MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicc Structured version   Visualization version   GIF version

Theorem supicc 13541
Description: Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
supicc.1 (𝜑𝐵 ∈ ℝ)
supicc.2 (𝜑𝐶 ∈ ℝ)
supicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
supicc.4 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
supicc (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))

Proof of Theorem supicc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supicc.3 . . . 4 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
2 supicc.1 . . . . 5 (𝜑𝐵 ∈ ℝ)
3 supicc.2 . . . . 5 (𝜑𝐶 ∈ ℝ)
4 iccssre 13469 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
61, 5sstrd 3994 . . 3 (𝜑𝐴 ⊆ ℝ)
7 supicc.4 . . 3 (𝜑𝐴 ≠ ∅)
82adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
98rexrd 11311 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
103adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
1110rexrd 11311 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
121sselda 3983 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ (𝐵[,]𝐶))
13 iccleub 13442 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝑥𝐶)
149, 11, 12, 13syl3anc 1373 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐶)
1514ralrimiva 3146 . . . 4 (𝜑 → ∀𝑥𝐴 𝑥𝐶)
16 brralrspcev 5203 . . . 4 ((𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝑥𝐶) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
173, 15, 16syl2anc 584 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
18 suprcl 12228 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) → sup(𝐴, ℝ, < ) ∈ ℝ)
196, 7, 17, 18syl3anc 1373 . 2 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
206sselda 3983 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
211adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ (𝐵[,]𝐶))
22 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
23 iccsupr 13482 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ⊆ (𝐵[,]𝐶) ∧ 𝑥𝐴) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦))
248, 10, 21, 22, 23syl211anc 1378 . . . . . 6 ((𝜑𝑥𝐴) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦))
2524, 18syl 17 . . . . 5 ((𝜑𝑥𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
26 iccgelb 13443 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
279, 11, 12, 26syl3anc 1373 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑥)
28 suprub 12229 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ, < ))
2924, 22, 28syl2anc 584 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ, < ))
308, 20, 25, 27, 29letrd 11418 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
3130ralrimiva 3146 . . 3 (𝜑 → ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < ))
32 r19.3rzv 4499 . . . 4 (𝐴 ≠ ∅ → (𝐵 ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < )))
337, 32syl 17 . . 3 (𝜑 → (𝐵 ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < )))
3431, 33mpbird 257 . 2 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
35 suprleub 12234 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝐶 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝑥𝐶))
366, 7, 17, 3, 35syl31anc 1375 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝑥𝐶))
3715, 36mpbird 257 . 2 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐶)
38 elicc2 13452 . . 3 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (sup(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝐶)))
392, 3, 38syl2anc 584 . 2 (𝜑 → (sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (sup(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝐶)))
4019, 34, 37, 39mpbir3and 1343 1 (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wne 2940  wral 3061  wrex 3070  wss 3951  c0 4333   class class class wbr 5143  (class class class)co 7431  supcsup 9480  cr 11154  *cxr 11294   < clt 11295  cle 11296  [,]cicc 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-icc 13394
This theorem is referenced by:  supicclub2  13544  hoidmv1lelem1  46606  hoidmvlelem1  46610
  Copyright terms: Public domain W3C validator