| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvrefrels3 | Structured version Visualization version GIF version | ||
| Description: Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| elcnvrefrels3 | ⊢ (𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ 𝑅 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnvrefrels3 38620 | . 2 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)} | |
| 2 | dmeq 5842 | . . 3 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
| 3 | rneq 5875 | . . . 4 ⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) | |
| 4 | breq 5091 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑦 ↔ 𝑥𝑅𝑦)) | |
| 5 | 4 | imbi1d 341 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥𝑟𝑦 → 𝑥 = 𝑦) ↔ (𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
| 6 | 3, 5 | raleqbidv 3312 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
| 7 | 2, 6 | raleqbidv 3312 | . 2 ⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
| 8 | 1, 7 | rabeqel 38290 | 1 ⊢ (𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ 𝑅 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5089 dom cdm 5614 ran crn 5615 Rels crels 38223 CnvRefRels ccnvrefrels 38229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-ssr 38589 df-cnvrefs 38616 df-cnvrefrels 38617 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |