905 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 < (𝑗 + 1)) |
133 | | fzdisj 13283 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅) |
134 | 132, 133 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑁) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅) |
135 | 134 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑁) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (𝑈 “ ∅)) |
136 | 135, 60 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑁) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅) |
137 | 129, 136 | sylan9req 2799 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) |
138 | | fun 6636 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 “
(1...𝑗)) ×
{1}):(𝑈 “ (1...𝑗))⟶{1} ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0}) ∧ ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0})) |
139 | 125, 137,
138 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0})) |
140 | | elfznn0 13349 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℕ0) |
141 | 140, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ ℕ) |
142 | | nnuz 12621 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℕ =
(ℤ≥‘1) |
143 | 141, 142 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈
(ℤ≥‘1)) |
144 | | elfzuz3 13253 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘𝑗)) |
145 | | fzsplit2 13281 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑗 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑗)) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) |
146 | 143, 144,
145 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑁) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) |
147 | 146 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑁) → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))) |
148 | | imaundi 6053 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) |
149 | 147, 148 | eqtr2di 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑁) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) = (𝑈 “ (1...𝑁))) |
150 | 149, 51 | sylan9eqr 2800 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) = (1...𝑁)) |
151 | 150 | feq2d 6586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}) ↔ (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))) |
152 | 139, 151 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0})) |
153 | 152 | ffnd 6601 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
154 | | ovexd 7310 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (1...𝑁) ∈ V) |
155 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑁 ∈ (1...𝑁)) → (𝑇‘𝑁) = (𝑇‘𝑁)) |
156 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑁 ∈ (1...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) |
157 | 121, 153,
154, 154, 88, 155, 156 | ofval 7544 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑁)) ∧ 𝑁 ∈ (1...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = ((𝑇‘𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))) |
158 | 119, 157 | mpdan 684 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = ((𝑇‘𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))) |
159 | 158 | eqeq1d 2740 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇‘𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) = 0)) |
160 | 83, 91 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑇‘𝑁) ∈ (0..^𝐾)) |
161 | | elfzonn0 13432 |
. . . . . . . . . . . . . 14
⊢ ((𝑇‘𝑁) ∈ (0..^𝐾) → (𝑇‘𝑁) ∈
ℕ0) |
162 | 160, 161 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑇‘𝑁) ∈
ℕ0) |
163 | 162 | nn0red 12294 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑇‘𝑁) ∈ ℝ) |
164 | 163 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (𝑇‘𝑁) ∈ ℝ) |
165 | 162 | nn0ge0d 12296 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤ (𝑇‘𝑁)) |
166 | 165 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 0 ≤ (𝑇‘𝑁)) |
167 | | 1re 10975 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ |
168 | | snssi 4741 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ → {1} ⊆ ℝ) |
169 | 167, 168 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ {1}
⊆ ℝ |
170 | | 0re 10977 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
171 | | snssi 4741 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ → {0} ⊆ ℝ) |
172 | 170, 171 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ {0}
⊆ ℝ |
173 | 169, 172 | unssi 4119 |
. . . . . . . . . . . 12
⊢ ({1}
∪ {0}) ⊆ ℝ |
174 | 152, 119 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ({1} ∪ {0})) |
175 | 173, 174 | sselid 3919 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ℝ) |
176 | | elun 4083 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ({1} ∪ {0}) ↔ (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} ∨ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0})) |
177 | | 0le1 11498 |
. . . . . . . . . . . . . . 15
⊢ 0 ≤
1 |
178 | | elsni 4578 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 1) |
179 | 177, 178 | breqtrrid 5112 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) |
180 | | 0le0 12074 |
. . . . . . . . . . . . . . 15
⊢ 0 ≤
0 |
181 | | elsni 4578 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0} → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) |
182 | 180, 181 | breqtrrid 5112 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0} → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) |
183 | 179, 182 | jaoi 854 |
. . . . . . . . . . . . 13
⊢
((((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} ∨ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0}) → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) |
184 | 176, 183 | sylbi 216 |
. . . . . . . . . . . 12
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ({1} ∪ {0}) → 0 ≤
((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) |
185 | 174, 184 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) |
186 | | add20 11487 |
. . . . . . . . . . 11
⊢ ((((𝑇‘𝑁) ∈ ℝ ∧ 0 ≤ (𝑇‘𝑁)) ∧ (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ℝ ∧ 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))) → (((𝑇‘𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) = 0 ↔ ((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) |
187 | 164, 166,
175, 185, 186 | syl22anc 836 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑇‘𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) = 0 ↔ ((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) |
188 | 159, 187 | bitrd 278 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑁)) → (((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) |
189 | 118, 188 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) |
190 | 189 | ralbidva 3111 |
. . . . . . 7
⊢ (𝜑 → (∀𝑗 ∈ (0...(𝑁 − 1))((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) |
191 | 190 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑉 = 𝑁) → (∀𝑗 ∈ (0...(𝑁 − 1))((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) |
192 | | breq2 5078 |
. . . . . . . . . . . . . 14
⊢ (𝑉 = 𝑁 → (𝑦 < 𝑉 ↔ 𝑦 < 𝑁)) |
193 | 192 | ifbid 4482 |
. . . . . . . . . . . . 13
⊢ (𝑉 = 𝑁 → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = if(𝑦 < 𝑁, 𝑦, (𝑦 + 1))) |
194 | | elfzelz 13256 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℤ) |
195 | 194 | zred 12426 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ) |
196 | 195 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ) |
197 | 30 | nn0red 12294 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
198 | 197 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ) |
199 | 23 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ) |
200 | | elfzle2 13260 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1)) |
201 | 200 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1)) |
202 | 23 | ltm1d 11907 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 − 1) < 𝑁) |
203 | 202 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁) |
204 | 196, 198,
199, 201, 203 | lelttrd 11133 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁) |
205 | 204 | iftrued 4467 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑁, 𝑦, (𝑦 + 1)) = 𝑦) |
206 | 193, 205 | sylan9eqr 2800 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑉 = 𝑁) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = 𝑦) |
207 | 206 | an32s 649 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = 𝑦) |
208 | 207 | csbeq1d 3836 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) |
209 | 208 | fveq1d 6776 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) →
(⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = (⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁)) |
210 | 209 | eqeq1d 2740 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) →
((⦋if(𝑦 <
𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) |
211 | 210 | ralbidva 3111 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑉 = 𝑁) → (∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) |
212 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑦((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 |
213 | | nfcsb1v 3857 |
. . . . . . . . . 10
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) |
214 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑗𝑁 |
215 | 213, 214 | nffv 6784 |
. . . . . . . . 9
⊢
Ⅎ𝑗(⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) |
216 | 215 | nfeq1 2922 |
. . . . . . . 8
⊢
Ⅎ𝑗(⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 |
217 | | csbeq1a 3846 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑦 → (𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) |
218 | 217 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑗 = 𝑦 → ((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = (⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁)) |
219 | 218 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑗 = 𝑦 → (((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) |
220 | 212, 216,
219 | cbvralw 3373 |
. . . . . . 7
⊢
(∀𝑗 ∈
(0...(𝑁 − 1))((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋𝑦 / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) |
221 | 211, 220 | bitr4di 289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑉 = 𝑁) → (∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)) |
222 | | ne0i 4268 |
. . . . . . . . . 10
⊢ ((𝑁 − 1) ∈ (0...(𝑁 − 1)) → (0...(𝑁 − 1)) ≠
∅) |
223 | | r19.3rzv 4429 |
. . . . . . . . . 10
⊢
((0...(𝑁 − 1))
≠ ∅ → ((𝑇‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))(𝑇‘𝑁) = 0)) |
224 | 32, 222, 223 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑇‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))(𝑇‘𝑁) = 0)) |
225 | | elfzelz 13256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ) |
226 | 225 | zred 12426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℝ) |
227 | 226 | ltp1d 11905 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 < (𝑗 + 1)) |
228 | 227, 133 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅) |
229 | 228 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (𝑈 “ ∅)) |
230 | 229, 60 | eqtrdi 2794 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅) |
231 | 129, 230 | sylan9req 2799 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) |
232 | 231 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) |
233 | | simplr 766 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑈‘𝑁) = 𝑁) |
234 | | f1ofn 6717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈 Fn (1...𝑁)) |
235 | 48, 234 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑈 Fn (1...𝑁)) |
236 | 235 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑈 Fn (1...𝑁)) |
237 | | elfznn0 13349 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0) |
238 | 237, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℕ) |
239 | 238, 142 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈
(ℤ≥‘1)) |
240 | | fzss1 13295 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 + 1) ∈
(ℤ≥‘1) → ((𝑗 + 1)...𝑁) ⊆ (1...𝑁)) |
241 | 239, 240 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → ((𝑗 + 1)...𝑁) ⊆ (1...𝑁)) |
242 | 241 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)...𝑁) ⊆ (1...𝑁)) |
243 | 37 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
244 | | elfzuz3 13253 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑗)) |
245 | | eluzp1p1 12610 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑗) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑗 + 1))) |
246 | 244, 245 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑗 + 1))) |
247 | 246 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑗 + 1))) |
248 | 243, 247 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘(𝑗 + 1))) |
249 | | eluzfz2 13264 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈
(ℤ≥‘(𝑗 + 1)) → 𝑁 ∈ ((𝑗 + 1)...𝑁)) |
250 | 248, 249 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑗 + 1)...𝑁)) |
251 | | fnfvima 7109 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 Fn (1...𝑁) ∧ ((𝑗 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑗 + 1)...𝑁)) → (𝑈‘𝑁) ∈ (𝑈 “ ((𝑗 + 1)...𝑁))) |
252 | 236, 242,
250, 251 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑈‘𝑁) ∈ (𝑈 “ ((𝑗 + 1)...𝑁))) |
253 | 252 | adantlr 712 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑈‘𝑁) ∈ (𝑈 “ ((𝑗 + 1)...𝑁))) |
254 | 233, 253 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁))) |
255 | | fnconstg 6662 |
. . . . . . . . . . . . . . . 16
⊢ (1 ∈
V → ((𝑈 “
(1...𝑗)) × {1}) Fn
(𝑈 “ (1...𝑗))) |
256 | 84, 255 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)) |
257 | | fnconstg 6662 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
V → ((𝑈 “
((𝑗 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑁))) |
258 | 123, 257 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑁)) |
259 | | fvun2 6860 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)) ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑁)) ∧ (((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁)))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁)) |
260 | 256, 258,
259 | mp3an12 1450 |
. . . . . . . . . . . . . 14
⊢ ((((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁)) |
261 | 232, 254,
260 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁)) |
262 | 123 | fvconst2 7079 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁)) → (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁) = 0) |
263 | 254, 262 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁) = 0) |
264 | 261, 263 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑈‘𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) |
265 | 264 | ralrimiva 3103 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑈‘𝑁) = 𝑁) → ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) |
266 | 265 | ex 413 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑈‘𝑁) = 𝑁 → ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)) |
267 | 32 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → (𝑁 − 1) ∈ (0...(𝑁 − 1))) |
268 | | ax-1ne0 10940 |
. . . . . . . . . . . . . . 15
⊢ 1 ≠
0 |
269 | | imain 6519 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁)))) |
270 | 48, 127, 269 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁)))) |
271 | 202, 37 | breqtrrd 5102 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑁 − 1) < ((𝑁 − 1) + 1)) |
272 | | fzdisj 13283 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 − 1) < ((𝑁 − 1) + 1) →
((1...(𝑁 − 1)) ∩
(((𝑁 − 1) +
1)...𝑁)) =
∅) |
273 | 271, 272 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁)) = ∅) |
274 | 273 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = (𝑈 “ ∅)) |
275 | 274, 60 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = ∅) |
276 | 270, 275 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅) |
277 | 276 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅) |
278 | 91 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → 𝑁 ∈ (1...𝑁)) |
279 | | elimasni 5999 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ (𝑈 “ {𝑁}) → 𝑁𝑈𝑁) |
280 | | fnbrfvb 6822 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑈 Fn (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → ((𝑈‘𝑁) = 𝑁 ↔ 𝑁𝑈𝑁)) |
281 | 235, 91, 280 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑈‘𝑁) = 𝑁 ↔ 𝑁𝑈𝑁)) |
282 | 279, 281 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑁 ∈ (𝑈 “ {𝑁}) → (𝑈‘𝑁) = 𝑁)) |
283 | 282 | necon3ad 2956 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑈‘𝑁) ≠ 𝑁 → ¬ 𝑁 ∈ (𝑈 “ {𝑁}))) |
284 | 283 | imp 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ¬ 𝑁 ∈ (𝑈 “ {𝑁})) |
285 | 278, 284 | eldifd 3898 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → 𝑁 ∈ ((1...𝑁) ∖ (𝑈 “ {𝑁}))) |
286 | | imadif 6518 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Fun
◡𝑈 → (𝑈 “ ((1...𝑁) ∖ {𝑁})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑁}))) |
287 | 48, 127, 286 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ ((1...𝑁) ∖ {𝑁})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑁}))) |
288 | | difun2 4414 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1...(𝑁 −
1)) ∪ {𝑁}) ∖
{𝑁}) = ((1...(𝑁 − 1)) ∖ {𝑁}) |
289 | | elun 4083 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 ∈ {𝑁})) |
290 | | velsn 4577 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ {𝑁} ↔ 𝑗 = 𝑁) |
291 | 290 | orbi2i 910 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 ∈ {𝑁}) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁)) |
292 | 289, 291 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁)) |
293 | 13, 142 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
294 | | fzm1 13336 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈
(ℤ≥‘1) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁))) |
295 | 293, 294 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁))) |
296 | 292, 295 | bitr4id 290 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑗 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ 𝑗 ∈ (1...𝑁))) |
297 | 296 | eqrdv 2736 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁)) |
298 | 297 | difeq1d 4056 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((1...(𝑁 − 1)) ∪ {𝑁}) ∖ {𝑁}) = ((1...𝑁) ∖ {𝑁})) |
299 | 197, 23 | ltnled 11122 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1))) |
300 | 202, 299 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1)) |
301 | | elfzle2 13260 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
302 | 300, 301 | nsyl 140 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1))) |
303 | | difsn 4731 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑁 ∈ (1...(𝑁 − 1)) → ((1...(𝑁 − 1)) ∖ {𝑁}) = (1...(𝑁 − 1))) |
304 | 302, 303 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((1...(𝑁 − 1)) ∖ {𝑁}) = (1...(𝑁 − 1))) |
305 | 288, 298,
304 | 3eqtr3a 2802 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
306 | 305 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑈 “ ((1...𝑁) ∖ {𝑁})) = (𝑈 “ (1...(𝑁 − 1)))) |
307 | 51 | difeq1d 4056 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑁})) = ((1...𝑁) ∖ (𝑈 “ {𝑁}))) |
308 | 287, 306,
307 | 3eqtr3rd 2787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((1...𝑁) ∖ (𝑈 “ {𝑁})) = (𝑈 “ (1...(𝑁 − 1)))) |
309 | 308 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ((1...𝑁) ∖ (𝑈 “ {𝑁})) = (𝑈 “ (1...(𝑁 − 1)))) |
310 | 285, 309 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → 𝑁 ∈ (𝑈 “ (1...(𝑁 − 1)))) |
311 | | fnconstg 6662 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 ∈
V → ((𝑈 “
(1...(𝑁 − 1)))
× {1}) Fn (𝑈 “
(1...(𝑁 −
1)))) |
312 | 84, 311 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 “ (1...(𝑁 − 1))) × {1}) Fn (𝑈 “ (1...(𝑁 − 1))) |
313 | | fnconstg 6662 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
V → ((𝑈 “
(((𝑁 − 1) +
1)...𝑁)) × {0}) Fn
(𝑈 “ (((𝑁 − 1) + 1)...𝑁))) |
314 | 123, 313 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑁 − 1) + 1)...𝑁)) |
315 | | fvun1 6859 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) Fn (𝑈 “ (1...(𝑁 − 1))) ∧ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑁 − 1) + 1)...𝑁)) ∧ (((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ (1...(𝑁 − 1))))) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁)) |
316 | 312, 314,
315 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ (1...(𝑁 − 1)))) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁)) |
317 | 277, 310,
316 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁)) |
318 | 84 | fvconst2 7079 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ (𝑈 “ (1...(𝑁 − 1))) → (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁) = 1) |
319 | 310, 318 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁) = 1) |
320 | 317, 319 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = 1) |
321 | 320 | neeq1d 3003 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → (((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0 ↔ 1 ≠ 0)) |
322 | 268, 321 | mpbiri 257 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0) |
323 | | df-ne 2944 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 “
(1...𝑗)) × {1}) ∪
((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ≠ 0 ↔ ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) |
324 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑁 − 1) → (1...𝑗) = (1...(𝑁 − 1))) |
325 | 324 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑁 − 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑁 − 1)))) |
326 | 325 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑁 − 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑁 − 1))) × {1})) |
327 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 = (𝑁 − 1) → (𝑗 + 1) = ((𝑁 − 1) + 1)) |
328 | 327 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = (𝑁 − 1) → ((𝑗 + 1)...𝑁) = (((𝑁 − 1) + 1)...𝑁)) |
329 | 328 | imaeq2d 5969 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = (𝑁 − 1) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) |
330 | 329 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = (𝑁 − 1) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0})) |
331 | 326, 330 | uneq12d 4098 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = (𝑁 − 1) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))) |
332 | 331 | fveq1d 6776 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑁 − 1) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁)) |
333 | 332 | neeq1d 3003 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑁 − 1) → (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ≠ 0 ↔ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0)) |
334 | 323, 333 | bitr3id 285 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑁 − 1) → (¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0 ↔ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0)) |
335 | 334 | rspcev 3561 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 − 1) ∈ (0...(𝑁 − 1)) ∧ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0) → ∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) |
336 | 267, 322,
335 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑈‘𝑁) ≠ 𝑁) → ∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) |
337 | 336 | ex 413 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑈‘𝑁) ≠ 𝑁 → ∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)) |
338 | | rexnal 3169 |
. . . . . . . . . . . 12
⊢
(∃𝑗 ∈
(0...(𝑁 − 1)) ¬
((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0 ↔ ¬ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) |
339 | 337, 338 | syl6ib 250 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑈‘𝑁) ≠ 𝑁 → ¬ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)) |
340 | 339 | necon4ad 2962 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0 → (𝑈‘𝑁) = 𝑁)) |
341 | 266, 340 | impbid 211 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑈‘𝑁) = 𝑁 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)) |
342 | 224, 341 | anbi12d 631 |
. . . . . . . 8
⊢ (𝜑 → (((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁) ↔ (∀𝑗 ∈ (0...(𝑁 − 1))(𝑇‘𝑁) = 0 ∧ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) |
343 | | r19.26 3095 |
. . . . . . . 8
⊢
(∀𝑗 ∈
(0...(𝑁 − 1))((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) ↔ (∀𝑗 ∈ (0...(𝑁 − 1))(𝑇‘𝑁) = 0 ∧ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)) |
344 | 342, 343 | bitr4di 289 |
. . . . . . 7
⊢ (𝜑 → (((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁) ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) |
345 | 344 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑉 = 𝑁) → (((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁) ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇‘𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))) |
346 | 191, 221,
345 | 3bitr4d 311 |
. . . . 5
⊢ ((𝜑 ∧ 𝑉 = 𝑁) → (∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁))) |
347 | 346 | pm5.32da 579 |
. . . 4
⊢ (𝜑 → ((𝑉 = 𝑁 ∧ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) ↔ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁)))) |
348 | 110, 347 | bitrd 278 |
. . 3
⊢ (𝜑 → (∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁)))) |
349 | 348 | notbid 318 |
. 2
⊢ (𝜑 → (¬ ∀𝑦 ∈ (0...(𝑁 − 1))(⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁)))) |
350 | 12, 349 | syl5bb 283 |
1
⊢ (𝜑 → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗⦌(𝑇 ∘f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝‘𝑁) ≠ 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇‘𝑁) = 0 ∧ (𝑈‘𝑁) = 𝑁)))) |