![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvrefrels3 | Structured version Visualization version GIF version |
Description: Element of the class of converse reflexive relations. (Contributed by Peter Mazsa, 30-Aug-2021.) |
Ref | Expression |
---|---|
elcnvrefrels3 | ⊢ (𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ 𝑅 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnvrefrels3 35241 | . 2 ⊢ CnvRefRels = {𝑟 ∈ Rels ∣ ∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦)} | |
2 | dmeq 5618 | . . 3 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
3 | rneq 5646 | . . . 4 ⊢ (𝑟 = 𝑅 → ran 𝑟 = ran 𝑅) | |
4 | breq 4927 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥𝑟𝑦 ↔ 𝑥𝑅𝑦)) | |
5 | 4 | imbi1d 334 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥𝑟𝑦 → 𝑥 = 𝑦) ↔ (𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
6 | 3, 5 | raleqbidv 3335 | . . 3 ⊢ (𝑟 = 𝑅 → (∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
7 | 2, 6 | raleqbidv 3335 | . 2 ⊢ (𝑟 = 𝑅 → (∀𝑥 ∈ dom 𝑟∀𝑦 ∈ ran 𝑟(𝑥𝑟𝑦 → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦))) |
8 | 1, 7 | rabeqel 34989 | 1 ⊢ (𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ dom 𝑅∀𝑦 ∈ ran 𝑅(𝑥𝑅𝑦 → 𝑥 = 𝑦) ∧ 𝑅 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∀wral 3082 class class class wbr 4925 dom cdm 5403 ran crn 5404 Rels crels 34928 CnvRefRels ccnvrefrels 34934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-dm 5413 df-rn 5414 df-ssr 35212 df-cnvrefs 35237 df-cnvrefrels 35238 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |