Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvrefrels3 Structured version   Visualization version   GIF version

Theorem elcnvrefrels3 38059
Description: Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 30-Aug-2021.)
Assertion
Ref Expression
elcnvrefrels3 (𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥𝑅𝑦𝑥 = 𝑦) ∧ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem elcnvrefrels3
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfcnvrefrels3 38053 . 2 CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥𝑟𝑦𝑥 = 𝑦)}
2 dmeq 5901 . . 3 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
3 rneq 5933 . . . 4 (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅)
4 breq 5146 . . . . 5 (𝑟 = 𝑅 → (𝑥𝑟𝑦𝑥𝑅𝑦))
54imbi1d 340 . . . 4 (𝑟 = 𝑅 → ((𝑥𝑟𝑦𝑥 = 𝑦) ↔ (𝑥𝑅𝑦𝑥 = 𝑦)))
63, 5raleqbidv 3330 . . 3 (𝑟 = 𝑅 → (∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦𝑥 = 𝑦) ↔ ∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦𝑥 = 𝑦)))
72, 6raleqbidv 3330 . 2 (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟𝑦 ∈ ran 𝑟(𝑥𝑟𝑦𝑥 = 𝑦) ↔ ∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥𝑅𝑦𝑥 = 𝑦)))
81, 7rabeqel 37778 1 (𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ dom 𝑅𝑦 ∈ ran 𝑅(𝑥𝑅𝑦𝑥 = 𝑦) ∧ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3051   class class class wbr 5144  dom cdm 5673  ran crn 5674   Rels crels 37703   CnvRefRels ccnvrefrels 37709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-dm 5683  df-rn 5684  df-ssr 38022  df-cnvrefs 38049  df-cnvrefrels 38050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator