Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem23 Structured version   Visualization version   GIF version

Theorem poimirlem23 34909
Description: Lemma for poimir 34919, two ways of expressing the property that a face is not on the back face of the cube. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem23.1 (𝜑𝑇:(1...𝑁)⟶(0..^𝐾))
poimirlem23.2 (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))
poimirlem23.3 (𝜑𝑉 ∈ (0...𝑁))
Assertion
Ref Expression
poimirlem23 (𝜑 → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))
Distinct variable groups:   𝑗,𝑝,𝑦,𝜑   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝑈,𝑗,𝑦   𝑗,𝑉,𝑦   𝜑,𝑝   𝑗,𝐾,𝑝   𝑁,𝑝   𝑇,𝑝   𝑈,𝑝   𝑦,𝐾   𝑉,𝑝

Proof of Theorem poimirlem23
StepHypRef Expression
1 ovex 7183 . . . . . 6 (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
21csbex 5207 . . . . 5 if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
32rgenw 3150 . . . 4 𝑦 ∈ (0...(𝑁 − 1))if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V
4 eqid 2821 . . . . 5 (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
5 fveq1 6663 . . . . . . 7 (𝑝 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → (𝑝𝑁) = (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁))
65neeq1d 3075 . . . . . 6 (𝑝 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝑝𝑁) ≠ 0 ↔ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0))
7 df-ne 3017 . . . . . 6 ((if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0 ↔ ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
86, 7syl6bb 289 . . . . 5 (𝑝 = if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) → ((𝑝𝑁) ≠ 0 ↔ ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
94, 8rexrnmptw 6855 . . . 4 (∀𝑦 ∈ (0...(𝑁 − 1))if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) ∈ V → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
103, 9ax-mp 5 . . 3 (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
11 rexnal 3238 . . 3 (∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
1210, 11bitri 277 . 2 (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
13 poimir.0 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
1413nnzd 12080 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
15 poimirlem23.3 . . . . . . . . . . 11 (𝜑𝑉 ∈ (0...𝑁))
16 elfzelz 12902 . . . . . . . . . . 11 (𝑉 ∈ (0...𝑁) → 𝑉 ∈ ℤ)
1715, 16syl 17 . . . . . . . . . 10 (𝜑𝑉 ∈ ℤ)
18 zlem1lt 12028 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑉 ∈ ℤ) → (𝑁𝑉 ↔ (𝑁 − 1) < 𝑉))
1914, 17, 18syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑁𝑉 ↔ (𝑁 − 1) < 𝑉))
20 elfzle2 12905 . . . . . . . . . . 11 (𝑉 ∈ (0...𝑁) → 𝑉𝑁)
2115, 20syl 17 . . . . . . . . . 10 (𝜑𝑉𝑁)
2217zred 12081 . . . . . . . . . . . 12 (𝜑𝑉 ∈ ℝ)
2313nnred 11647 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℝ)
2422, 23letri3d 10776 . . . . . . . . . . 11 (𝜑 → (𝑉 = 𝑁 ↔ (𝑉𝑁𝑁𝑉)))
2524biimprd 250 . . . . . . . . . 10 (𝜑 → ((𝑉𝑁𝑁𝑉) → 𝑉 = 𝑁))
2621, 25mpand 693 . . . . . . . . 9 (𝜑 → (𝑁𝑉𝑉 = 𝑁))
2719, 26sylbird 262 . . . . . . . 8 (𝜑 → ((𝑁 − 1) < 𝑉𝑉 = 𝑁))
2827necon3ad 3029 . . . . . . 7 (𝜑 → (𝑉𝑁 → ¬ (𝑁 − 1) < 𝑉))
29 nnm1nn0 11932 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
3013, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 − 1) ∈ ℕ0)
31 nn0fz0 12999 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (0...(𝑁 − 1)))
3230, 31sylib 220 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ (0...(𝑁 − 1)))
3332adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (𝑁 − 1) ∈ (0...(𝑁 − 1)))
34 iffalse 4475 . . . . . . . . . . . . . . . 16 (¬ (𝑁 − 1) < 𝑉 → if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) = ((𝑁 − 1) + 1))
3513nncnd 11648 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℂ)
36 npcan1 11059 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3735, 36syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
3834, 37sylan9eqr 2878 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) = 𝑁)
3938csbeq1d 3886 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑁 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
40 oveq2 7158 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑁 → (1...𝑗) = (1...𝑁))
4140imaeq2d 5923 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑁 → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...𝑁)))
4241xpeq1d 5578 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑁 → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...𝑁)) × {1}))
43 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
4443oveq1d 7165 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑁 → ((𝑗 + 1)...𝑁) = ((𝑁 + 1)...𝑁))
4544imaeq2d 5923 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑁 → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ ((𝑁 + 1)...𝑁)))
4645xpeq1d 5578 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑁 → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0}))
4742, 46uneq12d 4139 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑁 → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...𝑁)) × {1}) ∪ ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0})))
48 poimirlem23.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑈:(1...𝑁)–1-1-onto→(1...𝑁))
49 f1ofo 6616 . . . . . . . . . . . . . . . . . . . . . 22 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈:(1...𝑁)–onto→(1...𝑁))
50 foima 6589 . . . . . . . . . . . . . . . . . . . . . 22 (𝑈:(1...𝑁)–onto→(1...𝑁) → (𝑈 “ (1...𝑁)) = (1...𝑁))
5148, 49, 503syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑈 “ (1...𝑁)) = (1...𝑁))
5251xpeq1d 5578 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑈 “ (1...𝑁)) × {1}) = ((1...𝑁) × {1}))
5323ltp1d 11564 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑁 < (𝑁 + 1))
5414peano2zd 12084 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑁 + 1) ∈ ℤ)
55 fzn 12917 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅))
5654, 14, 55syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑁 < (𝑁 + 1) ↔ ((𝑁 + 1)...𝑁) = ∅))
5753, 56mpbid 234 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑁 + 1)...𝑁) = ∅)
5857imaeq2d 5923 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑈 “ ((𝑁 + 1)...𝑁)) = (𝑈 “ ∅))
5958xpeq1d 5578 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0}) = ((𝑈 “ ∅) × {0}))
60 ima0 5939 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑈 “ ∅) = ∅
6160xpeq1i 5575 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑈 “ ∅) × {0}) = (∅ × {0})
62 0xp 5643 . . . . . . . . . . . . . . . . . . . . . 22 (∅ × {0}) = ∅
6361, 62eqtri 2844 . . . . . . . . . . . . . . . . . . . . 21 ((𝑈 “ ∅) × {0}) = ∅
6459, 63syl6eq 2872 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0}) = ∅)
6552, 64uneq12d 4139 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝑈 “ (1...𝑁)) × {1}) ∪ ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0})) = (((1...𝑁) × {1}) ∪ ∅))
66 un0 4343 . . . . . . . . . . . . . . . . . . 19 (((1...𝑁) × {1}) ∪ ∅) = ((1...𝑁) × {1})
6765, 66syl6eq 2872 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑈 “ (1...𝑁)) × {1}) ∪ ((𝑈 “ ((𝑁 + 1)...𝑁)) × {0})) = ((1...𝑁) × {1}))
6847, 67sylan9eqr 2878 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 = 𝑁) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = ((1...𝑁) × {1}))
6968oveq2d 7166 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 = 𝑁) → (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇f + ((1...𝑁) × {1})))
7013, 69csbied 3918 . . . . . . . . . . . . . . 15 (𝜑𝑁 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇f + ((1...𝑁) × {1})))
7170adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → 𝑁 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇f + ((1...𝑁) × {1})))
7239, 71eqtrd 2856 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = (𝑇f + ((1...𝑁) × {1})))
7372fveq1d 6666 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = ((𝑇f + ((1...𝑁) × {1}))‘𝑁))
74 elfzonn0 13076 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0..^𝐾) → 𝑗 ∈ ℕ0)
75 nn0p1nn 11930 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ℕ0 → (𝑗 + 1) ∈ ℕ)
7674, 75syl 17 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0..^𝐾) → (𝑗 + 1) ∈ ℕ)
77 elsni 4577 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {1} → 𝑦 = 1)
7877oveq2d 7166 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {1} → (𝑗 + 𝑦) = (𝑗 + 1))
7978eleq1d 2897 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {1} → ((𝑗 + 𝑦) ∈ ℕ ↔ (𝑗 + 1) ∈ ℕ))
8076, 79syl5ibrcom 249 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0..^𝐾) → (𝑦 ∈ {1} → (𝑗 + 𝑦) ∈ ℕ))
8180imp 409 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0..^𝐾) ∧ 𝑦 ∈ {1}) → (𝑗 + 𝑦) ∈ ℕ)
8281adantl 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ (0..^𝐾) ∧ 𝑦 ∈ {1})) → (𝑗 + 𝑦) ∈ ℕ)
83 poimirlem23.1 . . . . . . . . . . . . . . 15 (𝜑𝑇:(1...𝑁)⟶(0..^𝐾))
84 1ex 10631 . . . . . . . . . . . . . . . . 17 1 ∈ V
8584fconst 6559 . . . . . . . . . . . . . . . 16 ((1...𝑁) × {1}):(1...𝑁)⟶{1}
8685a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ((1...𝑁) × {1}):(1...𝑁)⟶{1})
87 ovexd 7185 . . . . . . . . . . . . . . 15 (𝜑 → (1...𝑁) ∈ V)
88 inidm 4194 . . . . . . . . . . . . . . 15 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
8982, 83, 86, 87, 87, 88off 7418 . . . . . . . . . . . . . 14 (𝜑 → (𝑇f + ((1...𝑁) × {1})):(1...𝑁)⟶ℕ)
90 elfz1end 12931 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
9113, 90sylib 220 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (1...𝑁))
9289, 91ffvelrnd 6846 . . . . . . . . . . . . 13 (𝜑 → ((𝑇f + ((1...𝑁) × {1}))‘𝑁) ∈ ℕ)
9392adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ((𝑇f + ((1...𝑁) × {1}))‘𝑁) ∈ ℕ)
9473, 93eqeltrd 2913 . . . . . . . . . . 11 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ∈ ℕ)
9594nnne0d 11681 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0)
96 breq1 5061 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑁 − 1) → (𝑦 < 𝑉 ↔ (𝑁 − 1) < 𝑉))
97 id 22 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑁 − 1) → 𝑦 = (𝑁 − 1))
98 oveq1 7157 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑁 − 1) → (𝑦 + 1) = ((𝑁 − 1) + 1))
9996, 97, 98ifbieq12d 4493 . . . . . . . . . . . . . . 15 (𝑦 = (𝑁 − 1) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)))
10099csbeq1d 3886 . . . . . . . . . . . . . 14 (𝑦 = (𝑁 − 1) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
101100fveq1d 6666 . . . . . . . . . . . . 13 (𝑦 = (𝑁 − 1) → (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁))
102101neeq1d 3075 . . . . . . . . . . . 12 (𝑦 = (𝑁 − 1) → ((if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0 ↔ (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0))
1037, 102syl5bbr 287 . . . . . . . . . . 11 (𝑦 = (𝑁 − 1) → (¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0))
104103rspcev 3622 . . . . . . . . . 10 (((𝑁 − 1) ∈ (0...(𝑁 − 1)) ∧ (if((𝑁 − 1) < 𝑉, (𝑁 − 1), ((𝑁 − 1) + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) ≠ 0) → ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
10533, 95, 104syl2anc 586 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ∃𝑦 ∈ (0...(𝑁 − 1)) ¬ (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
106105, 11sylib 220 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑁 − 1) < 𝑉) → ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
107106ex 415 . . . . . . 7 (𝜑 → (¬ (𝑁 − 1) < 𝑉 → ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
10828, 107syld 47 . . . . . 6 (𝜑 → (𝑉𝑁 → ¬ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
109108necon4ad 3035 . . . . 5 (𝜑 → (∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 → 𝑉 = 𝑁))
110109pm4.71rd 565 . . . 4 (𝜑 → (∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (𝑉 = 𝑁 ∧ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)))
11130nn0zd 12079 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − 1) ∈ ℤ)
112 uzid 12252 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
113 peano2uz 12295 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
114111, 112, 1133syl 18 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
11537, 114eqeltrrd 2914 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
116 fzss2 12941 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
117115, 116syl 17 . . . . . . . . . 10 (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁))
118117sselda 3966 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ (0...𝑁))
11991adantr 483 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑁 ∈ (1...𝑁))
12083ffnd 6509 . . . . . . . . . . . . . 14 (𝜑𝑇 Fn (1...𝑁))
121120adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑇 Fn (1...𝑁))
12284fconst 6559 . . . . . . . . . . . . . . . . 17 ((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1}
123 c0ex 10629 . . . . . . . . . . . . . . . . . 18 0 ∈ V
124123fconst 6559 . . . . . . . . . . . . . . . . 17 ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0}
125122, 124pm3.2i 473 . . . . . . . . . . . . . . . 16 (((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1} ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0})
126 dff1o3 6615 . . . . . . . . . . . . . . . . . . 19 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (𝑈:(1...𝑁)–onto→(1...𝑁) ∧ Fun 𝑈))
127126simprbi 499 . . . . . . . . . . . . . . . . . 18 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → Fun 𝑈)
128 imain 6433 . . . . . . . . . . . . . . . . . 18 (Fun 𝑈 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))))
12948, 127, 1283syl 18 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))))
130 elfzelz 12902 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
131130zred 12081 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℝ)
132131ltp1d 11564 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑁) → 𝑗 < (𝑗 + 1))
133 fzdisj 12928 . . . . . . . . . . . . . . . . . . . 20 (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅)
134132, 133syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑁) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅)
135134imaeq2d 5923 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑁) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (𝑈 “ ∅))
136135, 60syl6eq 2872 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑁) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅)
137129, 136sylan9req 2877 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅)
138 fun 6534 . . . . . . . . . . . . . . . 16 (((((𝑈 “ (1...𝑗)) × {1}):(𝑈 “ (1...𝑗))⟶{1} ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}):(𝑈 “ ((𝑗 + 1)...𝑁))⟶{0}) ∧ ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}))
139125, 137, 138sylancr 589 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}))
140 elfznn0 12994 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℕ0)
141140, 75syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ ℕ)
142 nnuz 12275 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
143141, 142eleqtrdi 2923 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑁) → (𝑗 + 1) ∈ (ℤ‘1))
144 elfzuz3 12899 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝑗))
145 fzsplit2 12926 . . . . . . . . . . . . . . . . . . . 20 (((𝑗 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ𝑗)) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))
146143, 144, 145syl2anc 586 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑁) → (1...𝑁) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑁)))
147146imaeq2d 5923 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑁) → (𝑈 “ (1...𝑁)) = (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))))
148 imaundi 6002 . . . . . . . . . . . . . . . . . 18 (𝑈 “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑁))) = ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))
149147, 148syl6req 2873 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑁) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) = (𝑈 “ (1...𝑁)))
150149, 51sylan9eqr 2878 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁))) = (1...𝑁))
151150feq2d 6494 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):((𝑈 “ (1...𝑗)) ∪ (𝑈 “ ((𝑗 + 1)...𝑁)))⟶({1} ∪ {0}) ↔ (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0})))
152139, 151mpbid 234 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))
153152ffnd 6509 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) Fn (1...𝑁))
154 ovexd 7185 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑁)) → (1...𝑁) ∈ V)
155 eqidd 2822 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑁 ∈ (1...𝑁)) → (𝑇𝑁) = (𝑇𝑁))
156 eqidd 2822 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑁 ∈ (1...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))
157121, 153, 154, 154, 88, 155, 156ofval 7412 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ 𝑁 ∈ (1...𝑁)) → ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = ((𝑇𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)))
158119, 157mpdan 685 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = ((𝑇𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)))
159158eqeq1d 2823 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) = 0))
16083, 91ffvelrnd 6846 . . . . . . . . . . . . . 14 (𝜑 → (𝑇𝑁) ∈ (0..^𝐾))
161 elfzonn0 13076 . . . . . . . . . . . . . 14 ((𝑇𝑁) ∈ (0..^𝐾) → (𝑇𝑁) ∈ ℕ0)
162160, 161syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑇𝑁) ∈ ℕ0)
163162nn0red 11950 . . . . . . . . . . . 12 (𝜑 → (𝑇𝑁) ∈ ℝ)
164163adantr 483 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑇𝑁) ∈ ℝ)
165162nn0ge0d 11952 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝑇𝑁))
166165adantr 483 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → 0 ≤ (𝑇𝑁))
167 1re 10635 . . . . . . . . . . . . . 14 1 ∈ ℝ
168 snssi 4734 . . . . . . . . . . . . . 14 (1 ∈ ℝ → {1} ⊆ ℝ)
169167, 168ax-mp 5 . . . . . . . . . . . . 13 {1} ⊆ ℝ
170 0re 10637 . . . . . . . . . . . . . 14 0 ∈ ℝ
171 snssi 4734 . . . . . . . . . . . . . 14 (0 ∈ ℝ → {0} ⊆ ℝ)
172170, 171ax-mp 5 . . . . . . . . . . . . 13 {0} ⊆ ℝ
173169, 172unssi 4160 . . . . . . . . . . . 12 ({1} ∪ {0}) ⊆ ℝ
174152, 119ffvelrnd 6846 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ({1} ∪ {0}))
175173, 174sseldi 3964 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ℝ)
176 elun 4124 . . . . . . . . . . . . 13 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ({1} ∪ {0}) ↔ (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} ∨ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0}))
177 0le1 11157 . . . . . . . . . . . . . . 15 0 ≤ 1
178 elsni 4577 . . . . . . . . . . . . . . 15 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 1)
179177, 178breqtrrid 5096 . . . . . . . . . . . . . 14 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))
180 0le0 11732 . . . . . . . . . . . . . . 15 0 ≤ 0
181 elsni 4577 . . . . . . . . . . . . . . 15 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0} → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
182180, 181breqtrrid 5096 . . . . . . . . . . . . . 14 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0} → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))
183179, 182jaoi 853 . . . . . . . . . . . . 13 ((((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {1} ∨ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ {0}) → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))
184176, 183sylbi 219 . . . . . . . . . . . 12 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ({1} ∪ {0}) → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))
185174, 184syl 17 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑁)) → 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))
186 add20 11146 . . . . . . . . . . 11 ((((𝑇𝑁) ∈ ℝ ∧ 0 ≤ (𝑇𝑁)) ∧ (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ∈ ℝ ∧ 0 ≤ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁))) → (((𝑇𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) = 0 ↔ ((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
187164, 166, 175, 185, 186syl22anc 836 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑇𝑁) + ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁)) = 0 ↔ ((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
188159, 187bitrd 281 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
189118, 188syldan 593 . . . . . . . 8 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → (((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
190189ralbidva 3196 . . . . . . 7 (𝜑 → (∀𝑗 ∈ (0...(𝑁 − 1))((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
191190adantr 483 . . . . . 6 ((𝜑𝑉 = 𝑁) → (∀𝑗 ∈ (0...(𝑁 − 1))((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
192 breq2 5062 . . . . . . . . . . . . . 14 (𝑉 = 𝑁 → (𝑦 < 𝑉𝑦 < 𝑁))
193192ifbid 4488 . . . . . . . . . . . . 13 (𝑉 = 𝑁 → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = if(𝑦 < 𝑁, 𝑦, (𝑦 + 1)))
194 elfzelz 12902 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℤ)
195194zred 12081 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ)
196195adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ)
19730nn0red 11950 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℝ)
198197adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ)
19923adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ)
200 elfzle2 12905 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1))
201200adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1))
20223ltm1d 11566 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) < 𝑁)
203202adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁)
204196, 198, 199, 201, 203lelttrd 10792 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁)
205204iftrued 4474 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑁, 𝑦, (𝑦 + 1)) = 𝑦)
206193, 205sylan9eqr 2878 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑉 = 𝑁) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = 𝑦)
207206an32s 650 . . . . . . . . . . 11 (((𝜑𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) = 𝑦)
208207csbeq1d 3886 . . . . . . . . . 10 (((𝜑𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
209208fveq1d 6666 . . . . . . . . 9 (((𝜑𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = (𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁))
210209eqeq1d 2823 . . . . . . . 8 (((𝜑𝑉 = 𝑁) ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
211210ralbidva 3196 . . . . . . 7 ((𝜑𝑉 = 𝑁) → (∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑦 ∈ (0...(𝑁 − 1))(𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
212 nfv 1911 . . . . . . . 8 𝑦((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0
213 nfcsb1v 3906 . . . . . . . . . 10 𝑗𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))
214 nfcv 2977 . . . . . . . . . 10 𝑗𝑁
215213, 214nffv 6674 . . . . . . . . 9 𝑗(𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁)
216215nfeq1 2993 . . . . . . . 8 𝑗(𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0
217 csbeq1a 3896 . . . . . . . . . 10 (𝑗 = 𝑦 → (𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))
218217fveq1d 6666 . . . . . . . . 9 (𝑗 = 𝑦 → ((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = (𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁))
219218eqeq1d 2823 . . . . . . . 8 (𝑗 = 𝑦 → (((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
220212, 216, 219cbvralw 3441 . . . . . . 7 (∀𝑗 ∈ (0...(𝑁 − 1))((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑦 ∈ (0...(𝑁 − 1))(𝑦 / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0)
221211, 220syl6bbr 291 . . . . . 6 ((𝜑𝑉 = 𝑁) → (∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0))
222 ne0i 4299 . . . . . . . . . 10 ((𝑁 − 1) ∈ (0...(𝑁 − 1)) → (0...(𝑁 − 1)) ≠ ∅)
223 r19.3rzv 4443 . . . . . . . . . 10 ((0...(𝑁 − 1)) ≠ ∅ → ((𝑇𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))(𝑇𝑁) = 0))
22432, 222, 2233syl 18 . . . . . . . . 9 (𝜑 → ((𝑇𝑁) = 0 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))(𝑇𝑁) = 0))
225 elfzelz 12902 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℤ)
226225zred 12081 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℝ)
227226ltp1d 11564 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 < (𝑗 + 1))
228227, 133syl 17 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...(𝑁 − 1)) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑁)) = ∅)
229228imaeq2d 5923 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = (𝑈 “ ∅))
230229, 60syl6eq 2872 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑈 “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑁))) = ∅)
231129, 230sylan9req 2877 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅)
232231adantlr 713 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅)
233 simplr 767 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑈𝑁) = 𝑁)
234 f1ofn 6610 . . . . . . . . . . . . . . . . . . 19 (𝑈:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑈 Fn (1...𝑁))
23548, 234syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 Fn (1...𝑁))
236235adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → 𝑈 Fn (1...𝑁))
237 elfznn0 12994 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
238237, 75syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ ℕ)
239238, 142eleqtrdi 2923 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑗 + 1) ∈ (ℤ‘1))
240 fzss1 12940 . . . . . . . . . . . . . . . . . . 19 ((𝑗 + 1) ∈ (ℤ‘1) → ((𝑗 + 1)...𝑁) ⊆ (1...𝑁))
241239, 240syl 17 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...(𝑁 − 1)) → ((𝑗 + 1)...𝑁) ⊆ (1...𝑁))
242241adantl 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)...𝑁) ⊆ (1...𝑁))
24337adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
244 elfzuz3 12899 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ𝑗))
245 eluzp1p1 12264 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 − 1) ∈ (ℤ𝑗) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑗 + 1)))
246244, 245syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑗 + 1)))
247246adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑗 + 1)))
248243, 247eqeltrrd 2914 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘(𝑗 + 1)))
249 eluzfz2 12909 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘(𝑗 + 1)) → 𝑁 ∈ ((𝑗 + 1)...𝑁))
250248, 249syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑗 + 1)...𝑁))
251 fnfvima 6989 . . . . . . . . . . . . . . . . 17 ((𝑈 Fn (1...𝑁) ∧ ((𝑗 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑗 + 1)...𝑁)) → (𝑈𝑁) ∈ (𝑈 “ ((𝑗 + 1)...𝑁)))
252236, 242, 250, 251syl3anc 1367 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...(𝑁 − 1))) → (𝑈𝑁) ∈ (𝑈 “ ((𝑗 + 1)...𝑁)))
253252adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑈𝑁) ∈ (𝑈 “ ((𝑗 + 1)...𝑁)))
254233, 253eqeltrrd 2914 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁)))
255 fnconstg 6561 . . . . . . . . . . . . . . . 16 (1 ∈ V → ((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)))
25684, 255ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗))
257 fnconstg 6561 . . . . . . . . . . . . . . . 16 (0 ∈ V → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑁)))
258123, 257ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑁))
259 fvun2 6749 . . . . . . . . . . . . . . 15 ((((𝑈 “ (1...𝑗)) × {1}) Fn (𝑈 “ (1...𝑗)) ∧ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) Fn (𝑈 “ ((𝑗 + 1)...𝑁)) ∧ (((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁)))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁))
260256, 258, 259mp3an12 1447 . . . . . . . . . . . . . 14 ((((𝑈 “ (1...𝑗)) ∩ (𝑈 “ ((𝑗 + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁))
261232, 254, 260syl2anc 586 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁))
262123fvconst2 6960 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝑈 “ ((𝑗 + 1)...𝑁)) → (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁) = 0)
263254, 262syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})‘𝑁) = 0)
264261, 263eqtrd 2856 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈𝑁) = 𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
265264ralrimiva 3182 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈𝑁) = 𝑁) → ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
266265ex 415 . . . . . . . . . 10 (𝜑 → ((𝑈𝑁) = 𝑁 → ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))
26732adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → (𝑁 − 1) ∈ (0...(𝑁 − 1)))
268 ax-1ne0 10600 . . . . . . . . . . . . . . 15 1 ≠ 0
269 imain 6433 . . . . . . . . . . . . . . . . . . . . 21 (Fun 𝑈 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))))
27048, 127, 2693syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))))
271202, 37breqtrrd 5086 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑁 − 1) < ((𝑁 − 1) + 1))
272 fzdisj 12928 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 − 1) < ((𝑁 − 1) + 1) → ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁)) = ∅)
273271, 272syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁)) = ∅)
274273imaeq2d 5923 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = (𝑈 “ ∅))
275274, 60syl6eq 2872 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑈 “ ((1...(𝑁 − 1)) ∩ (((𝑁 − 1) + 1)...𝑁))) = ∅)
276270, 275eqtr3d 2858 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅)
277276adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅)
27891adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → 𝑁 ∈ (1...𝑁))
279 elimasni 5950 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (𝑈 “ {𝑁}) → 𝑁𝑈𝑁)
280 fnbrfvb 6712 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑈 Fn (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → ((𝑈𝑁) = 𝑁𝑁𝑈𝑁))
281235, 91, 280syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝑈𝑁) = 𝑁𝑁𝑈𝑁))
282279, 281syl5ibr 248 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑁 ∈ (𝑈 “ {𝑁}) → (𝑈𝑁) = 𝑁))
283282necon3ad 3029 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑈𝑁) ≠ 𝑁 → ¬ 𝑁 ∈ (𝑈 “ {𝑁})))
284283imp 409 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ¬ 𝑁 ∈ (𝑈 “ {𝑁}))
285278, 284eldifd 3946 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → 𝑁 ∈ ((1...𝑁) ∖ (𝑈 “ {𝑁})))
286 imadif 6432 . . . . . . . . . . . . . . . . . . . . . 22 (Fun 𝑈 → (𝑈 “ ((1...𝑁) ∖ {𝑁})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑁})))
28748, 127, 2863syl 18 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑈 “ ((1...𝑁) ∖ {𝑁})) = ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑁})))
288 difun2 4428 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...(𝑁 − 1)) ∪ {𝑁}) ∖ {𝑁}) = ((1...(𝑁 − 1)) ∖ {𝑁})
28913, 142eleqtrdi 2923 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑁 ∈ (ℤ‘1))
290 fzm1 12981 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ (ℤ‘1) → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁)))
291289, 290syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑗 ∈ (1...𝑁) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁)))
292 elun 4124 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 ∈ {𝑁}))
293 velsn 4576 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ {𝑁} ↔ 𝑗 = 𝑁)
294293orbi2i 909 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 ∈ {𝑁}) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁))
295292, 294bitri 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑗 ∈ (1...(𝑁 − 1)) ∨ 𝑗 = 𝑁))
296291, 295syl6rbbr 292 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑗 ∈ ((1...(𝑁 − 1)) ∪ {𝑁}) ↔ 𝑗 ∈ (1...𝑁)))
297296eqrdv 2819 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁))
298297difeq1d 4097 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((1...(𝑁 − 1)) ∪ {𝑁}) ∖ {𝑁}) = ((1...𝑁) ∖ {𝑁}))
299197, 23ltnled 10781 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1)))
300202, 299mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1))
301 elfzle2 12905 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
302300, 301nsyl 142 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1)))
303 difsn 4724 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑁 ∈ (1...(𝑁 − 1)) → ((1...(𝑁 − 1)) ∖ {𝑁}) = (1...(𝑁 − 1)))
304302, 303syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((1...(𝑁 − 1)) ∖ {𝑁}) = (1...(𝑁 − 1)))
305288, 298, 3043eqtr3a 2880 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
306305imaeq2d 5923 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑈 “ ((1...𝑁) ∖ {𝑁})) = (𝑈 “ (1...(𝑁 − 1))))
30751difeq1d 4097 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑈 “ (1...𝑁)) ∖ (𝑈 “ {𝑁})) = ((1...𝑁) ∖ (𝑈 “ {𝑁})))
308287, 306, 3073eqtr3rd 2865 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((1...𝑁) ∖ (𝑈 “ {𝑁})) = (𝑈 “ (1...(𝑁 − 1))))
309308adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ((1...𝑁) ∖ (𝑈 “ {𝑁})) = (𝑈 “ (1...(𝑁 − 1))))
310285, 309eleqtrd 2915 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → 𝑁 ∈ (𝑈 “ (1...(𝑁 − 1))))
311 fnconstg 6561 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ V → ((𝑈 “ (1...(𝑁 − 1))) × {1}) Fn (𝑈 “ (1...(𝑁 − 1))))
31284, 311ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑈 “ (1...(𝑁 − 1))) × {1}) Fn (𝑈 “ (1...(𝑁 − 1)))
313 fnconstg 6561 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ V → ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑁 − 1) + 1)...𝑁)))
314123, 313ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑁 − 1) + 1)...𝑁))
315 fvun1 6748 . . . . . . . . . . . . . . . . . . 19 ((((𝑈 “ (1...(𝑁 − 1))) × {1}) Fn (𝑈 “ (1...(𝑁 − 1))) ∧ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}) Fn (𝑈 “ (((𝑁 − 1) + 1)...𝑁)) ∧ (((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ (1...(𝑁 − 1))))) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁))
316312, 314, 315mp3an12 1447 . . . . . . . . . . . . . . . . . 18 ((((𝑈 “ (1...(𝑁 − 1))) ∩ (𝑈 “ (((𝑁 − 1) + 1)...𝑁))) = ∅ ∧ 𝑁 ∈ (𝑈 “ (1...(𝑁 − 1)))) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁))
317277, 310, 316syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁))
31884fvconst2 6960 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (𝑈 “ (1...(𝑁 − 1))) → (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁) = 1)
319310, 318syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → (((𝑈 “ (1...(𝑁 − 1))) × {1})‘𝑁) = 1)
320317, 319eqtrd 2856 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) = 1)
321320neeq1d 3075 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → (((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0 ↔ 1 ≠ 0))
322268, 321mpbiri 260 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0)
323 df-ne 3017 . . . . . . . . . . . . . . . 16 (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ≠ 0 ↔ ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
324 oveq2 7158 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (𝑁 − 1) → (1...𝑗) = (1...(𝑁 − 1)))
325324imaeq2d 5923 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑁 − 1) → (𝑈 “ (1...𝑗)) = (𝑈 “ (1...(𝑁 − 1))))
326325xpeq1d 5578 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑁 − 1) → ((𝑈 “ (1...𝑗)) × {1}) = ((𝑈 “ (1...(𝑁 − 1))) × {1}))
327 oveq1 7157 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = (𝑁 − 1) → (𝑗 + 1) = ((𝑁 − 1) + 1))
328327oveq1d 7165 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (𝑁 − 1) → ((𝑗 + 1)...𝑁) = (((𝑁 − 1) + 1)...𝑁))
329328imaeq2d 5923 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (𝑁 − 1) → (𝑈 “ ((𝑗 + 1)...𝑁)) = (𝑈 “ (((𝑁 − 1) + 1)...𝑁)))
330329xpeq1d 5578 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑁 − 1) → ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}) = ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))
331326, 330uneq12d 4139 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑁 − 1) → (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})) = (((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0})))
332331fveq1d 6666 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑁 − 1) → ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁))
333332neeq1d 3075 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑁 − 1) → (((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) ≠ 0 ↔ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0))
334323, 333syl5bbr 287 . . . . . . . . . . . . . . 15 (𝑗 = (𝑁 − 1) → (¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0 ↔ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0))
335334rspcev 3622 . . . . . . . . . . . . . 14 (((𝑁 − 1) ∈ (0...(𝑁 − 1)) ∧ ((((𝑈 “ (1...(𝑁 − 1))) × {1}) ∪ ((𝑈 “ (((𝑁 − 1) + 1)...𝑁)) × {0}))‘𝑁) ≠ 0) → ∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
336267, 322, 335syl2anc 586 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑈𝑁) ≠ 𝑁) → ∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
337336ex 415 . . . . . . . . . . . 12 (𝜑 → ((𝑈𝑁) ≠ 𝑁 → ∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))
338 rexnal 3238 . . . . . . . . . . . 12 (∃𝑗 ∈ (0...(𝑁 − 1)) ¬ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0 ↔ ¬ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)
339337, 338syl6ib 253 . . . . . . . . . . 11 (𝜑 → ((𝑈𝑁) ≠ 𝑁 → ¬ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))
340339necon4ad 3035 . . . . . . . . . 10 (𝜑 → (∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0 → (𝑈𝑁) = 𝑁))
341266, 340impbid 214 . . . . . . . . 9 (𝜑 → ((𝑈𝑁) = 𝑁 ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))
342224, 341anbi12d 632 . . . . . . . 8 (𝜑 → (((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁) ↔ (∀𝑗 ∈ (0...(𝑁 − 1))(𝑇𝑁) = 0 ∧ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
343 r19.26 3170 . . . . . . . 8 (∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0) ↔ (∀𝑗 ∈ (0...(𝑁 − 1))(𝑇𝑁) = 0 ∧ ∀𝑗 ∈ (0...(𝑁 − 1))((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0))
344342, 343syl6bbr 291 . . . . . . 7 (𝜑 → (((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁) ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
345344adantr 483 . . . . . 6 ((𝜑𝑉 = 𝑁) → (((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁) ↔ ∀𝑗 ∈ (0...(𝑁 − 1))((𝑇𝑁) = 0 ∧ ((((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))‘𝑁) = 0)))
346191, 221, 3453bitr4d 313 . . . . 5 ((𝜑𝑉 = 𝑁) → (∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁)))
347346pm5.32da 581 . . . 4 (𝜑 → ((𝑉 = 𝑁 ∧ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0) ↔ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))
348110, 347bitrd 281 . . 3 (𝜑 → (∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))
349348notbid 320 . 2 (𝜑 → (¬ ∀𝑦 ∈ (0...(𝑁 − 1))(if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0})))‘𝑁) = 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))
35012, 349syl5bb 285 1 (𝜑 → (∃𝑝 ∈ ran (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < 𝑉, 𝑦, (𝑦 + 1)) / 𝑗(𝑇f + (((𝑈 “ (1...𝑗)) × {1}) ∪ ((𝑈 “ ((𝑗 + 1)...𝑁)) × {0}))))(𝑝𝑁) ≠ 0 ↔ ¬ (𝑉 = 𝑁 ∧ ((𝑇𝑁) = 0 ∧ (𝑈𝑁) = 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  csb 3882  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290  ifcif 4466  {csn 4560   class class class wbr 5058  cmpt 5138   × cxp 5547  ccnv 5548  ran crn 5550  cima 5552  Fun wfun 6343   Fn wfn 6344  wf 6345  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  f cof 7401  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cmin 10864  cn 11632  0cn0 11891  cz 11975  cuz 12237  ...cfz 12886  ..^cfzo 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028
This theorem is referenced by:  poimirlem24  34910
  Copyright terms: Public domain W3C validator