MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicc Structured version   Visualization version   GIF version

Theorem supicc 13478
Description: Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
supicc.1 (𝜑𝐵 ∈ ℝ)
supicc.2 (𝜑𝐶 ∈ ℝ)
supicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
supicc.4 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
supicc (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))

Proof of Theorem supicc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supicc.3 . . . 4 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
2 supicc.1 . . . . 5 (𝜑𝐵 ∈ ℝ)
3 supicc.2 . . . . 5 (𝜑𝐶 ∈ ℝ)
4 iccssre 13406 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
52, 3, 4syl2anc 585 . . . 4 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
61, 5sstrd 3993 . . 3 (𝜑𝐴 ⊆ ℝ)
7 supicc.4 . . 3 (𝜑𝐴 ≠ ∅)
82adantr 482 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
98rexrd 11264 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
103adantr 482 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
1110rexrd 11264 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
121sselda 3983 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ (𝐵[,]𝐶))
13 iccleub 13379 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝑥𝐶)
149, 11, 12, 13syl3anc 1372 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐶)
1514ralrimiva 3147 . . . 4 (𝜑 → ∀𝑥𝐴 𝑥𝐶)
16 brralrspcev 5209 . . . 4 ((𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝑥𝐶) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
173, 15, 16syl2anc 585 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
18 suprcl 12174 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) → sup(𝐴, ℝ, < ) ∈ ℝ)
196, 7, 17, 18syl3anc 1372 . 2 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
206sselda 3983 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
211adantr 482 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ (𝐵[,]𝐶))
22 simpr 486 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
23 iccsupr 13419 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ⊆ (𝐵[,]𝐶) ∧ 𝑥𝐴) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦))
248, 10, 21, 22, 23syl211anc 1377 . . . . . 6 ((𝜑𝑥𝐴) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦))
2524, 18syl 17 . . . . 5 ((𝜑𝑥𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
26 iccgelb 13380 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
279, 11, 12, 26syl3anc 1372 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑥)
28 suprub 12175 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ, < ))
2924, 22, 28syl2anc 585 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ, < ))
308, 20, 25, 27, 29letrd 11371 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
3130ralrimiva 3147 . . 3 (𝜑 → ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < ))
32 r19.3rzv 4499 . . . 4 (𝐴 ≠ ∅ → (𝐵 ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < )))
337, 32syl 17 . . 3 (𝜑 → (𝐵 ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < )))
3431, 33mpbird 257 . 2 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
35 suprleub 12180 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝐶 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝑥𝐶))
366, 7, 17, 3, 35syl31anc 1374 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝑥𝐶))
3715, 36mpbird 257 . 2 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐶)
38 elicc2 13389 . . 3 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (sup(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝐶)))
392, 3, 38syl2anc 585 . 2 (𝜑 → (sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (sup(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝐶)))
4019, 34, 37, 39mpbir3and 1343 1 (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wcel 2107  wne 2941  wral 3062  wrex 3071  wss 3949  c0 4323   class class class wbr 5149  (class class class)co 7409  supcsup 9435  cr 11109  *cxr 11247   < clt 11248  cle 11249  [,]cicc 13327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-icc 13331
This theorem is referenced by:  supicclub2  13481  hoidmv1lelem1  45307  hoidmvlelem1  45311
  Copyright terms: Public domain W3C validator