![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvrefrels3 | Structured version Visualization version GIF version |
Description: Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 30-Aug-2021.) |
Ref | Expression |
---|---|
elcnvrefrels3 | ⊢ (𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnvrefrels3 37399 | . 2 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)} | |
2 | dmeq 5904 | . . 3 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
3 | rneq 5936 | . . . 4 ⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) | |
4 | breq 5151 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑦 ↔ 𝑥𝑅𝑦)) | |
5 | 4 | imbi1d 342 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥𝑟𝑦 → 𝑥 = 𝑦) ↔ (𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
6 | 3, 5 | raleqbidv 3343 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
7 | 2, 6 | raleqbidv 3343 | . 2 ⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
8 | 1, 7 | rabeqel 37122 | 1 ⊢ (𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 class class class wbr 5149 dom cdm 5677 ran crn 5678 Rels crels 37045 CnvRefRels ccnvrefrels 37051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-dm 5687 df-rn 5688 df-ssr 37368 df-cnvrefs 37395 df-cnvrefrels 37396 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |