Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsymrels2 Structured version   Visualization version   GIF version

Theorem elsymrels2 36646
Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021.)
Assertion
Ref Expression
elsymrels2 (𝑅 ∈ SymRels ↔ (𝑅𝑅𝑅 ∈ Rels ))

Proof of Theorem elsymrels2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dfsymrels2 36638 . 2 SymRels = {𝑟 ∈ Rels ∣ 𝑟𝑟}
2 cnveq 5779 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
3 id 22 . . 3 (𝑟 = 𝑅𝑟 = 𝑅)
42, 3sseq12d 3958 . 2 (𝑟 = 𝑅 → (𝑟𝑟𝑅𝑅))
51, 4rabeqel 36373 1 (𝑅 ∈ SymRels ↔ (𝑅𝑅𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1541  wcel 2109  wss 3891  ccnv 5587   Rels crels 36314   SymRels csymrels 36323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-rels 36582  df-ssr 36595  df-syms 36635  df-symrels 36636
This theorem is referenced by:  elsymrelsrel  36650
  Copyright terms: Public domain W3C validator